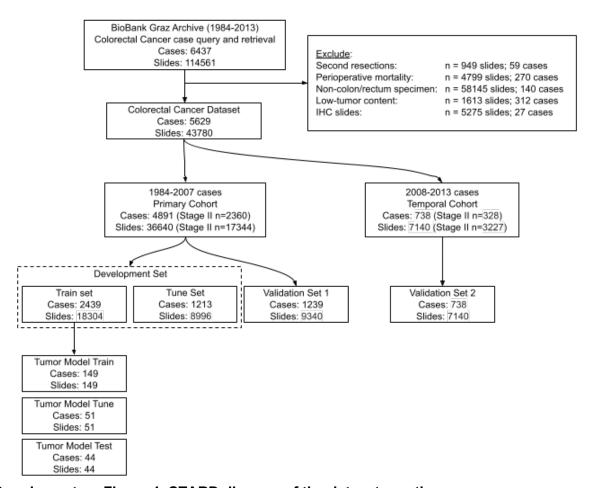
Supplementary Material

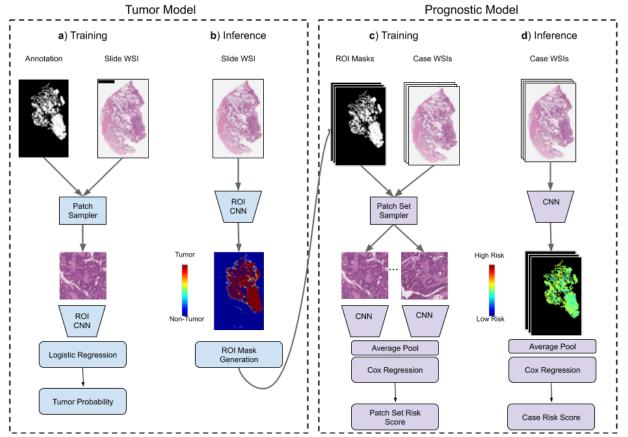
Supplementary Data 1

Zip file containing 2 PNG files, one containing 25 tumor-adipose feature (TAF) patches closest to the centroids, and one containing 25 randomly-sampled TAF patches, used for human graders as learning material to identify TAF (see "Tumor-adipose Feature" section in Methods).

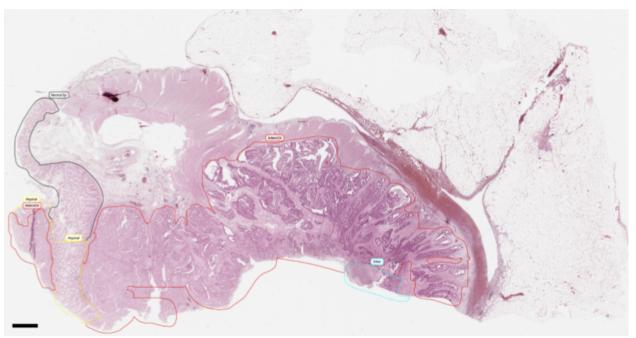

Supplementary Data 2

Zip file containing 2 PDF files, one containing 25 TAF patches, and one containing 25 non-TAF patches, used for human graders to practice identifying TAF (see "Tumor-adipose Feature" section in Methods). Patches were presented to human graders in a random order.

Supplementary Data 3

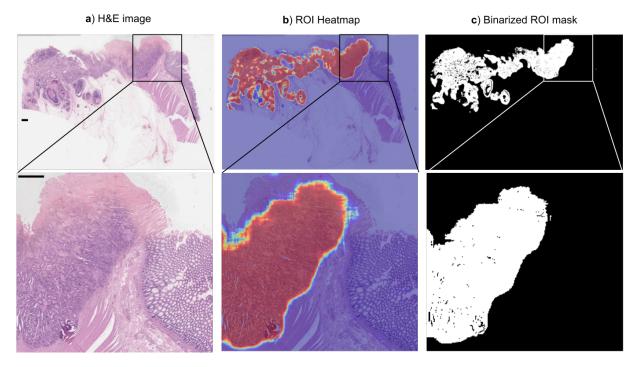

Zip file containing 2 PDF files, one containing 100 TAF patches, and one containing 100 non-TAF patches, used for human graders to evaluate their ability to identify TAF (see "Tumor-adipose Feature" section in Methods). Patches were presented to human graders in a random order.

Supplementary Figures

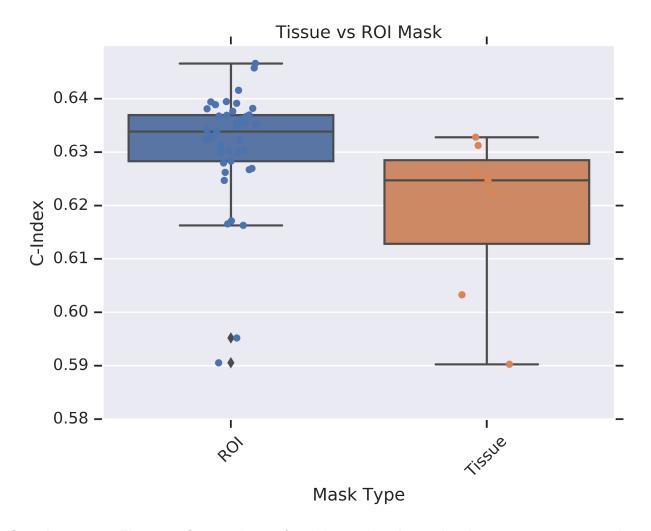


Supplementary Figure 1. STARD diagram of the dataset curation process.

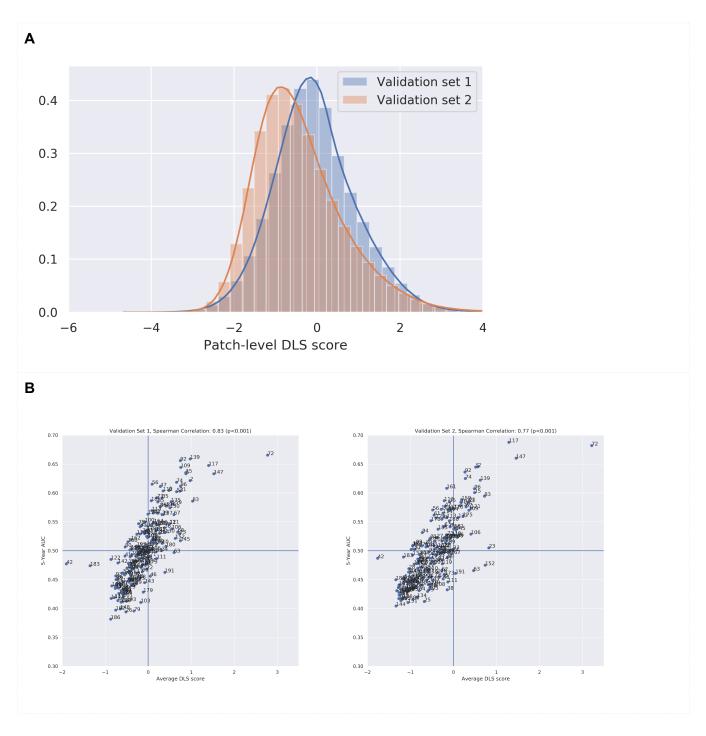
Deep Learning System

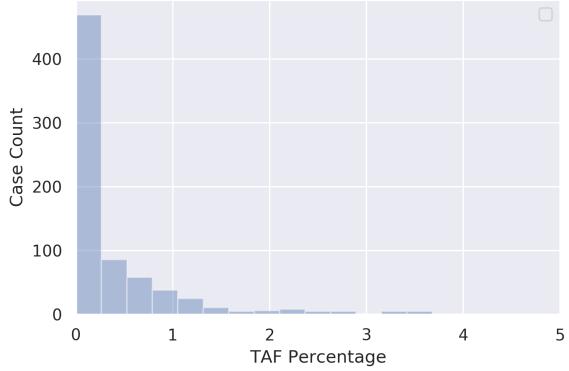


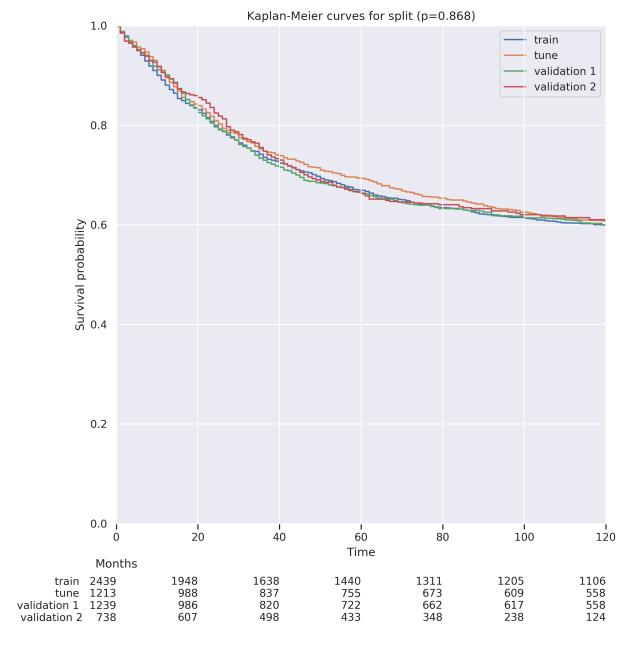
Supplementary Figure 2. Overview of deep learning system (DLS) development. (a) tumor model development: the tumor model was trained at the patch-level to identify colorectal adenocarcinoma from pixel-level pathologist annotations. (b) tumor model inference: the tumor model was run over all slides to produce region of interest (ROI) heatmaps that were binarized to generate ROI masks. (c) prognostic model development: The model was trained to predict case-level disease-specific survival. During training, a case is approximated by sampling a small number of patches from across the ROIs in a case. (d) prognostic model inference: at inference time, the prognostic model was run exhaustively across all ROIs to produce a case-level risk score. Scale bar indicates 5 mm. Note that the patch sampler's output image patches are shown for illustrative purposes only; the actual patch sizes will vary depending on the magnification (Supplementary Tables 8 and 10).

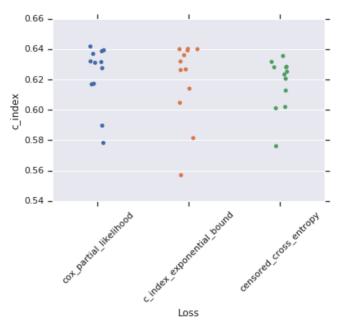


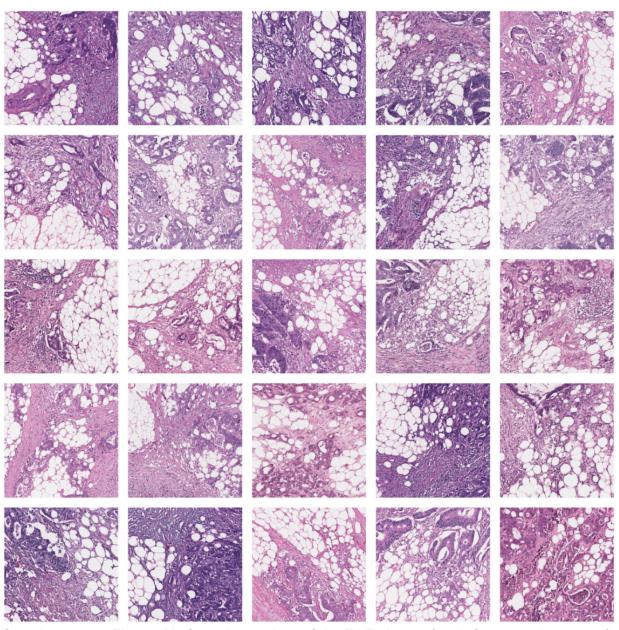
Supplementary Figure 3. Example of slide annotations for tumor model development.


Annotations were provided for multiple types of histologies (e.g. normal epithelium, adenocarcinoma, atypical, and "other"). The model was developed to differentiate between colon adenocarcinoma and all other classes. Scale bar indicates 1 mm.


Supplementary Figure 4. Sample tumor segmentation model predictions and derived binary ROI mask that is used to sample image patches for the prognostic model. Scale bars indicate 1 mm.


Supplementary Figure 5. Comparison of training using the entire tissue versus on a region of interest (ROI) derived using the tumor segmentation model. Variation in these box plots stems from different learning rates for both types of models and different mask generation parameters for the models trained on ROI masks. Models were evaluated on the tune set. Edges of boxes indicate quartiles, whiskers represent the ranges, and outliers are defined by 1.5 times the interquartile range.


Supplementary Figure 6. Patch-level DLS score distribution for (A) all patches and (B) for each cluster. See also Supplementary Table 1 for comparison of clinicopathologic characteristics in validation set 1 and 2. Panel B additionally compares the average DLS score distribution with the 5-year AUC.


Supplementary Figure 7. Histogram of the percentage of the region of interest that is composed of the tumor-adipose feature (TAF) in validation set 2.

Supplementary Figure 8. Kaplan Meier curves for all cases in the train, tune, and validation sets.

Supplementary Figure 9. Comparison of loss functions for DLS training. We compared three loss functions for DLS training: Cox partial likelihood, exponential lower bound on concordance index, and censored cross-entropy. For each loss function, 3 batch sizes (64, 128, 256) and 4 learning rates (10e-3, 5e-4, 10e-4, 5e-5, 10e-5) were tried. Models were evaluated on the tune set.

Supplementary Figure 10. Sample patches of the TAF cluster (each from a unique case), but with the clustering centroids fit on validation set 2 and used to extract patches from validation set 1.

Supplementary Tables

Supplementary Table 1. Clinical metadata distribution of the two validation sets. P-values for differences in proportions were calculated via individual t-tests.

			Stage II			Stage III	
		Validation set	Validation set 2	P-value for difference	Validation set	Validation set 2	P-value for difference
T category	T1/T2	0 (0%)	0 (0%)	N/A	70 (11%)	42 (10%)	0.7083
	Т3	546 (91%)	270 (82%)	0.0004	439 (69%)	254 (62%)	0.0235
	T4	55 (9%)	58 (18%)	0.0004	129 (20%)	114 (28%)	0.0055
N category	N0	601 (100%)	328 (100%)	N/A	0 (0%)	0 (0%)	N/A
	N1	0 (0%)	0 (0%)	N/A	361 (57%)	245 (60%)	0.3095
	N2	0 (0%)	0 (0%)	N/A	189 (30%)	158 (39%)	0.0032
	N3	0 (0%)	0 (0%)	N/A	88 (14%)	7 (2%)	0.0000
R category	R0	588 (98%)	320 (98%)	0.7907	606 (95%)	392 (96%)	0.6388
	R1	13 (2%)	8 (2%)	0.7907	32 (5%)	18 (4%)	0.6388
L category	L0	532 (89%)	272 (83%)	0.0231	501 (79%)	274 (67%)	0.0000
	L1	69 (11%)	56 (17%)	0.0231	137 (21%)	136 (33%)	0.0000
V category	V0	580 (97%)	295 (90%)	0.0004	583 (91%)	312 (76%)	0.0000
	V1	21 (3%)	33 (10%)	0.0004	55 (9%)	98 (24%)	0.0000
Tumor grade	G1	27 (4%)	23 (7%)	0.1264	16 (3%)	17 (4%)	0.1598
grade	G2	464 (77%)	219 (67%)	0.0009	428 (67%)	226 (55%)	0.0001
	G3	102 (17%)	80 (24%)	0.0089	188 (29%)	155 (38%)	0.0056
	GX	8 (1%)	6 (2%)	0.5700	6 (1%)	12 (3%)	0.0307
Self- reported sex	Male	340 (57%)	202 (62%)	0.1369	339 (53%)	204 (50%)	0.2861
reported sex	Female	261 (43%)	126 (38%)	0.1369	299 (47%)	206 (50%)	0.2861
Age at diagnosis	<= 59	117 (19%)	43 (13%)	0.0102	149 (23%)	90 (22%)	0.5960
uiagilosis	60-69	166 (28%)	83 (25%)	0.4433	193 (30%)	99 (24%)	0.0290
	70-79	223 (37%)	116 (35%)	0.5982	210 (33%)	120 (29%)	0.2120
	>= 80	95 (16%)	86 (26%)	0.0003	86 (13%)	101 (25%)	0.0000

Supplementary Table 2. KM estimate of 5-year disease-specific survival in risk groups stratified by the deep learning system (DLS). Numbers in square brackets represent 95% confidence intervals.

Dataset	Risk Group	Stage II	Stage III	Stage II/II
Validation set 1	High (top quartile)	72.84 [67.59, 77.38]	41.45 [35.66, 47.13]	53.33 [49.16, 57.32]
	Intermediate (middle quartiles)	88.40 [82.75, 92.28]	62.12 [55.98, 67.66]	76.91 [72.81, 80.48]
	Low (bottom quartile)	89.03 [79.25, 94.36]	76.32 [62.06, 85.81]	86.12 [78.87, 91.03]
Validation set 2	High (top quartile)	57.07 [44.05, 68.13]	42.72 [32.25, 52.76]	46.10 [38.28, 53.56]
	Intermediate (middle quartiles)	77.76 [68.87, 84.40]	52.82 [44.80, 60.21]	64.83 [58.78, 70.22]
	Low (bottom quartile)	85.56 [78.29, 90.54]	73.07 [64.79, 79.70]	80.01 [74.66, 84.35]

Supplementary Table 3. Univariable Cox regression on the validation sets. Numbers indicate hazard ratio followed by 95% confidence intervals in square brackets, and p-values (from a Wald test) after the comma. *N/A because stage II only contains N0 and T3 or T4 and stage II only contains N1 by definition (American Joint Committee on Cancer, AJCC). Bold indicates statistically significant input variables (p < 0.05).

Varia	nhlo	Sta	ge II	Stag	je III	Stag	e II/III	
Valle	able	Validation set 1	Validation set 2	Validation set 1	Validation set 2	Validation set 1	Validation set 2	
DL	.s	1.64 [1.40, 1.92], <0.001	1.55 [1.25, 1.92], <0.001	1.49 [1.33, 1.67], <0.001	1.51 [1.32, 1.74], <0.001	1.72 [1.57, 1.89], <0.001	1.64 [1.47, 1.84], <0.001	
Αç	Age 1.06 [0.91, 1.49 [1.18, 1.11 [1.01, 1.24 [1.09, 1.24], 0.446 1.87], <0.001 1.22], 0.025 1.41], 0.001		- '	1.06 [0.98, 1.15], 0.121	1.25 [1.12, 1.40], <0.001			
	Male			1.0 (re	ference)	•		
Sex	Female	0.78 [0.56, 1.07], 0.127			0.94 [0.70, 1.26], 0.682	0.80 [0.67, 0.97], 0.019	1.01 [0.79, 1.29], 0.929	
	G1			1.0 (re	ference)			
	G2	0.78 [0.38, 1.60], 0.503	1.67 [0.61, 4.62], 0.320	1.27 [0.56, 2.86], 0.563	3.06 [0.97, 9.65], 0.056	1.09 [0.64, 1.86], 0.754	2.36 [1.11, 5.03], 0.027	
Grade	G3	1.17 [0.54, 2.54], 0.682	1.49 [0.51, 4.42], 0.467	1.89 [0.83, 4.31], 0.128	3.74 [1.18, 11.87], 0.025	1.81 [1.05, 3.14], 0.034	2.94 [1.36, 6.33], 0.006	
	GX	0.90 [0.19, 4.22], 0.889	2.38 [0.44, 13.00], 0.317	0.90 [0.18, 4.47], 0.899	2.92 [0.70, 12.21], 0.143	0.93 [0.31, 2.83], 0.902	2.75 [0.96, 7.84], 0.059	
Lymphatic	L0			1.0 (re	ference)			
Invasion	L1	1.71 [1.12, 2.61], 0.012	1.02 [0.57, 1.81], 0.956	0.81 [0.61, 1.07], 0.138	1.23 [0.91, 1.66], 0.186	1.17 [0.92, 1.47], 0.199	1.35 [1.04, 1.75], 0.026	
	N0		N/	A*		1.0 (reference)		
	N1	N/	/A*	1.0 (ref	erence)	2.16 [1.73, 2.69], 0.001	1.73 [1.28, 2.33], 0.001	
N-category	N2	N/	/A*	1.29 [1.00, 1.65], 0.046	1.78 [1.33, 2.38], 0.001	2.78 [2.16, 3.57], 0.001	3.09 [2.28, 4.19], 0.001	
	N3	N/	/A*	1.29 [0.93, 1.79], 0.129	0.70 [0.17, 2.83], 0.615	2.79 [2.00, 3.89], 0.001	1.21 [0.30, 4.91], 0.793	
	R0			1.0 (ref	erence)			
Margin Status	R1	1.19 [0.44, 3.21], 0.732	1.84 [0.58, 5.83], 0.301	1.44 [0.89, 2.31], 0.136	1.04 [0.51, 2.11], 0.921	1.56 [1.01, 2.39], 0.043	1.32 [0.72, 2.42], 0.365	
	T1/T2	N/	'A*		1.0 (ref	erence)		
Margin Status	Т3	1.0 (ref	erence)	1.67 [1.09, 2.55], 0.017	2.81 [1.31, 6.06], 0.008	1.06 [0.70, 1.61], 0.770	2.02 [0.95, 4.32], 0.068	
	T4	1.68 [1.06, 2.66], 0.027	1.93 [1.16, 3.20], 0.011	2.37 [1.50, 3.75], 0.001	6.42 [2.96, 13.94], 0.001	1.90 [1.22, 2.97], 0.005	4.95 [2.30, 10.66], 0.001	
Venous	V0		_	1.0 (ref	erence)			
Invasion	V1	1.76 [0.90, 3.46], 0.099	1.43 [0.74, 2.77], 0.292	0.92 [0.61, 1.38], 0.671	1.63 [1.19, 2.25], 0.003	1.26 [0.89, 1.78], 0.199	1.83 [1.38, 2.43], 0.001	

Supplementary Table 4. (A) 5-year AUC for the deep learning system (DLS) and Cox regression models fit on the clinical metadata, and Cox models fit on both; (B) a similar table for the tumoradipose feature (TAF) quantitation. Numbers in square brackets represent 95% confidence intervals.

Α

Dataset	Stage	DLS	Clinical	Clinical + DLS	Delta
Validation set 1	Stage II	0.680 [0.631, 0.739]	_	- · · ·	0.120 [0.076, 0.188]
	Stage III	0.655 [0.617, 0.694]	0.597 [0.550, 0.645]	- · · ·	0.065 [0.026, 0.108]
	Stage II/III	0.698 [0.660, 0.729]	0.678 [0.642, 0.705]	- · · ·	0.055 [0.036, 0.074]
Validation set 2	Stage II	0.663 [0.592, 0.730]	0.610 [0.544, 0.657]	- · · ·	0.085 [0.036, 0.150]
	Stage III	0.655 [0.600, 0.707]	0.664 [0.606, 0.720]	- · · ·	0.022 [-0.022, 0.070]
	Stage II/III	0.686 [0.638, 0.723]	0.684 [0.639, 0.716]	- · · ·	0.038 [0.006, 0.064]

Dataset	Stage	TAF	Clinical	Clinical + TAF	Delta
Validation set 1	Stage II	0.645 [0.598, 0.700]	0.539 [0.485, 0.610]	0.595 [0.543, 0.663]	0.056 [0.034, 0.082]
	Stage III	0.629 [0.593, 0.680]	0.597 [0.550, 0.645]	0.625 [0.587, 0.676]	0.029 [0.012, 0.047]
	Stage II/III	0.666 [0.634, 0.697]	0.678 [0.642, 0.705]	0.698 [0.664, 0.723]	0.020 [0.010, 0.029]
Validation set 2	Stage II	0.634 [0.570, 0.697]	0.610 [0.544, 0.657]	0.620 [0.555, 0.661]	0.010 [-0.016, 0.036]
	Stage III	0.682 [0.638, 0.743]	0.664 [0.606, 0.720]	0.689 [0.630, 0.743]	0.025 [0.004, 0.045]
	Stage II/III	0.682 [0.641, 0.734]	0.684 [0.639, 0.716]	0.699 [0.653, 0.734]	0.015 [0.006, 0.023]

Supplementary Table 5. C-index for the deep learning system (DLS) and Cox regression models fit on the clinical metadata, and Cox models fit on both. Numbers in square brackets represent 95% confidence intervals.

Dataset	Stage	DLS	Clinical	Clinical + DLS	Delta
Validation set 1	Stage II	0.651 [0.615, 0.703]	0.535 [0.493, 0.596]	0.634 [0.597, 0.680]	0.099 [0.070, 0.143]
	Stage III	0.626 [0.601, 0.655]	0.576 [0.542, 0.613]	0.626 [0.602, 0.654]	0.050 [0.030, 0.082]
	Stage II/III	0.663 [0.636, 0.686]	0.640 [0.608, 0.664]	0.685 [0.658, 0.704]	0.045 [0.031, 0.060]
Validation set 2	Stage II	0.628 [0.568, 0.687]	0.600 [0.554, 0.653]	0.658 [0.607, 0.704]	0.058 [0.015, 0.103]
	Stage III	0.639 [0.597, 0.678]	0.631 [0.591, 0.680]	0.653 [0.609, 0.690]	0.022 [-0.018, 0.060]
	Stage II/III	0.660 [0.624, 0.694]	0.661 [0.625, 0.688]	0.689 [0.659, 0.721]	0.028 [0.008, 0.050]

Supplementary Table 6. (A) 5-year AUC in T3 cases for the deep learning system (DLS) and Cox regression models fit on the clinical metadata, and Cox models fit on both. (B) a similar table for the tumor-adipose feature (TAF) quantitation. Numbers in square brackets represent 95% confidence intervals.

Α

Dataset	Stage	DLS	Clinical	Clinical + DLS	Delta
Validation set 1 (T3 only)	Stage II	0.677 [0.616, 0.739]	0.537 [0.470, 0.598]	0.657 [0.604, 0.714]	0.121 [0.064, 0.179]
	Stage III	0.639 [0.581, 0.684]	0.563 [0.515, 0.620]	0.654 [0.599, 0.708]	0.091 [0.025, 0.129]
	Stage II/III	0.697 [0.661, 0.739]	0.668 [0.629, 0.694]	0.733 [0.698, 0.770]	0.065 [0.047, 0.087]
Validation set 2 (T3 only)	Stage II	0.642 [0.567, 0.729]	0.585 [0.502, 0.680]	0.679 [0.596, 0.766]	0.094 [0.037, 0.175]
	Stage III	0.629 [0.559, 0.690]	0.590 [0.515, 0.662]	0.641 [0.561, 0.702]	0.051 [-0.002, 0.116]
	Stage II/III	0.654 [0.598, 0.701]	0.641 [0.578, 0.702]	0.685 [0.632, 0.732]	0.044 [0.004, 0.080]

Dataset	Stage	TAF	Clinical	Clinical + TAF	Delta
Validation set 1 (T3 only)	Stage II	0.645 [0.590, 0.691]	0.537 [0.470, 0.598]	0.592 [0.526, 0.651]	0.055 [0.032, 0.092]
	Stage III	0.618 [0.558, 0.675]	0.563 [0.515, 0.620]	0.602 [0.555, 0.656]	0.038 [0.009, 0.059]
	Stage II/III	0.668 [0.634, 0.703]	0.668 [0.629, 0.694]	0.692 [0.659, 0.720]	0.025 [0.017, 0.035]
Validation set 2 (T3 only)	Stage II	0.604 [0.530, 0.712]	0.585 [0.502, 0.680]	0.600 [0.512, 0.692]	0.015 [-0.015, 0.056]
	Stage III	0.653 [0.576, 0.714]	0.590 [0.515, 0.662]	0.633 [0.564, 0.709]	0.043 [0.022, 0.070]
	Stage II/III	0.649 [0.599, 0.707]	0.641 [0.578, 0.702]	0.666 [0.612, 0.721]	0.025 [0.011, 0.039]

Supplementary Table 7. Spearman correlation between clinicopathologic features and (A) the deep learning system (DLS) or (B) automatic quantitation of the tumor-adipose feature. P-values (from a t-test) are shown in parentheses. Cells with a p-value below 0.05 are bolded. Abbreviations for L/N/R/T/V/G are defined in the "Data Cohorts" section of Methods.

Α

Dataset	Stage	Т	N	R	L	V	G	Sex	Age
S	Stage II	0.07 (0.080)	N/A	-0.08 (0.057)	0.07 (0.084)	0.02 (0.684)	0.13 (0.002)	0.0 (0.928)	-0.09 (0.024)
Validation set 1	Stage III	0.27 (<0.001)	0.22 (<0.001)	0.14 (<0.001)	-0.06 (0.141)	0.11 (0.006)	0.23 (<0.001)	0.03 (0.421)	-0.07 (0.067)
	Stage II/III	0.18 (<0.001)	0.36 (<0.001)	0.07 (0.009)	0.04 (0.179)	0.10 (<0.001)	0.22 (<0.001)	0.03 (0.322)	-0.10 (0.001)
	Stage II	0.18 (0.001)	N/A	0.11 (0.054)	0.09 (0.093)	0.14 (0.010)	0.17 (0.003)	0.07 (0.183)	0.04 (0.517)
Validation set 2	Stage III	0.27 (<0.001)	0.19 (<0.001)	0.10 (0.038)	0.13 (0.008)	0.16 (0.001)	0.17 (0.001)	-0.01 (0.791)	-0.04 (0.433)
	Stage II/III	0.24 (<0.001)	0.34 (<0.001)	0.12 (0.001)	0.17 (<0.001)	0.21 (<0.001)	0.20 (<0.001)	0.06 (0.115)	-0.04 (0.339)

Dataset	Stage	Т	N	R	L	V	G	Sex	Age
	Stage II	0.12 (0.003)	N/A	0.01 (0.890)	0.04 (0.371)	-0.00 (0.986)	0.15 (0.000)	-0.02 (0.617)	-0.00 (0.974)
Validation	Stage	0.36	0.13	0.12	0.02	0.16	0.16	-0.03	0.05
set 1	III	(0.000)	(0.001)	(0.003)	(0.573)	(0.000)	(0.000)	(0.413)	(0.230)
	Stage	0.27	0.28	0.09	0.06	0.12	0.18	-0.02	0.01
	II/III	(0.000)	(0.000)	(0.002)	(0.024)	(0.000)	(0.000)	(0.513)	(0.785)
	Stage II	0.17 (0.002)	N/A	0.16 (0.005)	0.03 (0.611)	0.12 (0.025)	0.05 (0.384)	-0.14 (0.012)	0.05 (0.357)
Validation	Stage	0.46	0.17	0.08	0.14	0.20	0.03	-0.07	0.05
set 2	III	(0.000)	(0.000)	(0.093)	(0.005)	(0.000)	(0.591)	(0.161)	(0.278)
	Stage	0.37	0.23	0.12	0.13	0.20	0.07	-0.07	0.04
	II/III	(0.000)	(0.000)	(0.001)	(0.000)	(0.000)	(0.072)	(0.053)	(0.282)

Supplementary Table 8. Hyperparameter search space and optimal hyperparameters for the tumor segmentation model. We used random search (n=50 configurations) and selected the best model checkpoint based on the tuning set 5-year AUC.

Hyperparamet er	Description	Values	Optimal configuration
Batch size	Number of examples in each training batch	64	64
Patch size	Height and width of each image patch	299	299
Magnification	Image magnification at which the patches are extracted	20X, 10X, 5X, 2.5X, 1.25X	5X
Neural network architecture	Convolutional neural network architecture	InceptionV3	InceptionV3
Depth Multiplier	Multiplier on the depth of each convolution layer for downscaling the number of parameters in the default network architecture	0.05, 0.1, 0.15, 0.2	0.1
Loss	Loss function used for training	Softmax cross-entropy	Softmax cross- entropy
Optimizer	The optimization algorithm used for model training	RMSProp	RMSProp
L2 regularization weight	Weight of the L2 loss used for regularization	0.001, 0.0001, 0.00001	0.0001
Initial learning rate	Initial learning rate used for the RMSPROP optimizer; decay rate was 0.99 every 20,000 steps	0.005, 0.0005, 0.00005	0.005
Learning rate decay steps	Number of steps after which the learning rate is decreased by multiplying by the decay rate	10000, 20000	10000
Learning rate decay rate	The rate at which the learning rate is decayed after a fixed number of steps	0.95, 0.99	0.99
Exponential moving average decay rate	Decay rate used for taking an exponential moving average of the model weights for evaluation	None, 0.999, 0.9999	0.999
Training steps	The number of steps for which the model is trained	2000000	2000000
Evaluation steps	The number of train steps after which the model is evaluated	10000	10000

Supplementary Table 9. Tumor segmentation model performance on its test split at three different thresholds. Thresholds were chosen based on the recall observed on the tune split. AUC was 98.50.

Threshold	Recall	Precision	Intersection over union
95% tune set recall	97.58	83.38	93.63
90% tune set recall	93.99	88.58	94.72
75% tune set recall	81.42	93.81	93.02

Supplementary Table 10. Hyperparameter search space and optimal hyperparameters for the prognostic model. (A) We used random search (n=100 configurations across the search space and selected the best model checkpoint based on the tuning set 5-year AUC. (B) The final DLS predictions were generated by ensembling the top 5 models.

Α

Hyperparameter	Description	Value	
Batch size*	Number of examples in each training batch.	64	
Patch size*	Height and width of each image patch.	256	
Patch set size*	Number of patches sampled from a case to form a single training example:	16	
Magnification	Image magnification at which the patches are extracted	20X, 10X, 5X, 2.5X	
ROI model recall	The recall for tumor detection. Recall of 100 corresponds to using a tissue mask instead of an ROI mask.	100, 95, 90, 75	
ROI region dilation	The number of superpixels by which the ROI mask is dilated	0, 4, 16	
Number of layers	Number of layers used in our MobileNet-based architecture	4, 8	
Base depth	Depth of the first convolution layer in the network	8, 16, 32	
Depth growth rate	The rate at which depth grows after each stride 2 layer.		
		1.25, 1.5, 2.0	
Max depth	The maximum depth of any layer in the network	64, 256	
Loss	Survival loss function used for training.	Cox partial likelihood	
Optimizer	The optimization algorithm used for model training.	Adam	
L2 regularization weight	Weight of the L2 loss used for regularization	0.001, 0.0001, 0.00001	
Initial Learning rate	Initial learning rate used for the RMSPROP optimizer; decay rate was 0.99 every 20,000 steps.	0.005, 0.0005, 0.00005	
Learning rate decay steps	Number of steps after which the learning rate is decreased by multiplying by the decay rate.		
Learning rate decay rate	he rate at which the learning rate is decayed after a xed number of steps. 0.95, 0.99		
Exponential moving average decay rate	Decay rate used for taking an exponential moving average of the model weights for evaluation.	None, 0.999, 0.9999	
Training steps	The number of steps for which the model is trained.	2000000	
Evaluation steps	The number of train steps after which the model is evaluated.	10000	

^{*} These parameters were chosen based on preliminary tuning experiments. The best values from these experiments were chosen for the full hyper-parameter tuning run described here.

Hyperparameter	Model 1	Model 2	Model 3	Model 4	Model 5
Magnification	5X	5X	5X	5X	5X
ROI model recall	90	90	90	90	95
ROI region dilation	16	4	4	4	16
Number of layers	8	4	4	8	8
Base depth	32	32	32	8	32
Depth growth rate	1.5	1.25	1.5	1.25	1.25
Max depth	256	64	64	256	256
L2 Regularization	1e-05	0.001	1e-05	0.001	0.001
Initial learning rate	0.0005	0.0005	0.0005	0.0005	5e-05
Learning rate decay steps	10000	10000	10000	20000	20000
Learning rate decay rate	0.95	0.95	0.95	0.95	0.95
Exponential moving average decay rate	0.9999	0.9999	0.9999	N/A	0.999
Training step	1381426	1403469	1907329	1714445	1259927

Supplementary Table 11. REMARK checklist for reporting.

	Item to be reported	Location
INTI	RODUCTION	
1	State the marker examined, the study objectives, and any pre-specified hypotheses.	Last paragraph of introduction
MA	TERIALS AND METHODS	
Pati		
2	Describe the characteristics (e.g., disease stage or co-morbidities) of the study patients, including their source and inclusion and exclusion criteria.	"Data Cohorts" section
3	Describe treatments received and how chosen (e.g., randomized or rule-based).	"Data Cohorts" section
Spe	cimen characteristics	
4	Describe type of biological material used (including control samples) and methods of preservation and storage.	"Data Cohorts" section
Ass	ay methods	
5	Specify the assay method used and provide (or reference) a detailed protocol, including specific reagents or kits used, quality control procedures, reproducibility assessments, quantitation methods, and scoring and reporting protocols. Specify whether and how assays were performed blinded to the study endpoint.	"Data Cohorts" and "Prognostic Model Neural Network Architecture and Survival Loss" sections
Stuc	ly design	
6	State the method of case selection, including whether prospective or retrospective and whether stratification or matching (e.g., by stage of disease or age) was used. Specify the time period from which cases were taken, the end of the follow-up period, and the median follow-up time.	"Data Cohorts" section
7	Precisely define all clinical endpoints examined.	"Data Cohorts" section
8	List all candidate variables initially examined or considered for inclusion in models.	"Data Cohorts" and "DLS Association with Clinicopathologic Features" section, Table 4
9	Give rationale for sample size; if the study was designed to detect a specified effect size, give the target power and effect size.	"Data Cohorts" section
Stat	istical analysis methods	
10	Specify all statistical methods, including details of any variable selection procedures and other model-building issues, how model assumptions were verified, and how missing data were handled.	"Tumor Segmentation Model", "Prognostic Model Neural Network Architecture and Survival Loss", and "Understanding DLS Predictions" sections
11	Clarify how marker values were handled in the analyses; if relevant, describe methods used for cutpoint determination.	"Evaluating DLS Performance" section
RES	SULTS	
Data	3	
12	Describe the flow of patients through the study, including the number of patients included in each stage of the analysis (a diagram may be helpful) and reasons for dropout. Specifically, both overall and for each subgroup extensively examined report the numbers of patients and the number of events.	Table 1, Supplementary Figure 1
13	Report distributions of basic demographic characteristics (at least age and sex), standard (disease-specific) prognostic variables, and tumor marker, including numbers of missing values.	Supplementary Table 1
Ana	lysis and presentation	
14	Show the relation of the marker to standard prognostic variables.	Supplementary Tables 4 and 7
15	Present univariable analyses showing the relation between the marker and outcome, with the estimated effect (e.g., hazard ratio and survival probability). Preferably provide similar analyses for all other variables being analyzed. For the effect of a tumor marker on a time-to-event outcome, a Kaplan-Meier plot is recommended.	P5 Supplementary Table 3
16	For key multivariable analyses, report estimated effects (e.g., hazard ratio) with confidence intervals for the marker and, at least for the final model, all other variables in the model.	Table 3

1	7 Among reported results, provide estimated effects with confidence intervals an analysis in which the marker and standard prognostic variables are included regardless of their statistical significance.			
1	8 If done, report results of further investigations, such as checking assumption sensitivity analyses, and internal validation.	ns, Tables 4,5		
DISCUSSION				
1	Interpret the results in the context of the pre-specified hypotheses and other relevant studies; include a discussion of limitations of the study.	Throughout Discussion		
2	Discuss implications for future research and clinical value.	Throughout Discussion		