Supplementary Information for

More water-soluble brown carbon after the residential "coal-to-gas" conversion measure in urban Beijing

Wei Yuan^{1,2}, Ru-Jin Huang^{1,2,3*}, Jincan Shen⁴, Kai Wang⁵, Lu Yang^{1,2}, Ting Wang¹, Yuquan Gong^{1,2}, Wenjuan Cao¹, Jie Guo¹, Haiyan Ni¹, Jing Duan¹, Thorsten Hoffmann⁶

¹State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³Laoshan Laboratory, Qingdao 266061, China

⁴Key Laboratory of Detection Technology R&D on Food Safety, Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen 518045, China

⁵Key Laboratory of Plant-Soil Interactions of MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China

⁶Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany

*Correspondence: Ru-Jin Huang (rujin.huang@ieecas.cn)

Supplementary Information consists of 1 note, 2 tables and 15 figures.

Supplementary Note 1

Calculation of average element composition characteristics

The peak abundance-weighted average molecular mass (MMavg), elemental ratios (O/Cavg and H/Cavg), double bond equivalent (DBE_{avg}) and aromaticity equivalent (Xc_{avg}) for the formula CcHhOoNnSs were calculated using following equations.

$$MM_{avg} = \sum (MM_i \times Int_i) / \sum Int_i$$
⁽¹⁾

$$0/C_{avg} = \sum (0/C_i \times Int_i) / \sum Int_i$$
⁽²⁾

$$H/C_{avg} = \sum (H/C_i \times Int_i) / \sum Int_i$$
(3)

$$DBE_{avg} = \sum (DBE_i \times Int_i) / \sum Int_i$$
(4)

$$Xc_{avg} = \sum (X_{C_i} \times Int_i) / \sum Int_i$$
⁽⁵⁾

Here Int_i is the peak intensity for each individual chromophore *i*.

Supplementary Tables

Supplementary Table 1. The peak intensity-weighted average molecular formulas (MF_{avg}), molecular mass (MM_{avg}), elemental ratios, double bond equivalent (DBE_{avg}) and aromaticity equivalent (Xc_{avg}) for chromophores in HULIS-BrC and WI-BrC fractions before (2015) and after (2019) "coal-to-gas" conversion measure.

Samples	Elemental	MF _{avg}	MM _{avg}	O/Cavg	H/Cavg	DBE _{avg}	Xc _{avg}
	composition						
2015	Total		175.63	0.43	0.89	6.14	2.49
HULIS-	CHON (-)	$C_{7.67}H_{7.21}O_{3.50}N_{1.11}$	169.82	0.47	0.94	5.62	2.45
BrC (-)	СНО (-)	$C_{9.85}H_{8.21}O_{3.43}$	180.31	0.36	0.84	6.74	2.56
	CHOS (-)	$C_{8.65}H_{7.17}O_{5.04}S_{1.00}$	222.61	0.60	0.84	6.06	2.21
	CHONS (-)	$C_{7.85}H_{7.86}O_{6.16}N_{1.09}S_{1.00}$	246.92	0.82	0.99	5.47	1.73
2019	Total		176.51	0.44	0.88	6.13	2.49
HULIS-	CHON (-)	$C_{7.62}H_{7.06}O_{3.59}N_{1.18}$	171.45	0.49	0.92	5.67	2.45
BrC (-)	СНО (-)	$C_{9.66}H_{8.05}O_{3.60}$	180.51	0.39	0.84	6.63	2.55
	CHOS (-)	$C_{8.67}H_{7.50}O_{5.22}S_{1.00}$	226.01	0.63	0.88	5.92	2.05
	CHONS (-)	$C_{7.38}H_{6.88}O_{5.77}N_{1.10}S_{1.00}$	234.16	0.84	0.93	5.49	1.76
2015	Total		176.69	0.19	0.86	7.36	2.55
HULIS-	CHON (+)	$C_{10.21}H_{9.96}O_{1.95}N_{1.30}$	182.95	0.19	0.97	6.88	2.51
BrC (+)	CHO (+)	$C_{10.86}H_{7.98}O_{2.56}$	180.21	0.25	0.74	7.87	2.54
	CHN (+)	$C_{10.03}H_{9.42}N_{1.31}$	149.21	0.00	0.94	6.97	2.71
	CHOS (+)	$C_{11.64}H_{7.00}O_{1.71}S_{1.00}$	207.09	0.20	0.62	9.14	2.48
	CHONS (+)	$C_{9.90}H_{7.64}O_{4.60}N_{2.12}S_{1.00}$	262.74	0.53	0.73	8.14	2.42
2019	Total		179.01	0.22	0.87	7.22	2.49
HULIS-	CHON (+)	$C_{10.13}H_{10.12}O_{2.24}N_{1.38}$	187.85	0.22	1.0	6.76	2.44
BrC (+)	CHO (+)	$C_{10.56}H_{7.79}O_{2.74}$	179.45	0.27	0.74	7.66	2.48
	CHN (+)	$C_{9.98}H_{9.42}N_{1.40}$	149.81	0.00	0.94	6.97	2.71
	CHOS (+)	$C_{14.29}H_{9.56}O_{1.44}S_{1.00}$	237.14	0.15	0.65	10.51	2.61
	CHONS (+)	$C_{10.71}H_{8.16}O_{4.33}N_{2.20}S_{1.00}$	269.75	0.50	0.71	8.73	2.57
2015 WI-	Total		188.95	0.36	0.90	7.03	2.55
BrC (-)	CHON (-)	$C_{8.80}H_{8.81}O_{3.47}N_{1.10}$	184.35	0.42	1.01	5.94	2.46
	СНО (–)	$C_{11.56}H_{8.81}O_{2.93}$	193.39	0.29	0.78	8.15	2.64
	CHOS (-)	$C_{8.17}H_{7.48}O_{5.49}S_{1.00}$	224.32	0.69	0.91	5.43	1.95
	CHONS (-)	$C_{7.31}H_{6.53}O_{5.37}N_{1.00}S_{1.00}$	225.25	0.76	0.89	5.55	1.79
2019 WI-	Total		187.29	0.38	0.89	6.91	2.54
BrC (-)	CHON (-)	$C_{8.56}H_{8.33}O_{3.62}N_{1.21}$	184.97	0.45	0.98	6.00	2.47
	СНО (–)	$C_{11.09}H_{8.56}O_{3.04}$	189.36	0.31	0.79	7.81	2.62
	CHOS (-)	$C_{7.87}H_{7.30}O_{5.60}S_{1.00}$	222.41	0.73	0.92	5.22	1.85
	CHONS (-)	$C_{6.90}H_{6.03}O_{5.46}N_{1.03}S_{1.00}$	221.55	0.82	0.87	5.40	1.78
2015 WI-	Total		205.87	0.09	0.86	9.36	2.70
BrC (+)	CHON (+)	$C_{13.06}H_{12.14}O_{1.78}N_{1.35}$	217.40	0.15	0.95	8.67	2.62
	CHO (+)	C _{14.15} H _{9.80} O _{2.04}	213.32	0.16	0.69	10.25	2.70
	CHN (+)	$C_{13,21}H_{11,81}N_{1,42}$	191.33	0.00	0.93	9.01	2.75
	CH (+)	C _{15.87} H _{13.41}	204.99	0.00	0.88	10.17	2.78
	CHOS (+)	$C_{12.05}H_{11.42}O_{1.98}S_{1.00}$	220.74	0.24	0.84	7.34	2.36
	CHONS (+)	$C_{13,10}H_{15,51}O_{4,83}N_{2,05}S_{1,00}$	311.71	0.39	1.19	7.37	2.49
2019 WI-	Total		204.05	0.11	0.89	8.94	2.66
BrC (+)	CHON (+)	$C_{12.52}H_{12.12}O_{1.95}N_{1.44}$	214.89	0.17	0.99	8.18	2.57
× /	CHO (+)	C _{14.04} H _{9.54} O _{2.21}	214.45	0.18	0.68	10.27	2.67
	CHN (+)	C _{12.36} H _{12.03} N _{1.64}	184.36	0.00	1.02	8.16	2.72
	CH (+)	C _{16.16} H _{13.19}	208.18	0.00	0.85	10.56	2.79
	CHOS (+)	$C_{7,00}H_{4,00}O_{3,00}S_{1,00}$	169.00	0.43	0.57	6.00	2.00
	CHONS (+)	$C_{14,91}H_{17,39}O_{5,11}N_{2,07}S_{1,00}$	340.22	0.37	1.17	8.25	2.59

	sample							
2015	1	2	3	4	5	6		
Abs ₃₆₅ (M m ⁻¹)	24.3	31.2	40.0	42.7	45.0	47.9		
OC (µg m ⁻³)	19.7	22.9	23.9	27.1	32.4	33.0		
2019	7	8	9	10	11	12		
Abs ₃₆₅ (M m ⁻¹)	10.6	12.1	15.6	16.6	21.7	24.7		
OC (µg m ⁻³)	15.0	12.7	18.2	15.4	18.2	21.9		

Supplementary Table 2. The light absorption coefficient at 365 nm (Abs₃₆₅) and organic carbon (OC) concentration of selected samples in this study.

Supplementary Figures

Supplementary Figure 1. Plot of the double bond equivalent (DBE) vs number of carbon atoms in identified compounds in HULIS and WISOC fractions. Compounds identified **a** before (2015) and **b** after (2019) the "coal-to-gas" conversion measure. Lines indicate DBE reference values of linear conjugated polyenes CxHx+2 (yellow solid line), *cata*-condensed PAHs (blue solid line) and fullerene-like hydrocarbons with DBE=0.9*C (gray solid line). Data points inside the gray shaded area are potential BrC chromophores.

Supplementary Figure 2. Proportions of chromophores in each compound category in HULIS-BrC and WI-BrC fractions before (2015) and after (2019) "coal-to-gas" conversion measure. Proportions of a number and b intensity.

Supplementary Figure 3. Changes ((2019-2015)/2015) of different compound categories in HULIS-BrC and WI-BrC fractions after "coal-to-gas" conversion measure. Changes in a number and b intensity.

Supplementary Figure 4. Mass spectra of CHO, CHON, CHN, CH, and S-containing chromophore categories before (2015) and after (2019) the "coal-to-gas" conversion measure. Chromophores identified in a, b HULIS-BrC (-), c, d HULIS-BrC (+), e, f WI-BrC (-) and g, h WI-BrC (+). The pie charts showed the relative intensities of different chromophore categories.

Supplementary Figure 5. Characteristics of CHO+ chromophores before (2015) and after (2019) the "coal-to-gas" conversion measure. a, b Van Krevelen diagram for CHO+ chromophores in HULIS-BrC fraction. c, d Similar to (a, b), but in WI-BrC fraction. e Corresponding intensity ratios of after/before (2019/2015) the measure of CHO+ chromophores in HULIS-BrC fraction. f Similar to (e), but in WI-BrC fraction. The area of the circles is proportional to the fourth root of the intensity of individual chromophores and the color bar denotes the aromaticity equivalent (black with Xc < 2.5, red with $2.5 \le Xc < 2.7$, and blue with $Xc \ge 2.7$). The insert plot represents the chromophores identified only before or after the measure.

Supplementary Figure 6. Corresponding intensity ratios of after/before (2019/2015) the "coal-to-gas" conversion measure of CHON- chromophores. Intensity ratios in a HULIS-BrC and b WI-BrC fractions.

Supplementary Figure 7. Van Krevelen diagram for CHON+ chromophores before (2015) and after (2019) the "coal-to-gas" conversion measure. a, b CHON+ chromophores in HULIS-BrC fraction. c, d CHON+ chromophores in WI-BrC fraction. The area of the circles is proportional to the fourth root of the intensity of individual chromophores and the color bar denotes the aromaticity equivalent (black with Xc < 2.5, red with $2.5 \le Xc < 2.7$, and blue with $Xc \ge 2.7$). The insert plot represents the chromophores identified only before or after the measure.

Supplementary Figure 8. Corresponding intensity ratios of after/before (2019/2015) the "coal-to-gas" conversion measure of CHON+ chromophores. Intensity ratios in a HULIS-BrC and b WI-BrC fractions.

Supplementary Figure 9. Number of different CHON+ chromophores subgroups classified according to O/N ratios in their formulas in HULIS-BrC and WI-BrC fractions. a, c Before (2015) the "coal-to-gas" conversion measure. b, d After (2019) the "coal-to-gas" conversion measure.

Supplementary Figure 10. Corresponding intensity ratios of after/before (2019/2015) the "coal-to-gas" conversion measure of CHN+ chromophores. Intensity ratios in a HULIS-BrC and b WI-BrC fractions.

Supplementary Figure 11. Characteristics of CHN+ chromophores before (2015) and after (2019) the "coal-to-gas" conversion measure. Plot of the double bond equivalent (DBE) vs number of carbon atoms in identified CHN+ chromophores in **a**, **b** HULIS-BrC and **b**, **d** WI-BrC fractions. The area of the circles is proportional to the fourth root of the intensity of individual chromophores and the color bar denotes the aromaticity equivalent (black with Xc < 2.5, red with $2.5 \leq Xc < 2.7$, and blue with Xc ≥ 2.7). The insert plot represents the chromophores identified only before or after the measure.

Supplementary Figure 12. Van Krevelen diagram for CHOS chromophores assigned in HULIS-BrC and WI-BrC fractions. a, c Before (2015) the "coal-to-gas" conversion measure. b, d After (2019) the "coal-to-gas" conversion measure. The area of the circles is proportional to the fourth root of the intensity of individual chromophores and the color bar denotes the aromaticity equivalent (black with Xc < 2.5, red with $2.5 \le Xc < 2.7$, and blue with $Xc \ge 2.7$).

Supplementary Figure 13. Corresponding intensity ratios of after/before (2019/2015) the "coal-to-gas" conversion measure of S-containing chromophores in HULIS-BrC and WI-BrC fractions. Intensity ratios of a, c CHOS and b, d CHONS chromophores.

Supplementary Figure 14. Van Krevelen diagram for CHONS chromophores before (2015) and after (2019) the "coal-to-gas" conversion measure. CHONS chromophores in a, b HULIS-BrC and c, d WI-BrC fractions. The area of the circles is proportional to the fourth root of the intensity of individual chromophores and the color bar denotes the aromaticity equivalent (black with Xc < 2.5, red with $2.5 \le Xc < 2.7$, and blue with $Xc \ge 2.7$).

Supplementary Figure 15. Characteristics of CH+ chromophores in WI-BrC fraction. a Plot of the double bond equivalent (DBE) vs number of carbon atoms in identified CH+ chromophores before (2015) the "coal-to-gas" conversion measure. **b** Similar to (**a**), but after (2019) the "coal-to-gas" conversion measure. **c** Corresponding intensity ratios of after/before (2019/2015) the measure of CH+ chromophores. The area of the circles in a and b is proportional to the fourth root of the intensity of individual chromophores and the color bar denotes the aromaticity equivalent (black with Xc < 2.5, red with $2.5 \le Xc < 2.7$, and blue with Xc ≥ 2.7). The insert plot represents the chromophores identified only before or after the measure.