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Supplementary Information 

Ablation Studies 

The supplementary tables present evaluations of various model configurations aimed at 

optimizing ElderNet, reporting performance using the F1 score and standard deviation across 

three seeds. Given the limited number of seeds, p-values were not reported as they would not 

provide meaningful statistical insights. 

Supplementary Table S1. The effect of using the UK Biobank pre-trained model. 
 

 
Model 

Trained from 

scratch 

Pre-trained 

model 

ResNet-V2 77.15 (0.30) 82.59 (0.89) 

Performance is reported as the F1 score (standard deviation between different seeds). The 

pre-trained UK Biobank model was a ResNet-V2 with the MTL approach. We employed the 

same architecture and MTL approach to train the SSL model from scratch using the MAP 

data. 

 

 
Supplementary Table S2. The effect of customizing the SSL model for older adults using 

the MAP data. 

 

Model's head MAP Without MAP 

FC (without non-linearity) 84.67 (0.44) 82.55 (0.08) 

FC (with non-linearity) 84.74 (0.51) 83.21 (0.45) 

U-Net 83.02 (0.86) 83.90 (0.08) 

Performance is reported as the F1 score (standard deviation between different seeds). In this 

table, we employed the combined model (i.e., pretrained UK Biobank model + additional 

model’s head) with the optimal SSL configuration, termed ElderNet. FC: Fully-connected. 

 

 
Supplementary Table S3. The effect of dense labeling. 

 

 
Model 

 
Window Labels 

Dense 

Labeling 

ElderNet 84.74 (0.51) 81.99 (0.41) 

Performance reported as the F1 score (standard deviation between different seeds). The 

model employed for both labeling approaches is identical. The key distinction lies in the final 



layer of the model: in the first approach, it projects the output for each window, while in the 

dense labeling approach, it projects the output for each sample. 

Supplementary Table S4. Performance stratified by sequence length. 
 

Sequence 

length 

Accuracy Specificity Recall Precision F1 score 

<30 

seconds 

95.99 97.54 80.29 76.28 78.23 

>30 

seconds 

99.20 100.00 81.25 100.00 89.66 

 

 

 
 

Supplementary Table S5. ElderNet setting. 
 

Method Optimizer Learning- 

rate 

Batch 

size 

Epochs Learning-rate Scheduler 

MTL Adam 1e-4 6000 40 Linear scaling with a 5-epoch 

warm-up 

SimCLR Adam 1e-4 6000 40 Cosine Decay with a 5-epoch 

warm-up 

Each batch contains 1500 windows from 4 unique participants. The windows were sampled 

in proportion to their STD, as described in Yuan et al.38. For the MTL, we employed linear 

scaling for the learning rate to align with the pre-trained UK Biobank model, which utilized 

MTL and linear scaling. For SimCLR, we utilized the cosine decay scheduler, as outlined in 

the original paper of this method32. 



 

 
 

Supplementary Figure S1. Precision-Recall curves for different configurations of 

normalizations. Normalization was implemented per subject, making each axis of its 

acceleration signal zero-mean and a standard deviation of 1. AUC: Area under the curve. 
 

 

 

 

 

 

Supplementary Figure S2. a) On the left, it illustrates the estimated daily walking durations 

using a model that utilized dense labeling in the fine-tuning phase and provided a per-sample 

output. b) On the right, the figure represents the estimated walking duration using a model 

that outputs per-window prediction 


