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Supplementary Table 1: List of diamonds used in this work, indicating the implantation energy, Eimp

(column 2). Column 3: maximum implantation depth used in the modelling, dmax = 3.5Eimp, where it is
assumed that the defects (N and NV) are uniformly distributed over the range d = 0 − dmax, see justification
in Supplementary Methods 2. In the main text, each sample is referred to in terms of the mean implantation
depth, 〈d〉 = dmax/2. Column 4: figures in which each sample appears.

Diamond Implantation energy dmax Figures
#1 6 keV 21 nm 1d, 2a, 2b, 2c
#2 10 keV 35 nm 2a, 2c, 2d, 3, S5-10
#3 4 keV 14 nm 2a, 2c & inset
#4 14 keV 49 nm 2a, 2c
#5 20 keV 70 nm 2a, 2c
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Supplementary Figure 1: Schematics illustrating the fabrication process: a Ti/Pt/Au stack is evaporated on
the diamond (a) and annealed to form a TiC layer extending into the diamond (b), providing a low-resistivity
interface with the conductive 2DHG formed by H-terminating the diamond surface with a hydrogen plasma (c).

Supplementary Figure 2: (a) Photograph showing the PCB with microwave and DC inputs, as well as the

permanent magnet used to apply the bias magnetic field ~B0. (b) Photograph of the diamond as mounted. The
red box indicates a typical area used for imaging.
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Supplementary Methods 1: Electric field mapping with NV ensem-
bles

In this section, we describe a method to measure the full vector components of the magnetic and electric
fields simultaneously, using ensembles of NV centres. To this aim, we first discuss the Hamiltonian of a single
NV centre, then show how one can make use of multiple NV centres in a single crystal for maximal sensitivity
to electric fields, and finally we describe our fitting and analysis procedure.

Electrometry with a single NV

The spin Hamiltonian of the NV electron spin (S = 1) in the presence of a magnetic field ~B = (BX , BY , BZ)

and electric field ~E = (EX , EY , EZ) is given by

H = (D + k‖EZ)(S2
Z − 2/3) + γNV

~S · ~B − k⊥EX(S2
X − S2

Y ) + k⊥EY (SXSY + SY SX) (1)

where ~S = (SX , SY , SZ) are the spin-1 operators, D ≈ 2870 MHz is the temperature-dependent zero-field
splitting, γNV = 28.035(3) GHz/T is the isotropic gyromagnetic ratio, and k‖ = 0.35(2) Hz cmV−1 and k⊥ =
17(3) Hz cmV−1 are the electric susceptibility parameters [1, 2]. Here XY Z is the reference frame of the NV
defect structure as defined in Ref. [3], where Z is the major symmetry axis defined by the direction joining the
nitrogen and the vacancy (which is along a 〈111〉 crystal direction), and X is a minor symmetry axis defined as
being orthogonal to Z and also contained within one of the three reflection planes.

The frequencies of the |0〉 → | + 1〉 and |0〉 → | − 1〉 spin transitions, f±, can be computed by numerically
diagonalising the above Hamiltonian. To facilitate the discussion, in what follows we will make use of the
approximation

f±(~E , ~B) ≈ D + k‖EZ + 3Λ±
√
R2 − ΛR sinα cosβ + Λ2 (2)

where the terms are defined as

Λ =
γ2eB

2
⊥

2D
, R =

√
γ2NVB

2
Z + k2⊥E2⊥, B⊥ =

√
B2
X +B2

Y , E⊥ =
√
E2X + E2Y ,

tanα =
k⊥E⊥
γNVBZ

, β = 2φB + φF , tanφB =
BY
BX

, tanφF =
EY
EX

.

(3)

This approximation is valid under the situation where Λ,R � D [3], which is a good approximation for the
cases explored in this paper.

As apparent from the expression of R, sensitivity to the transverse electric field (E⊥) is maximised when
the longitudinal component of the magnetic field (BZ) is minimised. To a lesser extent, sensitivity to E⊥ is also
maximised when the transverse magnetic field (B⊥) is minimised, due to the Λ2 term in Eq. 2. To illustrate

this, a simulation of the shift δf = f+(~E) − f+(0) caused by an electric field of strength |~E| = 500 kV/cm is
plotted as a function of (BY , BZ) in Supp. Fig. 3a. Here the electric field is taken to be along the lab-frame
axis z as defined in Supp. Fig. 2b, i.e. the [001] direction of the diamond crystal, to mimic the electric field
associated with surface band bending. Supp. Fig. 3a shows that there is indeed a dramatic decrease in the
expected NV frequency shift with BZ , e.g. from δf ≈ 7 MHz at zero magnetic field to δf ≈ 1 MHz with just
BZ = 10 G, and a milder effect of the transverse magnetic field, for instance the shift is still δf ≈ 5 MHz under
BY = 50 G (with BZ = 0). There is also a dependence on the orientation of ~B in the transverse (XY ) plane as

shown in Supp. Fig. 3b, which is related to the direction of both ~B and ~E relative to the defect minor axis X,
as captured by the cosβ term in Eq. 2. For transverse magnetic field strengths of the order of 50 G, the loss of
sensitivity due to a non-optimal angle β is relatively mild (a factor 2 at most), and as such careful alignment

of ~B in the transverse plane to match a given direction of ~E is not critical. We stress that the shift induced by
the longitudinal electric field (EZ) is usually much smaller than that from E⊥ because k‖ � k⊥, even though it
doesn’t decrease with the application of a magnetic field.

Electrometry with NV ensembles

Clearly, measuring the two spin transition frequencies f± from a single NV centre is not sufficient to infer

the six vector components of ~E and ~B simultaneously, without prior knowledge or additional measurements. On
the other hand, using an ensemble of NV centres in a single crystal provides four independent measurements
because Z can be along one of the four 〈111〉 crystal directions, denoted as {ZK}K=A,B,C,D. As a result, with
eight different frequencies measured there is enough information in principle to infer the six unknown field
components, in addition to the zero-field splitting (D). Experimentally, this requires all eight frequencies to
be spectrally resolvable in the ODMR spectrum, which is achieved by applying a carefully aligned external
magnetic field ~B0.
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Supplementary Figure 3: Shift of the |0〉 → | + 1〉 NV spin transition, δf = f+(~E) − f+(0), caused by an

electric field of strength |~E| = 500 kV/cm, plotted as a function of (BY , BZ) with BX = 0 in (a), and as a
function of (BX , BY ) with BZ = 0 in (b-d), where XY Z is the reference frame associated with the NV defect

structure, with Z being along a 〈111〉 direction and X the minor axis [3]. ~E is indicated above each graph in

terms of its Cartesian components (Ex, Ey, Ez) in the xyz lab frame as defined in Supp. Fig. 2b, i.e. ~E is aligned
along z in (a,b), y in (c) and x in (d).

Precisely, ~B0 is chosen to satisfy several criteria: (i) the direction of ~B0 is chosen perpendicular to one of the

〈111〉 directions (e.g., ~B0 ⊥ ZA) in order to maximise the sensitivity of the corresponding NV centres (family

NVA) to electric fields; (ii) the direction of ~B0 within the said transverse plane XAYA is varied so that the

projections of ~B0 along the four NV axes {ZK} are as distinct to each other as possible; (iii) the amplitude

| ~B0| is chosen as a trade-off between electric field sensitivity which prescribes | ~B0| to be minimised (see Supp.
Fig. 3) and sufficient spacing between adjacent ODMR lines (so they can be resolved given their linewidth).
To illustrate the last two points, we calculated the minimum splitting between any of the 8 ODMR lines, with
frequencies {fi}i=1...8, defined by

∆fmin = min
(√

(f1 − f8)2,
√

(f1 − f7)2, . . . ,
√

(f7 − f8)2
)
, (4)

as a function of (BXA
, BYA

) when BZA
= 0 (i.e., ~B0 ⊥ ZA) and ~E = ~0, as shown in Supp. Fig. 4a. In our

experiments, we aimed for a minimum separation ∆fmin ∼ 20 MHz nominally, which allows variations in the
ODMR frequencies across the field of view of several MHz to be measured (due to variations in the electric or
magnetic field generated by the sample or the external magnet). As can be seen in Supp. Fig. 4a, this requires

a magnetic field strength of the order of | ~B| ∼ 60 G, with a wide range of directions allowed within the XA, YA
plane. A typical experimental ODMR spectrum taken in such conditions is shown in Supp. Fig. 4b where
~B0 = (35, 13,−50) G, the Cartesian components being expressed in the lab frame xyz defined in Supp. Fig. 2b.
Supp. Fig. 4b also defines our convention to label the 8 NV resonance frequencies and the 4 NV families. With
this ~B0, the symmetry axes for the 4 NV families have unit vectors expressed as follows in the xyz lab frame:

~uNVA
=

(
0,

√
2

3
,−
√

1

3

)
(5)

~uNVB
=

(√
2

3
, 0,

√
1

3

)
(6)

~uNVC
=

(
0,−

√
2

3
,−
√

1

3

)
(7)

~uNVD
=

(
−
√

2

3
, 0,

√
1

3

)
. (8)
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Supplementary Figure 4: (a) Minimum separation between the 8 ODMR lines as calculated from Eq. 4,
as a function of the transverse magnetic field (BXA

, BYA
) relative to ZA, which is the symmetry axis of the

NV family optimised for electric field sensitivity (i.e., BZA
= 0). The red circle indicates the regime used in

the experiments, which corresponds to a magnetic field with Cartesian coordinates ~B0 ≈ (35, 13,−50) G in

the lab frame xyz. (b) Typical ODMR spectrum measured under this magnetic field ~B0, and conventions for
the NV transition frequencies {fi}i=1...8 and for the NV families {NVK}K=A...D. The solid line is a fit with 8
Lorentzian lines with free amplitudes and widths. The difference in amplitudes across the different NV families
is due to the fixed polarisation of the excitation laser while the orientation of the electric dipoles differs for each
NV family. Moreover, for family NVA there is an additional effect due to spin mixing induced by the transverse
magnetic field (see text).

To illustrate how the presence of electric fields affects the ODMR spectrum, we show ODMR data cor-
responding to the largest electric fields observed in this work, allowing one to readily visualise the induced
frequency shifts. We thus consider the situation examined in main text Fig. 3f, where a voltage VSD = +100 V
was applied to the H-terminated device resulting in an electric-field feature near the drain contact. The PL
image of the device is shown in Supp. Fig. 5a, and ODMR spectra of selected regions are shown in Supp.
Figs. 5b-d under ~B0 ≈ (35, 13,−50) G (b,c), which is the field optimised for simultaneous vector electrometry

and magnetometry and used throughout the paper, and under ~B0 ≈ (60,−38,−31) G for comparison (d). The
two spectra in Supp. Fig. 5b are taken outside the H-terminated channel and show no visible shift in the
NV frequencies (relative to each other), illustrating the good uniformity of ~B0 over these length scales (20 µm
separate the two plotted regions). Under the conductive channel, however, there is a clear difference between the
two spectra (Supp. Fig. 5c), where the blue spectrum corresponds to the large electric field seen in main text
Fig. 3f. The central lines (f4 and f5, family NVA) exhibit shifts by up to 4 MHz (for f5, based on a Lorentzian
fit of the whole spectrum) as well as an extra broadening, compared with the reference red spectrum. The other
lines are also slightly shifted, which is clearly observable for f3 and f6 (family NVB), but more subtle for the

other four lines (NVC and NVD). Under a non-optimised ~B0 (Supp. Fig. 5d) where all the NV families have a
significant BZK

component, the shifts are smaller, although they are still visible for NVA. These observations
are consistent with a change in electric field between the two regions, which shifts the NV frequencies to an
extent that depends on the angle formed between ~B0 and the NV symmetry axis (see Supp. Fig. 3a).

The broadening of f4 and f5 seen in Supp. Fig. 5c is attributed to a combination of two effects. First,
the electric field associated with surface band bending is expected to be non-uniform across the thickness of
the NV layer (see Supp. Fig. 14b), causing an inhomogeneous broadening. The second source of apparent
broadening is caused by a splitting of each NV line into two lines corresponding to the two sub-groups of NV
centres distinguished by their orientation, i.e. N-V (where the vacancy is closer to the diamond surface than the
nitrogen atom) or V-N (the vacancy is closer). In the absence of electric field, the NV transition frequencies are
invariant under this inversion, but this is no longer the case in the presence of an electric field [3, 4], especially
when the axial component of the magnetic field is vanishing (BZA

∼ 0). To illustrate this, we computed the
transition frequencies for the 8 possible NV orientations (4 directions + NV/VN inversion) and generated an
ODMR spectrum by applying a Lorentzian lineshape to each resonance. For completeness we also included the
hyperfine interaction of the NV electron spin with the 15N nuclear spin (spin- 12 ), so that the total Hamiltonian
of the system is

H = (D + k‖EZ)(S2
Z − 2/3) + γNV

~S · ~B − k⊥EX(S2
X − S2

Y ) + k⊥EY (SXSY + SY SX) (9)

−γnBZIZ +A‖SZIZ +A⊥ (SXIX + SY IY ) ,

where I = (IX , IY , IZ) is the nuclear spin operator, γn = −4.316 MHz/T is the nuclear gyromagnetic ratio, and
A‖ = 3.03 MHz and A⊥ = 3.65 MHz are the hyperfine parameters [5]. One thus has a total of 32 lines in the
ODMR spectrum (2 electron spin transitions for each of the 8 possible NV orientations and the 2 possible nuclear
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Supplementary Figure 5: (a) PL image of sample #2 showing a H-terminated channel between two
TiC/Pt/Au contacts. (b,c) ODMR spectra averaged over the regions delimited by the square boxes in (a),

with matching colours, recorded under a bias magnetic field ~B0 ≈ (35, 13,−50) G, a voltage VSD = +100 V,
and with the laser illumination spot positioned as in main text Fig. 3f. (d) ODMR spectra of the same regions as

in (c) but under a magnetic field ~B0 ≈ (60,−38,−31) G. In (b-d), the solid lines are data fits with 8 Lorentzian
lines with free amplitudes and widths.

spin states), although some of them are nearly degenerate resulting in only 8 lines being usually resolvable under
our experimental conditions (due to the intrinsic linewidth of 1-2 MHz in our samples [6] and additional power

broadening). Illustrative simulated spectra are shown in Supp. Fig. 6a, obtained using ~B0 ≈ (35, 13,−50) G

as in the experiment, and an electric field either null (red spectrum) or of ~E = (0, 0, 500) kV/cm (blue). As
expected, the presence of an electric field affects especially the central lines (called f4 and f5 according to
our previous definition), which split further apart from each other, and additionally split into two sub-lines
corresponding to the two possible orientations within family NVA (i.e. N-V vs. V-N, see Ref. [3, 4]), separated
by nearly 9 MHz. A higher resolution spectrum (sharp lines in Supp. Fig. 6) reveal additional splittings by
< 400 kHz caused by the hyperfine interaction, which is highly suppressed for a purely transverse magnetic
field. The other lines are also shifted overall by the electric field, where the high-resolution spectrum (Supp.
Figs. 6c,d) reveals a small splitting induced by the orientation inversion (N-V vs. V-N) on top of the usual
hyperfine splitting of ≈ 3 MHz.

Looking at the experimental spectrum (blue curve in Supp. Fig. 5c), we remark the presence of a shoulder
on line f5 which may be the signature of this inversion-asymmetry-induced splitting. However, the presence of
strong electric field gradients mentioned above acts as a source of broadening which prevents detailed comparison
with the theory. Furthermore, while the simulated spectra assumed a constant amplitude for each resonance,
this is not the case in reality. Indeed, the transition strength (Rabi frequency) depends on the initial and final
states of the NV spin system and on the direction of the microwave field relative to the NV defect structure, and
can therefore vary significantly between different transitions and in the presence of an electric field, especially for
NV centres with a small axial magnetic field (e.g. NVA). For instance, this explains why the two lines f4 and f5
exhibit different amplitudes even in the low electric field case (see red spectrum in Supp. Fig. 5c, we verified that
f4 had a smaller Rabi frequency than f5, by a factor ≈ 2, under the same microwave power). This complicates
the analysis of the experimental spectrum when in the presence of an a priori unknown electric field distribution.
Consequently, for imaging purpose we simply fit the experimental spectrum with a sum of 8 Lorentzian lines
(solid lines in Supp. Figs. 5b-d) with free frequencies {fi}, amplitudes and widths, thus providing a mean value
for each electron spin transition incorporating the effect of hyperfine and inversion-asymmetry splittings. The
8 frequencies are then used to deduce the magnetic and electric field vector components, as will be detailed in
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Supplementary Figure 6: (a) ODMR spectrum obtained by computing the 32 transition frequencies (see
details in text) and applying a Lorentzian lineshape with a fixed arbitrary amplitude and a full width at half
maximum (FWHM) of 5 MHz (broad lines, comparable to those in the experiment) or 50 KHz (narrow lines,

for ease of visualisation). The magnetic field is taken to be ~B0 ≈ (35, 13,−50) G as in the experiment, while

the electric field is null for the red spectrum, and ~E = (0, 0, 500) kV/cm for the blue spectrum. (b-d) Close-up
views of (a).

the next section.

Fitting procedure

To infer the unknown values (D,Bx, By, Bz, Ex, Ey, Ez) from the measured frequencies {fi}i=1...8, we seek to
minimise the root-mean-square error function

ε(D, ~B, ~E) =

√√√√1

8

8∑
i=1

[
fi − f calci (D, ~B, ~E)

]2
(10)

where {f calci (D, ~B, ~E)}i=1...8 are the calculated frequencies obtained by averaging over both the NV orientation
for the corresponding NV family (i.e., the Z axis is ±~uNVK

), and over the nuclear spin state (mI = ±1/2), that
is,

f calci (D, ~B, ~E) = 1
4

[
fi(D, ~B, ~E , ~uNVK

,mI = + 1
2 ) + fi(D, ~B, ~E ,−~uNVK

,mI = + 1
2 ) (11)

+fi(D, ~B, ~E , ~uNVK
,mI = − 1

2 ) + fi(D, ~B, ~E ,−~uNVK
,mI = − 1

2 )
]
. (12)

Each frequency fi(D, ~B, ~E , ~uNVK
,mI) is obtained by projecting ~B and ~E into the NV reference frame knowing

the orientation of the Z axis (~uNVK
), numerically computing the eigenvalues of the Hamiltonian (9), and

deducing the electron spin transition frequencies.
For the fitting (i.e. minimisation of ε(D, ~B, ~E)), we used a bound constrained optimisation based on the

fminsearch function in Matlab. While it is possible in principle to fit all 7 parameters, we found that the fit
would not reliably converge for all the pixels within the field of view, resulting in very noisy electric field images
(hence large uncertainty). We conclude that the noise level of our measurements (the uncertainty in the {fi}
data is 20-60 kHz for a single pixel, see Supp. Table 2) is insufficient to perform a full vector fit for each pixel.
On the other hand, we found that fixing (Ex = 0, Ey = 0) and letting only Ez free, which is the component
expected from surface band bending, solved the convergence issues resulting in much smoother images. In
all the data shown in the main text, we therefore fit only the five parameters (D,Bx, By, Bz, Ez), while fixing
(Ex = 0, Ey = 0). We also note that because the measurement and model are averaging over the N-V and V-N

sub-families, there is an ambiguity in the overall sign of the determined electric field. In other words, ~E and −~E
yield the same ODMR spectrum, hence one measures |Ez| when (Ex = 0, Ey = 0). Solutions to determine the

sign of ~E include using preferentially-oriented NV centres [4, 7] and applying an external electric field [8]. As
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Supplementary Figure 7: (a) Maps of the frequencies {fi}i=1..8 obtained by fitting the ODMR spectrum

at each pixel. The region shown is the same as that in Supp. Fig. 5a, and the bias magnetic field is ~B0 ≈
(35, 13,−50) G. (b,c) Maps of the magnetic field components (b) and out-of-plane electric field component Ez
(c) obtained after reconstruction. In (b) a plane subtraction was applied to remove the background field ~B0.

an illustration of the reconstruction process, Supp. Fig. 7a shows the 8 frequency maps obtained for the same
area as in Supp. Fig. 5a. In this example, a voltage VSD = +100 V was applied to the device, corresponding
to a current I ≈ 700 µA flowing through the conductive channel. This current produces a non-trivial magnetic
field distribution through the Bio-Savart law, resulting in a complex landscape in the frequency maps. After
reconstruction following the procedure outlined above, one obtains the maps of the 3 vector components of ~B
(Supp. Fig. 7b) as well as Ez (Supp. Fig. 7c). The magnetic field maps are consistent with the magnetic field
expected from a uniform current density in a flat wire [9]. On the other hand, the Ez map shows a very different
distribution with minimal cross-talk with the magnetic field, illustrating the effectiveness of the reconstruction
method.

Error analysis

We now discuss the sources of error in our reconstruction method. First, it is interesting to examine the
residue ε after fitting. This is summarised in Supp. Table 2 for the data shown in main text Fig. 2a, which
gives the case where the Stark effect is not included in the Hamiltonian, i.e. ε(D, ~B), and the case used in the
paper where the Stark effect is included but the electric field is constrained to be perpendicular to the diamond
surface, i.e. ε(D, ~B, Ez). Also indicated in the uncertainty (standard error) in determining the frequencies {fi},
denoted as σfi , obtained from the Lorentzian fit to the ODMR spectrum and averaged over the eight lines.

Clearly, the data is not well fit without including the Stark effect, with ε(D, ~B) being 5-30 times larger than
the measurement uncertainty σfi . Instead, when one includes the Stark effect (Ez only), one reduces the residue
ε by up to an order of magnitude, which is clear evidence that measurable electric fields are present in our
sample. The residue is still a factor 2-3 larger than σfi , which can be due to one or a combination of the
following effects. First, the electric field might be not exactly along the z axis, e.g. due to surface roughness,
diamond miscut, or non-uniform density of surface or bulk defects, although fitting Ex and Ey as well as Ez did

7



not seem to reduce the residue ε. Second, other corrections to the Hamiltonian may need to be considered,
e.g. the effect of mechanical strain in the diamond (see discussion in the next section). Third, there may be
systematic errors in the measured {fi}, for instance due to each ODMR line comprising several sub-lines with
uneven amplitudes (they are assumed even in our analysis, see Supp. Fig. 6 and corresponding discussion) or
due to partial overlapping between adjacent lines (leading to systematic errors if the actual line shape is not
exactly Lorentzian as it is assumed, which can arise e.g. from the electric field gradient experienced by the NV
ensemble). Nevertheless, the fact that simply adding a single parameter (Ez) to the fit function reduces the
residue by an order of magnitude suggests that this parameter captures very well the essence of the problem.

We listed above the possible causes for systematic errors in the measurements. On top of that, there is a
statistical error in the measured {fi} that originates from photon count noise in the ODMR spectrum, which
is usually close to the photon shot noise limit in our experiments but can also be affected by readout noise and
dark counts of the camera depending on the exact conditions. To characterise this noise, we simply calculate
the standard deviation σfi from a large ensemble of pixels, which is found to be in the range 20-60 kHz in
our experiments (see Supp. Table 2). This uncertainty on the {fi}i=1..8 translates into an uncertainty on Ez.
Again, we characterise this by taking the standard deviation of the Ez map. Doing so on a small region gives
an uncertainty of the order of 1 kV/cm, i.e. less than 1 % of the mean value, corresponding to the statistical
(pixel-to-pixel) noise. By evaluating the standard deviation over larger areas, one captures statistical noise as
well as actual spatial variations of Ez, due e.g. to spatial variations in the density of surface defects. Such
variations can be seen in main text Fig. 2b and are of the order of 10 kV/cm, i.e. a few percents of the mean
value. This is the uncertainty quoted in the main text and shown as error bars in the main text figures.

Finally, we discuss the consequences of the Stark effect from built-in electric fields on the accuracy of
magnetometry measurements. In our measurements, because ~B is treated as a fit parameter, neglecting the
Stark effect leads to a biased estimation of ~B in order to minimise ε(D, ~B). Taking sample #1 from Supp. Table 2
as an example, we obtain (D = 2870.2 MHz, Bx = 3672 µT, By = 1027 µT, Bz = −4987 µT, Ez = 378.4 kV/cm)
when including Ez, against (D = 2870.2 MHz, Bx = 3699 µT, By = 1025 µT, Bz = −4976 µT) when neglecting
the Stark effect. This shows that neglecting the Stark effect may lead to systematic errors of the order of 30 µT
in magnetometry measurements, motivating the need for precise characterisation of built-in electric fields for
high-precision magnetometry applications, and minimising the sensitivity to electric fields by careful alignment
of an external bias magnetic field.

Supplementary Table 2: Residual error ε from fitting the measured ODMR frequencies {fi}i=1..8 without
including the Stark effect (second column) and when including a normal-to-the-surface electric field Ez (third
column). The fourth column indicates the standard error on the {fi} from fitting the ODMR spectrum with
Lorentzian functions. The data shown corresponds to the measurements described in main text Fig. 2a, i.e.
O-terminated diamond implanted at different depths, and all values are averaged over a large number of pixels.

Sample ε(D, ~B) ε(D, ~B, Ez) σfi
(kHz) (kHz) (kHz)

#1 630 45 23
#2 380 60 22
#3 570 63 47
#4 270 90 53
#5 220 61 20

On the effect of strain

Mechanical strain acts as an effective electric field in the NV spin Hamiltonian [1], which simply adds to
the true electric field and therefore may in principle contribute to the electric fields measured in this work.
In this section, we estimate the effect of strain in our samples induced by bulk defects, surface defects as well
as dilational dislocations, and conclude that it is negligible compared to the electric field due to surface band
bending.

Strain induced by bulk point defects

In the simplest picture, a point defect is an isotropic point source of expansion or contraction of the lat-
tice [10]. In continuum mechanics, the displacement field ~u of this expansion/contraction is analogous to the
electric field of a point charge and takes the form [10]

~u =
A0

|~r − ~r0|3
(~r − ~r0) , (13)
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where A0 is known as the defect strength and ~r0 is the position of the defect. This displacement field is the
solution of the elastic equation

~∇ · ~u = 4πA0δ (~r − ~r0) . (14)

Since the displacement field induced by a point defect is irrotational ~∇× ~u = ~0, the displacement field can be
expressed in terms of a scalar potential, Φ, via ~u = −~∇Φ. In which case, the elasticity equation becomes (see
references [11] for background)

−∇2Φ = 4πA0δ (~r − ~r0) . (15)

Note the parallel between Φ and the electric potential.
The defect strength is related to the change in volume ∆V0 induced by the defect [10]

A0 =
∆V0(ν + 1)

12π(1− ν)
(16)

where ν is the Poisson ratio of the solid. The change in volume can be obtained from X-ray crystallography that
determines the solid’s lattice parameter as a function of the defect concentration or by ab initio calculations.

The components of the strain field are defined with respect to the displacement field via

εij =
1

2

(
∂ui
∂rj

+
∂uj
∂ri

)
(17)

where i, j = x, y, z, ui denotes the i-vector component of the displacement field and ri denotes the i-coordinate.
The stress is calculated from the strain via

σii = λTr←→ε + 2µεii

σij = µεii for i 6= j
(18)

where λ and µ are Lame’s constant and the shear modulus, respectively.
Assuming that the displacements due to different defects are sufficiently small that they may be added in

superposition, the elasticity equation for a continuous number density ~ρ of defects is simply

−∇2Φ = 4πA0ρ(~r) (19)

Consider now a semi-infinite slab in the xy plane, extending vertically from z = −h/2 to z = h/2. If the
slab has a uniform density ρ of defects, the solutions of the elasticity equation immediately follow as

Φ = −2πA0ρz
2

~µ = 4πA0ρzẑ

εzz = 4πA0ρ

σzz = 4π(λ+ 2µ)A0ρ

σxx = σyy = 4πλA0ρ.

(20)

All other strain and stress components are zero. Thus, the defects produce uniform stress and strain that is
principally in the vertical direction (assuming µ� Λ) and proportional to the density of defects.

For the N defect in diamond, A0ρ = 1.67113 × 10−8 using the x-ray data ∆V0ρ = 0.42 × 106 ppm−1 [12]
and the diamond Poisson ratio ν = 0.2. Using λ = 85 GPa and µ = 536 GPa, the stress components as a
function of concentration (units: GPa/ppm) are 242.806× 10−6 and 17.838× 10−6 repectively. Since the spin-
stress susceptibility parameters are on the order of 1 MHz/GPa, and the N concentrations in our implanted
samples are on the order of 10 ppm, we get that the NV frequency shifts induced are ∼ 10 kHz, equivalent to
∼ 1 kV/cm in terms of effective electric field. This is smaller than our measurement uncertainty and therefore
negligible. The strengths of other common defects (N+, NV− and NV0) are smaller than N0, as predicted by
the ab initio calculations in [13]. Thus, even considering multiple defect species, it is unlikely that strain will
induce a significant shift in the spin resonances.

Strain induced by surface defects

To model surface defects, reconsider the slab but with a defect density that decays exponentially from the
surface

ρ(z) = ρ0

(
e−|z−

h
2 |/L + e−|

h
2 +z|/L

)
(21)

9



In this case, the elasticity solutions are

Φ = −4πL2A0ρ0

(
e−|z−

h
2 |/L + e−|

h
2 +z|/L

)
~µ = 4πLA0ρ0

(
e−|z−

h
2 |/L + e−|

h
2 +z|/L

)
ẑ

εzz = 4πA0ρ0

(
e−|z−

h
2 |/L + e−|

h
2 +z|/L

)
σzz = 4πλ+ 2µA0ρ0

(
e−|z−

h
2 |/L + e−|

h
2 +z|/L

)
σxx = σyy = 4πλA0ρ0

(
e−|z−

h
2 |/L + e−|

h
2 +z|/L

)
(22)

Again, the principal stress is in the vertical direction and is proportional to the density of defects. As the
density decays exponentially from the surface, defects densities that are highly localised to the surface do not
generate stress inside the solid, and their effect on the NV spin resonances can therefore be neglected.

Stress induced by dilational dislocations

A dislocation that induces pure compression/dilation is equivalent to a line of point defects with uniform
density. So, if we say that the dislocations have a uniform density in the transverse plane of a slab, this is
equivalent to a uniform plane of point defects. Since we have concluded that the stress/strain at a given height
in the slab depends only on the local density of defects, and we expect dislocations induced by polishing/surface
damage to be localised to the surface, then we can conclude that dislocations do not influence the NVs sufficiently
below the surface. Thus, regardless of their strength, dislocations may also be ignored.

Supplementary Data 1: Electrical characterisation of the devices

The electrical properties of the hydrogen terminated channels were characterised first by DC measurements
to determine the device resistance (Keithley 2400 SMU), and then with a small AC voltage test signal (10 mV
peak to peak) applied by a LCR meter (HP 4284A) to determine the complex device impedance (Z). The
resistance of the devices was modified by the 532 nm laser illumination required by NV measurements. Upon
illumination the resistance of all devices dropped from R ≈ 90 kΩ to R ≈ 75 kΩ (VSD = 10 V). Green laser
illumination is known to optically pump charge carriers in nitrogen doped diamond through deep defects and
surface defects [14]. The photo-induced carriers in our devices were observed to have a long lifetime with photo-
currents taking minutes to decay. Prolonged laser exposure resulted in a gradual and permanent increase in
the device resistance. After multiple days of continuous laser illumination the devices typically exhibited dark
resistances of R > 100 MΩ (illuminated resistances of R ≈ 500 kΩ), which can be explained by a decrease in
dark hole density with no change in the photo-induced carrier density. The reduction of hole density indicates
a loss of surface acceptors either by laser induced removal of the hydrogen termination or by the formation of
a surface contamination that prohibits transfer doping of the diamond.

The TiC contacts to the hydrogen terminated ribbon exhibited an Ohmic response within the applied DC
bias range of VSD = 100 to VSD = −100 V shown in Supp. Fig. 8c. The sub linear response seen above
VSD = 100 V is consistent with a drift saturation velocity of vdrift = 5 × 106 cm s−1 [15]. Despite these stable
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Supplementary Figure 8: Electrical characterisation of a representative H-terminated channel between two
TiC/Pt/Au contacts. (a) Capacitance under a bias voltage VSD = 10 V, as a function of the frequency of the
AC signal. (b) Capacitance at 20 Hz as a function of the bias voltage (laser on). (c) Source-drain current as a
function of the applied DC voltage.
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Ohmic contacts, AC measurements revealed a non-zero parallel capacitance in the diamond device. At low
frequencies the device exhibits a large negative capacitance (Supp. Fig. 8a, red line), which becomes positive
(≈ 10 pF) above 1 kHz. We interpret this capacitance as a result of the geometrical differences between the
TiC contacts, which extend ∆z ≈ 15 nm into the diamond, and the conductive H-terminated channel, which is
confined within z ≈ 1 nm [15] of the surface, resulting in charge build up at subsurface TiC-diamond interface,
below the 2D hole gas. The frequency response of the negative capacitance is inconsistent with a parasitic
inductance, and is understood to result from the transient relaxation current (δj) after a small voltage step
not decreasing monotonically (i.e. dδj

dt > 0 at some time, t, after the voltage step). The longer times required

before dδj
dt > 0 results in the measured negative capacitance disappearing with high frequency measurements,

as the voltage changes are quick enough to ensure dδj
dt < 0 [16, 17]. The microscopic cause of this unusual

transient response is device specific, for our devices we postulate that the negative capacitance is a result of
carrier trapping dynamics across the metal TiC and p-type diamond interface similar to the cause of negative
capacitance seen in silicon based p-n junctions [18].

Supp. Fig. 8b shows the low frequency negative capacitance response to the applied DC bias. The symmetry
around VDS = 0 suggests that TiC-diamond interfaces at both contacts behave consistently under a particular
bias direction. Electric field images of the biased interfaces (main text Fig. 3) suggest that this negative
capacitance corresponds with the increased electric field and occurs when the interface is forward biased, i.e.
when the p-type H-terminated channel is positively biased with respect to the TiC. This indicates that either
holes are injected into the TiC, electrons are injected into the diamond or both. As TiC is typically metallic
[19], these holes would rapidly recombine, however electrons injected into the conduction band far away from
the diamond surface may have a longer lifetime. Trapping of these electrons in ionised donor defects would
re-distribute charge within the diamond resulting in a change in the electric field at the NV layer and cause
a positive transient response in the current due to the hole density increasing to maintain charge neutrality
with the adsorbed acceptor layer. Laser illumination would pump any filled trap states reducing the measured
electric field, and increase the magnitude of the positive component of the current transient which results in
the increase in the negative capacitance at low frequencies shown in Supp. Fig. 8a (blue line).

Supplementary Data 2: Electric field vs laser intensity

To assess the effect of the laser used for the NV measurements on the band bending (through photo-ionisation
of bulk defects), we measured the electric field 〈Ez〉 as a function of laser intensity for diamond #2 (with no
applied voltage). Precisely, we kept the peak laser power (300 mW) and laser pulse duration (tlaser = 10 µs)
constant and varied the dark time tdark, which varied the laser duty cycle and hence the average power (Supp.
Fig. 9a) according to

Duty cycle =
tlaser

tdark + tlaser
. (23)

Since photo-currents have been measured to be long lived (minutes compared to the microsecond time scale of
the laser pulsing sequence), we expect varying the average laser power via pulsing to be equivalent to varying
the laser power in a CW experiment. We observed a decrease in 〈Ez〉 by about 15% when the duty cycle was
increased from 2.5% to nearly 100%, i.e. a factor 40 increase in average laser intensity. This indicates that the
laser has a measurable effect on the band bending. All measurements reported in the main text were performed
with a duty cycle close to 1 in order to maximise the signal-to-noise ratio, and as such they include a small
but measurable effect of the laser. For simplicity, photo-ionisation effects are ignored in our modelling (see
Supplementary Methods 2), which can be a source of discrepancy when comparing to the experiment.
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Supplementary Figure 9: The effect of the laser on the measured electric field. (a) Pulse sequence for ODMR
defining the laser pulse time and the dark time. (b) Electric field measurements for oxygen (blue) and hydrogen
(orange) terminated diamond for different laser duty cycles, solid line is an exponential fit to the data.
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etched away, leaving a recess. (b) Atomic force microscopy (AFM) image of a region thus etched. (c) Line cut
extracted from (b) revealing a ≈ 15 nm etching step.

Supplementary Data 3: Electric field vs diamond etching

Here we investigate the effect of etching the diamond on the electric field. Namely, we used a diamond
implanted at d ≈ 0 − 35 nm (sample #2) and applied two steps of etching (≈ 15 nm per step) over partly
overlapping patches.

The first etching step was done by removing the TiC/Pt/Au contacts off sample #2 via acid etching (15
minutes in a boiling mixture of sulphuric acid and sodium nitrate to remove the Pt/Au layers, followed by
5 minutes ultrasonication in 1:1:5 NH4OH : H2O2 : H2O to remove the TiC), as illustrated in Supp. Fig. 10a.
Following the etching, the diamond was optically clear indicating that there was no metal left, and a recess of
≈ 15 nm was measured by AFM in the regions formerly occupied by the TiC/Pt/Au stack (Supp. Figs. 10b,c).

The second etching step was done by reactive ion etching (RIE) through a Au mask, which was subsequently
removed via acid etching (15 minutes in a boiling mixture of sulphuric acid and sodium nitrate). An etching
step of ≈ 15 nm was measured by AFM and optical profilometry. The etching mask was chosen to partly
overlap with the regions etched during the first etching step, so that the diamond eventually had regions that
were etched only once (≈ 15 nm, due to either step 1 or step 2) or etched twice (≈ 30 nm, due to both steps)
as well as non-etched regions (Supp. Fig. 11a). Because an acid cleaning was applied as the final step of the
process, all the surfaces should be oxygen terminated, yet with possibly different density of surface defects.

The topography, electric field, and PL images of a selected area are shown in Supp. Figs. 11a-c, respectively,
with line cuts shown in Supp. Fig. 11d. The electric field is found to be correlated with the surface height,
namely the more the diamond was etched, the smaller the electric field became. On the other hand, the PL
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Supplementary Figure 11: (a) Topography image of the diamond surface obtained by optical profilometry,
highlighting (A) a non-etched region, (B) regions etched once and (C) a region etched twice. (b) Electric field
map of the same area as in (a). The plotted range is capped to 280 kV/cm to highlight spatial variations, with
actual values reaching up to 320 kV/cm. (c) Corresponding PL image. (d) Line cuts extracted from (a-c), taken
along the dashed lines shown in the images.

12



shows a less trivial correlation, where it is larger in the regions etched once (≈ 15 nm etching) than in the
regions etched twice (30 nm) or not etched at all. To interpret these results, let us first consider the effect of
the first etching step, which decreased the electric field by ≈ 25% and increased the PL by a factor ≈ 2, despite
etching away 15 nm off the estimated depth range of the NV centres, d ≈ 0− 35 nm. This implies a dramatic
reduction in band bending, such that for instance the depletion region for NV− decreased from 27 nm (i.e. NV−

only at depths d = 27−35 nm, an 8-nm-thick layer) to just 5 nm (NV− at d = 20−35 nm, where d = 0−15 nm
has been etched). The measured 〈Ez〉 is averaged over the NV− depth distribution, which is deeper before the
etch hence probes a flatter part of the band bending, leading to only a small decrease in 〈Ez〉 (by ≈ 25%) upon
etching even though Ez is expected to be significantly smaller (by a factor of 5 with our example numbers). A
possible explanation for such a dramatic reduction in band bending invokes the presence of sub-surface defects
present in the non-etched region and induced by the hydrogen plasma initially applied to the sample, which
may have resulted in diffusion of hydrogen atoms into the diamond [20]. The etching would then remove these
defects to leave only the surface-termination-induced defects as the source of band bending.

Assuming the second etch results in the same surface as the first etch, with the same density of surface
defects, we would expect the PL to decrease relative to the first etch, which it does by a factor ≈ 2. The
assumptions made above (5 nm depletion layer and NV depth range d = 0− 35 nm before etching) are clearly
over simplistic as they predict no PL at all after a 30 nm etch. Most likely, the implantation profile (at energy
10 keV for this sample) produced a tail that extends deeper than 35 nm. The further decrease in 〈Ez〉 upon the
second etch can be explained by an increase in the band bending depth (i.e., the length scale of the bending)
while the total bending (i.e. the energy offset at the surface) remains unchanged. This is expected as at this stage
a significant number of nitrogen defects (donors) has been etched away, leaving a diamond with a lower nitrogen
concentration hence a more dilute space charge density. While further work is needed to fully understand the
multiple competing effects, these results illustrate the value of in-situ electric field measurements, which provide
new insight into band bending.

Supplementary Methods 2: Modelling of band bending at the dia-
mond surface

In this section, we first present our model of the oxygen- and hydrogen-terminated diamond surfaces, then
describe how band bending and electric field are calculated within this model, and finally discuss some results.

Models of the diamond surface

Oxygen-terminated diamond

The surface of materials often have electronic energy levels that are distinctly different from the bulk material
bands. In semiconductors, these surface states can exist within the band gap of the material, as depicted in
Supp. Fig. 12. Any unoccupied (occupied) surface states (with areal density Dsd) below (above) the bulk Fermi
level will ionise. However, to maintain charge neutrality within the crystal the total charge of the ionised surface
states needs to be compensated by an opposite charge from the bulk. In order for charge to build up in the
bulk the bands bend towards the surface, which simultaneously reduces the density of the ionised surface states,
until charge neutrality is reached. Typically the Fermi level at the surface is pinned close to the surface state
energy unless a density of donors that fully compensate the density of surface states can be introduced into
the material. In the case of oxygen-terminated diamond we observed a strong electric field which we ascribe to
an upward band bending indicative of a high density of surface states. This is commensurate with published
electrical measurements of Fermi level pinning at diamond interfaces [21, 22, 23].

Information about the density and energy of any surface states present on oxygen terminated surfaces will
then be required to model the expected electric field. The cross section of a (001) diamond surface consists
of carbon bonded in a zig-zag pattern between the first and second atomic layer. Each surface carbon atom
has two dangling bonds that are satisfied by bonding to an oxygen termination layer. Oxygen can terminate
the diamond in a number of ways: an oxygen atom can bond to two surface carbon atoms in an ether like
arrangement (depicted in Supp. Fig. 12b), it can double bond to a single surface carbon atom in a ketone
like arrangement or a hydroxyl group can terminate a single surface carbon atom. Each of these different
arrangements introduce different surface states into the diamond band gap, yet only ether-like terminations
are expected to result in upward band bending in nitrogen doped diamond (where the Fermi level is close to
the nitrogen donor level at VBM + 3.75 eV) with an unoccupied state at VBM + 3.4 eV [24]. Such a high
unoccupied energy level is unable to explain the large band bending that was measured on all oxygen terminated
samples and thus we don’t consider the effect of any oxygen induced surface states on the diamond electronic
structure. Recently a primal defect, the sp2 defect, of the diamond surface has been identified to have a much
lower acceptor energy around VBM + 1.5 eV [25]. The fundamental structure of this defect is shown in Supp.
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Supplementary Figure 12: (a) Band diagram of a nitrogen implanted diamond near the surface, showing

the conduction band minimum (CBM), valence band maximum (VBM), the N
+/0
S charging level, the NV0/−

charging level, the NV+/0 charging level, and the constant Fermi level EF . To the left of the vertical axis are:
a depiction of the density of states associated with the sp2 surface defects, which have a total areal density
Dsd, and an ionised density D−sd; a depiction of the adsorbed acceptor molecules present close to the VBM for
hydrogen-terminated diamond, with an ionised areal density (Qsa), and inducing a 2D hole gas in the diamond.
(b) A cartoon depicting the surface and nitrogen induced defects considered in the band modelling (see text).

Fig. 12b, and occurs when a surface carbon atom is removed from the lattice. The dangling bonds that remain
then form double bonds with the exposed sub-surface carbon. As the energy of this defect state is well below
the nitrogen donor level, and the density is expected to be large, Dsd > 1013 cm−2, this defect makes a good
candidate to explain the measured electric field under oxygen terminated surfaces. The actual energy of the sp2

defect surface state is dependent on its local environment, and DFT modelling predict energies within a range
from 0.9 eV to 2.2 eV. To capture this range we consider the defect density of states (DOS) to be Gaussian
around 1.5 eV with a full width at half maximum of 0.6 eV, in agreement with the shape of the resonance peak
seen in X-ray absorption experiments probing this defect [25].

Bulk defects

The surface charge is compensated by the dielectric response of the diamond, ε = 5.8, the ionisation of any
defects within the band gap, predominantly nitrogen donors, and any charge carriers (which is practically zero
until the Fermi level is within 1 eV of a diamond band). The donors within the diamond are formed by the
implantation of nitrogen ions, which has a fixed areal density (fluence) of Dareal = 1013 nitrogen cm−2 in these
experiments. For shallow implants with an implant energy below 30 keV, the depth dependent nitrogen density
profile is in general non trivial [26] and is particularly sensitive to the angle of incidence, which here is nominally
7◦ from the surface normal but is partly randomised by the roughness of the diamond surface. We chose to
approximate the nitrogen density profile by a rectangular function bounded by the surface on one end (d = 0)
and a maximum implant depth parameter, dmax, on the other end. Such a simple function is a reasonably
good approximation to both theoretically and experimentally determined profiles in our situation [27, 26, 28],
and avoids the introduction of multiple parameters. The only parameter is dmax, which can be related to the
implant energy via dmax = η Eimp. To maximise the match between the data presented in the main text and
theory, a value of η = 3.5 was chosen, hence a mean depth 〈d〉 = dmax

2 = 1.75Eimp, also providing a reasonable
agreement with previous studies [6, 26, 27]. The volumetric density of nitrogen in the diamond is then calculated
as Dareal

dmax
. The nitrogen implant forms a range of different defects within the diamond: substitutional nitrogen

(NS), nitrogen-vacancy centres (NV) and vacancy defects (which can be single, double or multi-vacancy chains).
The majority of the implanted nitrogen ends up as NS with only χ ≈ 1% turning into NV for high nitrogen
fluences [29], resulting in densities DN = (1−χ)Dareal

dmax
and DNV = χDareal

dmax
for the NS and NV defects, respectively.

The NS acts as a deep acceptor state, 1.7 eV (ENS
= 3.75 eV) away from the conduction band. Whilst the

NV defect can become both positively and negatively charged, allowing to act as both a super deep donor
(ENV+ = 0.75− 1.05 eV) and mid gap acceptor (ENV− = 2.7− 2.8 eV) [30]. For simplicity we do not consider
other vacancy related defects. Although the expected density of vacancy defects is larger than the density of
nitrogen related defects after implantation, multiple annealing steps at 950◦C and 1200◦C were undertaken to
minimise the quantity of vacancy defects and the final density is expected to be low [31, 6, 32].
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Hydrogen-terminated diamond

Having presented our model of the oxygen-terminated surface, we now move on to describe the hydrogen-
terminated surface. The clean and ordered hydrogen-terminated diamond surface forms a strong dipole field
that reduces the diamond’s work function, moving the vacuum energy level below the diamond conduction
band (observed as a negative electron affinity [33]). An observed result of this low work function is that it is
energetically favourable for electrons in the diamond valence band to be excited to adsorbed acceptor molecules
in atmospheric conditions. The total negative charge of ionised adsorbed acceptors (Qsa), depicted in Supp.
Fig. 12a, needs to be compensated by a positive charge within the diamond, and much like under an oxygen-
terminated surface the diamond bands bend upwards towards the surface. As this bending is not pinned to
an energy level in the diamond band gap, it often extends all the way into the diamond valence band, forming
a two-dimensional hole gas confined within 5 nm of the surface [34, 15] and resulting in the observed surface
conductivity of hydrogen-terminated diamonds [35]. In intrinsic diamond, holes in the valence band are the only
positive bulk charge that provides a significant contribution to compensation of the surface charge. In nitrogen
doped diamond, however, the ionised nitrogen defects will also partially compensate any surface charge. With
a high enough density of nitrogen, the Fermi level at the surface will move far enough from the valence band
that no hole layer is formed and the diamond surface ceases to be conductive [36]. In our samples, however,
the primal sp2 defects should still be present because the hydrogenation is unlikely to remove them [25]. As a
consequence, the sp2 defects will once again pin the surface Fermi level position. Like with oxygen termination,
the total charge in the acceptor layer is a function of the Fermi level at the diamond surface [37], however to
simplify dealing with the effect of both surface acceptors and ionised sp2 defects, we consider Qsa to be constant.
We can relate the measured hydrogen ribbon resistivity (R) to the density of holes at the diamond surface, nh,
using R = L

Wσ , where L = 100 µm and W = 18 µm are the hydrogen ribbon length and width for our devices.
The conductivity of the device is given by σ = enhµh where µh is the hole mobility in the ribbon. Hole mobilites
between µh = 10−100 cm2V−1s−1 are commonly reported [38, 39]. Device resistances of our ribbon ranged from
initial values of R ≈ 100 kΩ to R > 10 MΩ after extensive measurement, not taking into account any contact
resistance. This provides an estimate for the 2D hole density in the range of nh = 3.5× 1010− 3.5× 1012 cm−2.
Accounting for the 10 keV implant in sample #2 (dmax = 35 nm), numerical integration returns that Qsa is
within the range 1.08 to 0.98× 1013 cm−2.

In all cases the upward bending bands will affect the response of the implanted NV defects, de-ionizing
the near surface NV where the band bending is strong [40], and creating a space charge layer of ionised NS

(the green circles in Supp. Fig. 12). The space charge layer creates a significant electric field around the NV−

defects, it is this field that can be observed as ODMR shifts. To estimate the amount of NV− and the size of
the electric field that the NV− experience, the shape of this bending needs to be calculated.

Calculating band bending

Poisson’s equation provides a classical definition of how a charge distribution ρ(~r) changes the electric
potential V (~r) within a dielectric material:

∇2V (~r) =
−ρ(~r)

εε0
(24)

where ε0 is the vacuum permittivity and ε is the relative permittivity of the material. Solving this equation
determines how the bands bend given a certain surface potential Vs (or equivalently, a normalised potential νs,
related to Vs via Eq. 38), i.e. the boundary condition at the diamond surface. The shape of the bending is only
determined by the charges within the diamond, i.e. if one solves for νs = 5 and redefine the surface at ν = 3
discarding the higher potentials, the solution is the same as solving for νs = 3 [41]. We take advantage of this
and over-solve all our bands with a large νs then redefine the surface at the appropriate potential to compensate
a given areal density of charge at the diamond surface.

To determine the charge distribution in the diamond we need to consider the densities of electrons, holes and
any ionised defect states (negatively charged acceptors and positively charged donors). The density of electrons,
holes and ionised defects is determined by the filling of electronic states in the diamond valence and conduction
bands and the defect states, respectively. The filling of electronic states is calculated by convolving the energy
dependent DOS with the probability of a state being occupied by an electron at a given energy. The probability
of a state being occupied (unoccupied) is given by the Fermi-Dirac distribution function,

fD(E) =
1

1 + exp
(
E−EF

kT

) (25)

and its complement,

1− fD(E) =
1

1 + exp
(
EF−E
kT

) (26)
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where k is the Boltzmann constant, T is the temperature, and the functions are centred around the Fermi level
(EF ) of a material. The Fermi level can be determined by requiring that the material be charge neutral at the
Fermi level, giving

p+
∑

Donors

N+
D = n+

∑
Acceptors

N−A (27)

where p (n) is the density of holes (electrons), N+
D is the density of ionised donors, and N−A is the density

of ionised acceptors in the bulk of diamond in thermal equilibrium. We can calculate the electron and hole
densities using the effective mass (m∗) approximation for the valence and conduction bands DOS [42]:

NV (E) =
(2m∗V )

2π2h3

3/2√
EV − E,

NC(E) =
(2m∗C)

2π2h3

3/2√
E − EC ,

(28)

where h is Plank’s constant and m∗V (m∗C) is the effective mass of valance (conduction) band. Typically, the
Boltzmann approximation of fD(E) ≈ e(EF−E)/kT for EF −E � kT , is used to estimate the electron and hole
densities:

p(z) = 2

(
2πm∗V kT )

h2

)3/2

e
EV −EF

kT = NCe
EV −EF

kT ,

n(z) = 2

(
2πm∗CkT )

h2

)3/2

e
EF −EC

kT = NV e
EF −EC

kT ,

(29)

where NV is the effective density of states for holes and NC for electrons. In surface transfer doped hydrogen-
terminated diamond, the conduction band at the surface crosses through the Fermi level (hence becomes a
degenerate semiconductor) with a relatively small carrier density of 2.5× 1012 holes cm−2, and the Boltzmann
approximation is no longer appropriate. Instead, we have to solve the full convolution:

p(z) = NV
2√
π

∫ ∞
0

√
ε

1 + eε−
EV −EF

kT

dε = NV F1/2

(
EV − EF

kT

)
,

n(z) = NC
2√
π

∫ ∞
0

√
ε

1 + eε−
EF −EC

kT

dε = NCF1/2

(
EF − EC

kT

)
,

(30)

where F is the set of Fermi Dirac integrals, defined as

Fj(η) =

∫ ∞
0

xj

exp (x− η) + 1
dx, for j > −1. (31)

These integrals can be accurately and rapidly approximated numerically [43, 44]; in this work the open source
python package fdint 2.02 [45] was used.

To calculate the density of ionised defects, we approximate the defect DOS as a Dirac delta function δ(E−E0)
around the defect ionisation energy, E0 = EA for acceptor and E0 = ED for donor transitions, with defect
densities of NA and ND:

N+
D (z) =

∫ ED(z)

−∞
ND(z)δ(ED(z)− E) [1− fD(E)] dE = ND(z) [1− fD(ED(z))] ,

N−A (z) =

∫ ∞
EA(z)

NA(z)δ(E − EA(z)) fD(E) dE = NA(z) fD(EA(z)).

(32)

Lateral variations in the surface states and defect densities are ignored and only the charge distribution in z
needs to be considered (here z is defined positive going into the diamond). The total charge density within the
diamond can then be described by:

ρ(~r) = ρ(z) = ep(z)− en(z) + e
∑

Donors

N+
D (z)− e

∑
Acceptors

N−A (z). (33)

As external potentials affect all the bands equally we re-define the z dependent defect and band energies as a
function of a single depth dependent potential. First we define a potential, φ(z), as the separation between the
Fermi level EF and the intrinsic energy level Ei (i.e. where the Fermi level would be in an intrinsic diamond),

eφ(z) = EF − Ei(z) (34)
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where

Ei(z) =
1

2
EV (z) +

1

2
EC(z)− 1

2
kT log

NC
NV

. (35)

From Eq. 34 the potential V (z) can be defined as how far the bands have shifted from their unbent position,

V (z) = φ(z)− φB (36)

where
φB ≡ lim

z→∞
φ(z). (37)

In order to solve for the band structure it is also useful to define unitless potentials, such that

u(z) =
eφ(z)

kT

ν(z) =
eV (z)

kT
.

(38)

Within the Boltzmann approximation the carrier density can be rewritten in terms of the unitless potential
ν(z):

p(z) ≈ NV exp

(
−(EF − EV (z))

kT

)
= NV exp

(
−Ei(z)− eφ(z) + EV (z)

kT

)
= NV exp

(
− 1

2EV (z)− 1
2EC(z) + 1

2kT log NC

NV
− eφ(z) + EV (z)

kT

)

= NV

√
NC
NV

exp

(
−eφ(z)

kT

)
exp

(
EV − EC

2kT

)
=
√

(NCNV ) exp

(
EV − EC

2kT

)
exp (−u(z))

= ni exp (−u(z))

= ni exp (−u(∞)) exp (−ν(z))

(39)

which results in
p(z) = pBe

−ν(z)

n(z) = nBe
ν(z)

(40)

where pB and nB are the hole and electron densities at the Fermi level. These carrier densities can also be
express in terms of Fermi-Dirac integrals:

p(z) = NV F1/2

(
EV − EF

kT
− ν(z)

)
,

n(z) = NCF1/2

(
ν(z) +

EF − EC
kT

)
,

(41)

which facilitates the use of the aforementioned numerical approximations.
A donor energy level (ED) represents the energy required to remove an electron from a crystal defect. The

following treatment for including bulk defects is general for all donors. The ionised donor density can be defined
in terms of the donor energy, such that

N+
D (z) = ND(1− fD(ED(z))) = ND

1

1 + exp
(
EF−ED(z)

kT

) . (42)

Using the unitless potential, this can be rewritten as

N+
D (z) = ND

1

1 + exp (ν(z)) exp
(
EF−EB

D

kT

) (43)

where EB
D is the energy of the donor in the limit z →∞. This is similar for an acceptor level,

N−A (z) = NA
1

1 + exp (−ν(z)) exp
(
EB

A−EF

kT

) . (44)
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Using the chain rule, we can analytically reduce the second order Poisson’s equation to first order by
integration of the charge density with respect to ν:

d2V (z)

dz2
=
kT

e

d2ν(z)

dz2
=
−ρ(z)

εε0
(45)

⇒
(
dν

dz

)2

=
e

εε0kT

∫
−ρ(z) dν. (46)

As ν(z) is unknown, this integral is only solvable if ρ(z) is only a function of ν, and not explicitly a function of
z. In that case we get:∫

−ρ(z) dν =

∫ ν(z)

0

−ep(z) + en(z)− e
∑

Donors

N+
D (z) + e

∑
Acceptors

N−A (z) dν (47)

By integrating from 0 we ensure that dν
dz = 0 when ν(z) = 0, i.e. the bands bend until they reach the Fermi

level, which occurs when the crystal is charge neutral.
To calculate the Fermi level in the implanted layer, we use the Boltzmann approximation for electron and

hole densities and consider the NS and NV defects. Eq. 27 becomes:

p+
∑

Donors

N+
D = NC exp

(
EV − EF

kT

)
+

DN

1 + exp
(
EF−ENS

kT

) +
DNV

1 + exp
(
EF−ENV+

kT

)
= n+

∑
Acceptors

N−A = NV exp

(
EF − EC

kT

)
+

DNV

1 + exp
(
ENV−−EF

kT

) . (48)

By treating EF as a variable, the roots of Eq. 48 can be determined numerically.
We then solve for ν(z) by numerical inversion and integration of dν

dz , giving

z(v) = z0 +

∫ ν

ν(z0)

dz

dν
dν (49)

where z0 is the crystal surface and ν(z0) ≡ νs is the potential at the surface, which needs to be determined for
the different diamond surfaces.

The surface potential is determined by the requirement for total charge at the surface (Qsd) to be equal to
the total charge in the bulk QBC , that is

Qsd = −QBC , (50)

where Qsd can be determined by numerical inversion of z(ν) and insertion into Eq. 33. The total surface charge
Qsd is determined by the nature of the surface charge. When we consider just the effects of the sp2 defect
(oxygen-terminated diamond), we calculate the density of ionised surface states (D−sd) as a function of the
potential:

D−sd(νs) =

∫ ∞
−∞

exp

(
−
(
E − Es(z)

2σ

)2
)

1 + exp

(
E − EF
kT

) dE. (51)

To determine Qsd for an arbitrary ν, this is evaluated such that

Qsd = D−sd(ν) =

∫ ∞
−∞

Dsd(E)fD(E)dE (52)

=

∫ ∞
−∞

exp

(
−
( ε

2σ

)2)
1 + exp (−ν) exp

(
ε− EF + Es

kT

) dε (53)

which requires numerically integration to solve. To determine the bulk charge, we integrate our charge density
over z to the maximum implantation depth:

Qsd = enh + e
∑

Donors

∫ dmax

0

N+
D (z) dz − e

∑
Acceptors

∫ dmax

0

N−A (z) dz. (54)
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Integrating to dmax ensures that any artificial charge density beyond the max implantation depth (a result of
assuming a uniform nitrogen density) has no effect on selecting the correct surface termination. The root of
[Qsd(ν) +QBC(ν)]νS = 0 determines νs, i.e. the surface potential which results in the diamond being charge
neutral. The same approach is taken for hydrogen-terminated diamond except that:

Qsd = D−sd(ν) +Qsa (55)

to account for the charge of the ionised adsorbed acceptor layer. Finally the two-dimensional density of the
hole layer under a given hydrogen termination can be calculated with

nh =

∫ dmax

0

p(z)dz. (56)

Results

The first step to calculating the band bending is to determine the Fermi level within the diamond using
Eq. 48. As the nitrogen donor and NV acceptor levels are far from the diamond band edges, the electron and
hole densities are practically zero. This means that the Fermi level is only determined by the conversion ratio
of NS to NV, χ. Supp. Fig. 13a plots the left (blue) and right (orange) hand side of Eq. 48 as a function of EF
for χ = 1% and 20% with DN = 1018 cm−3 (larger values of DN do not change the point of intersection). The
solutions, where the blue and orange intersect, are plotted in Supp. Fig. 13b showing the expected bulk Fermi
level for a range of NV conversion ratios. For all modelling in this work, one has EF ≈ 3.85 eV.

Supp. Fig. 14a shows an example of the calculated band bending for two shallow N implants, Dareal =
1013 cm−2 with dmax = 14 nm (∼ 4 keV implant) and 70 nm (∼ 20 keV), at both oxygen and hydrogen surfaces.
For oxygen-terminated surfaces, the integrated DOS, or total number of defect states, is Dsd = 5× 1013 cm−2

or ≈ 2% of the surface [25]. A total density of ionised surface acceptors Qsa = 0.98 × 1013 cm−2 is used to
determine the bending under the hydrogen surface. For each case, a Gaussian DOS is plotted at the surface to
depict the surface states, and shading indicates the states that are filled. In the case of the hydrogen surface
with dmax = 70 nm, the valence band bends up to the Fermi level generating the conductive 2DHG as expected.
However, for the hydrogen surface with dmax = 14 nm where the density of donors is much closer to the surface,
the density of surface adsorbed acceptors (Qsa) is not large enough to fully compensate the bulk charge and the
valence band at the surface no longer bends enough to reach the Fermi level. The edge of the surface acceptor
level then pins the Fermi level, as with oxygen-terminated diamond. In this case the hydrogen termination is
not expected to be conductive, as it is not energetically favourable for a hole layer to form. It is this transition
that is partially responsible for the non-monotonic behaviour of the models displayed in main text Fig. 2a and
c, calculated using the best fit value Qsa = 7 × 1012 cm−2. The model then suggests that the sample used in
main text Fig. 3 (dmax = 35 nm) was close to the conducting/insulating transition. This explains the observed
rapid laser induced degradation of the devices, as only small changes to the total acceptor density are required
for complete loss of the 2D hole layer near the transition.

Supp. Fig. 14b depicts the electric field associated with this bending, and the filled regions show the density
of NV− as determined by dmax and the ionization state in thermal equilibrium (i.e. where the NV− band
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Supplementary Figure 13: The Fermi level in nitrogen implanted diamond. (a) Visualisation of the neutrality
condition (Eq. 48) showing the left-hand side in blue (LHS, positive charge) and the right-hand side in orange
(RHS, negative charge) as a function of the Fermi level. The NS to NV conversion efficiency is set to χ = 1%
(solid lines) and χ = 20% (dashed lines). (b) Calculated Fermi level as a function of χ.
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Supplementary Figure 14: Electronic bands near the surface of a nitrogen implanted diamond. (a) Band
position as a function of depth from the surface for both hydrogen and oxygen terminated diamond with different
nitrogen implants. (b) Calculated electric field (εz) as a function of depth (lines, left axis) and calculated density
of NV− at thermal equilibrium (shaded area, right axis).

crosses the Fermi level EF in figure 14a). As the neutral NV0 defect doesn’t contribute to the ODMR signal,
the measured electric field, denoted as 〈εz〉, is the average of the field weighted by the density of NV−. In main
text Fig. 2a, 〈εz〉 is plotted as a function of the mean nitrogen implantation depth 〈d〉 = dmax/2 for a range of
surface defect densities Dsd, with the inset showing the difference in 〈εz〉 between H- and O-terminated surface.
Main text Fig. 2c was obtained by calculating the relative difference in the total number of NV− centres at
thermal equilibrium between H- and O-terminated surface, as a function of 〈d〉 and for a range of Dsd, assuming
the PL is proportional to the number of NV−. Finally, main text Fig. 2d shows 〈εz〉 versus Dsd for a fixed
depth dmax = 35 nm.

We now discuss some of the other predictions enabled by our model. In particular, the de-ionisation of
the near surface NV− due to band bending provides an explanation for the difficulties typically encountered in
creating NV− very close to the surface, especially at d < 5 nm [46]. Supp. Fig. 15a shows the expected average
depth of NV−, 〈dNV−〉 for a Dareal = 1013 cm−2 nitrogen implant compared to the expected average implant
depth, 〈d〉, which is determined by the implant energy via 〈d〉 = ηEimp/2. When the surface defect density
is equal to or larger than the nitrogen implant density, Dsd > Dareal, 〈dNV−〉 ≈ 5 nm even for Eimp = 1 keV
implants expected to produced NVs mainly in the top 2 nm. One approach to overcome this issue to produce the
nearest surface NV− possible is to increase the implant density. Fig 15c shows the total NV ionisation ratio as
a function of Dareal with a relatively low surface defect density of Dsd = 1013 cm−2. Even for the Eimp = 3 keV
implant, Dareal > Dsd is required to achieve complete NV− ionisation and produce near-surface NV−. This
problem is compounded by the expected high density of surface defects [25], highlighting the importance of
controlling the formation of this defect for near-surface sensing.
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Supplementary Figure 15: (a) The average NV− depth versus the average nitrogen depth from implantation
for a range of different Dsd densities, and for a hydrogen-terminated diamond (black line), with a fixed implant
density of Dareal = 1013 cm−2. (b) The ratio of NV− to total NV as a function of implantation density for
common implantation energies. (c) The ratio of unionised NS, also known as P1 centres, as a function of
implantation energy for an implant density of Dareal = 1013 cm−2.
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Supp. Fig. 15c shows the relative population of substitutional nitrogen in its neutral state (N0
S), known as

the P1 centre in electron spin resonance measurements, as a function of implantation energy for a Dareal in a
diamond with a surface defect density Dsd = 1013 cm−2. The concentration of P1 is a function of both the
implant energy and the density of surface states. No P1 centres are expected to exist in low energy implants,
the energy of which is Dsd dependent potentially providing an independent way to verify the density of surface
defects in a sample.
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