Supplementary Note 1

A feature-based approach has low discriminatory power for the detection of AF
For a baseline comparison, we investigate the effectiveness of a traditional feature-based
machine learning method against our model. Baseline results are reported in Table 1. Nine
features most commonly used in feature-based AF detection and signal quality estimation
algorithmse-11 were calculated for input into a MultiOutputClassifier random forest model from
scikit-learnso. DeepBeat substantially outperforms the trained random forest model for AF
detection across all metrics considered. The random forest results were dramatically less
effective for detecting AF events compared to DeepBeat’s AF event metrics. Our model’s
notable improvement in AF detection over other feature-based methods is reflective across all
DeepBeat versions examined, demonstrating that a feature-based approach fails to have high
discriminatory power for AF detection.
Details regarding random forest

To investigate the choice of a multi-task model, a comparison of different methods was
performed. For a feature-based approach, random forests were used due to its capability of
finding complex nonlinear relationships in data. The following features were calculated: kurtosis,
skew, entropy, zero crossings, hjorthe mobility, hjorthe complexity, normalized root mean of
successive differences, and Shannon entropy. A MultiOutputClassifier random forest model with

n_estimators=100 and random_state=1 was used as parameters for training.


https://paperpile.com/c/aZ5aVK/cfB93+Ld9uf+4lUbe
https://paperpile.com/c/aZ5aVK/jFMlZ

Supplementary Note 2

Details regarding 1D VGG

To investigate the choice of deep learning models, we selected the popular VGG12
architecture and adapted it for 1D input. Details of specifics regarding model architecture can be
found in Table S6. Training of 1D VGG was similar to the approach used for DeepBeat, weights
were randomly initiated according to He distribution 31 and hyperas was used for optimal

selection of epoch, batch size and learning rates.

Supplementary Note 3

Results from unsupervised pre-training using convolutional denoising autoencoders

Results from the trained CDAE on scored signal quality assessment dataset can be found in
supplemental Table S2. The mean squared errors were 0.0095, 0.0104, 0.0.0143 for excellent,
acceptable and poor categories for the 25 second time segments. We found the lowest mean
squared error for signal reconstruction in the excellent category across all time segments,
suggesting that the trained CDAE is selecting filters appropriate for high-quality physiological
signal reconstruction.

In order to determine that the CDAE was not introducing modulations typical of
physiological signals when there was no physiological signal present, we performed a sensitivity
analysis. Five hundred random signals were generated and ran through the trained CDAE model.
The estimated MSE of the randomly generated noise was similar to that of the estimated MSE
for the poor signal quality category across all time points. To further explore the estimated

reconstruction predictions from the output of the trained CDAE, predictions were compared to


https://paperpile.com/c/aZ5aVK/QRJgu

3rd order Savitzky-Golay filters. Mean squared error of the reconstruction CDAE prediction of
the randomly generated noise set was 0.026, and the mean squared error of the 3rd order
Savitzky-Golay filters was 0.023. These results confirm that the trained CDAE model provides a
set of filters sensitive to frequencies unique to physiological signals and, in situations where no
viable physiological signal is present, CDAE instead acts as a smoothing filter (Supplementary

Figure 2).



Supplementary Figure 1
Simulated signals from dataset A. Left column, simulated sinus rhythm, top to bottom in

increasing order of added Gaussian noise mixture (0.001, 0.15, 0.5, 0.75, 1, 2, 5). Right column,
simulated AF rhythm, top to bottom in increasing Gaussian noise mixture (0.001, 0.15, 0.5, 0.75,
1, 2, 5). Pictured below all signals were simulated at 60 beats per minute (BPM).
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Results from trained CDAE on denoising simulated signals, collected signal and random noise.
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Supplementary Table 1
Breakdown of data samples by rhythm and quality

assessment
partition | rhythm QA Count
poor 999,253
sinus acceptable 140,020
train excellent 390,851
poor 972,955
AF acceptable 141,004
excellent 159,851
poor 295,449
sinus acceptable 56,572
validate excellent 119,154
poor 33,691
AF acceptable 8.075
excellent 5,841
poor 8.856
sinus acceptable 1,718
test excellent 2,813
poor 3483
AF acceptable 314
excellent 433

Supplementary Table 2
Comparison of evaluation data sets

Number of patients

Total number of windows

Total number of AF windows

Held out test set

22

17,617

4,230

Ambulatory cohort

15

20,492

2,048



Supplementary Table 3
CDAE model architecture specifications

Layer Type  Output Shape Param #
Encoder
InputLayer (None, 800, 1) 0
ConvlD (None, 800, 64) 704
MaxPooling  (None, 266, 64) 0
ConvlD (None, 266, 45) 23,085
MaxPooling (None, 88, 45) 0
ConvlD (None, 88, 50) 11,300
MaxPooling (None, 44, 50) 0
Decoder
ConvlD (None, 44, 50) 12,330
UpSampling  (None, 88, 50) 0
ConvlD (None, 88, 45) 18,045
UpSampling  (None, 264, 45) 0
ConvlD (None, 264, 64) 28,864
UpSampling  (None, 792, 64) 0
Flatten (None, 50688) 0
Dense (None, 800) 40,551,200

Supplementary Table 4
CDAE mean squared error for signal reconstruction

| Excellent  Acceptable Poor
25 seconds | 0.0095 0.0104 0.0143




Supplementary Table 5
DeepBeat model architecture specifications

Layer Type Output Shape  Param #
Extracted Encoder
InputLayer (None, 800, 1) 0
ConvlD (None, 800, 64) 704
MaxPooling (None, 266, 64) 0
ConvlD (None, 266, 45) 23,085
MaxPooling (None, 88, 45) 0
ConvlD (None, 88. 50) 11,300
MaxPooling (None, 44, 50) 0
Shared layers
BatchNormalization  (None, 44, 50) 200
ConvlD (None, 15, 64) 12864
Leaky ReLu (None, 15, 64) 0
BatchNormalization (None, 15, 64) 256
Dropout (None, 15, 64) 0
ConvlD (None, 5, 35) 8995
Leaky ReLu (None, 5, 35) 0
BatchNormalization (None, 5, 35) 140
Dropout (None, 5, 35) 0
ConvlD (None, 5, 64) 9024
Leaky ReLu (None, 5, 64) 0
BatchNormalization (None, 5, 64) 256
Rhythm Branch Dropout (None, 5, 64) 0 Quality Assessment Branch
ConvlD (None, 2, 35) 11235 ConvID (None, 3, 25) 6425
BatchNormalization (None, 2, 35) 140 BatchNormalization (None, 3, 25) 100
Dropout (None, 2, 35) 0 Dropout (None, 3, 25) 0
ConvlD (None, 1, 25) 525 Flatten (None, 75) 0
BatchNormalization  (None, 1, 25) 100 Dense (None, 175) 13300
Dropout (None, 1, 25) Dense (None, 3) 528
ConvlD (None, 1, 35) 2660
BatchNormalization  (None, 1. 35) 140
Dropout (None, 1, 35) 0
Flatten (None, 35) 0
Dense (None, 175) 6300
Dense (None, 2) 352



