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Supplementary Discussion 

 

 

 

I. Independence of Different Experimental Realizations 

 

We state in the main text that we repeat the experiment for different orientations of the mode-

stirrer shown in Figure 1 of the main text and that this constitutes independent realizations with a 

completely different random cavity geometry. In this section, we provide details of our 

experimental characterization of the mode-stirrer. We show that the mode-stirrer must be rotated 

by at least ∆𝜃𝑑𝑐 = 12° to access a new, independent realization. 

To determine ∆𝜃𝑑𝑐, we measure the transmission 𝑆(𝑓, 𝜃) between two antennas placed inside 

the cavity for 360 positions of the mode-stirrer, covering the interval 0° ≤ 𝜃 ≤ 360° in steps of 

1°. The frequency is swept across the frequency range 1.8175 GHz < 𝑓 < 3.1225 GHz. We then 

compute the correlation 𝒞(𝜃, 𝜃′) between two mode-stirrer orientations 𝜃 and 𝜃′ as 

𝒞(𝜃, 𝜃′) =
|〈𝑆(𝜃)𝑆∗(𝜃′)〉𝑓|

√〈|𝑆(𝜃′)|2〉𝑓√〈|𝑆(𝜃′)|2〉𝑓

 , 

where 〈⋯ 〉𝑓 denotes the average of the enclosed quantity over the measured frequency interval. 

The obtained matrix 𝒞(𝜃, 𝜃′) is shown in Supplementary Figure 1a. It is symmetric and has a unit 

diagonal (by definition). Aligning this matrix and averaging over one dimension yields 

Supplementary Figure 1b from which we can deduce ∆𝜃𝑑𝑐 = 12°. 
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II. Pathloss 

 

In this section, we substantiate our observation stated in the main text that pathloss remains 

unaltered (on average) by our procedure of optimizing the channel diversity. This observation is 

also an important justification for the subsequent sections where we show algebraically that under 

the assumption of fixed pathloss a flat distribution of singular values maximizes channel diversity 

and channel capacity. 

The pathloss 𝜉 of an 𝑛 × 𝑛 channel matrix is defined as 

𝜉 =
1

𝑛2
∑ ∑|𝐻𝛼,𝛽|

2
.

𝑛

𝛽=1

𝑛

𝛼=1

 

For the 30 realizations of the experiment that we performed for channel matrices of different sizes 

(2 ≤ 𝑛 ≤ 7), we display in Supplementary Figure 2 histograms of the pathloss before and after 

optimizing the channel diversity, as well as of the change in pathloss. Supplementary Figure 3 

summarizes the average values of these quantities, as well as the respective standard deviations.  

Note that the subsequent pathloss results are given in arbitrary units (a.u.), since we did 

not perform a calibration step to account for losses in the coaxial cables (about 3 m between VNA 

and antennas) and the insertion losses of the RF switches. (The antenna coupling was not an 

important source of losses because we used monopole antennas resonant at the operating 

frequency.) For the results presented in the main text based on monochromatic transmission 

measurements, a calibration was not necessary: multiplying the channel matrix by a non-zero 

complex-valued number does not alter its effective rank. Moreover, proper calibration of a setup 

including RF switches is challenging. For our purposes, it was not necessary. 

Averaged over all realizations and different sizes of the channel matrix, we find 

𝜉INIT = (24.1 ± 7.3) × 10−5 a. u. 

𝜉FIN = (22.7 ± 6.7) × 10−5 a. u. 

∆𝜉 = 𝜉INIT − 𝜉FIN = (1.5 ± 6.0) × 10−5 a. u. 

The stated uncertainties indicate the standard deviation. 

We thus conclude that given our experimental data, there is no statistically significant change 

in pathloss as we optimize the channel diversity. Note that due to the logarithmic scaling in the 

generalized version of Shannon’s Law, small changes in SNR or pathloss would have very little 

impact in any case.  
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III. Is it Always Advantageous to Operate with Maximal Channel Diversity? 

 

In this section, we discuss if it is always (for all possible SNR values) advantageous in terms of 

capacity to operate with maximal channel diversity. In other words, if the singular value 

distribution of the channel matrix is the only free parameter (i.e. fixed SNR, fixed pathloss), is a 

flat distribution always the best choice? First, we get some initial insights by considering the two 

extremes of perfectly identical and perfectly orthogonal channels; then, we provide a formal 

algebraic proof to show that the answer to the question is ‘yes’.  

If channel diversity is the only free parameter, then we assume constant SNR 𝜌 and constant 

pathloss (i.e. ∑ 𝜎𝑖
2𝑛

𝑖=1 = 𝑃, where 𝑃 is some positive, real-valued constant). We demonstrated in 

Section II. that this assumption is indeed valid, i.e. that altering the channel diversity does not 

impact the overall pathloss. In other words, the question corresponds to our experiments in which 

we alter solely the channel diversity. The two extremes of using perfectly identical or perfectly 

orthogonal channels correspond to 𝜎1
2 = 𝑃 and 𝜎𝑖≠1

2 = 0, or 𝜎𝑖
2 = 𝑃/𝑛, respectively. Equation 1 

from the main text then yields 𝐶𝐼𝐷𝐸𝑁𝑇 = log2[1 + 𝜌𝑃/𝑛] and 𝐶𝑂𝑅𝑇𝐻 = 𝑛 log2[1 + 𝜌𝑃/𝑛2]. Then, 

𝐶𝑂𝑅𝑇𝐻 > 𝐶𝐼𝐷𝐸𝑁𝑇 for all positive 𝜌 since 
𝜕

𝜕𝜌
(𝐶𝑂𝑅𝑇𝐻 − 𝐶𝐼𝐷𝐸𝑁𝑇) =

(𝑛−1)𝜌𝑃2

log(2)(𝑛+𝜌𝑃)(𝑛2+𝜌𝑃)
> 0. In 

Supplementary Figure 4 we plot the dependence of 𝐶𝐼𝐷𝐸𝑁𝑇 and 𝐶𝑂𝑅𝑇𝐻 on 𝜌 (note in the figure the 

SNR is given in dB hence the value can become negative, but on a linear scale it is always positive). 

To prove more rigorously that a flat singular value spectrum is optimal if channel diversity 

is the only tunable parameter, first, we recall Eq. 1 of the main text in terms of the square singular 

values of the channel matrix: 

𝐶 = ∑ log2 (1 +
𝜌

𝑛
𝑠𝑖)

𝑛

𝑖=1

 , 

where 𝑠𝑖 = 𝜎𝑖
2 is the square of the 𝑖th singular value 𝜎𝑖 of 𝐇.  

We wish to maximize 𝐶(𝑠1, 𝑠2, ⋯ , 𝑠𝑛) subject to the constraint ∑ 𝑠𝑖
𝑛
𝑖=1 = 𝑃, where 𝑃 is some 

positive, real-valued constant. Now, we apply the method of Lagrange multipliers. The Lagrangian 

for the problem at hand is 

ℒ(𝑠1, 𝑠2, ⋯ , 𝑠𝑛, 𝜁) = 𝐶(𝑠1, 𝑠2, ⋯ , 𝑠𝑛) + 𝜁 𝑔(𝑠1, 𝑠2, ⋯ , 𝑠𝑛) , 

with 𝑔(𝑠1, 𝑠2, ⋯ , 𝑠𝑛) = (∑ 𝑠𝑖
𝑛
𝑖=1 ) − 𝑃. The gradients can thus be evaluated as  
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𝜕ℒ

𝜕𝑠𝑖
=

𝜕

𝜕𝑠𝑖
(log2 (1 +

𝜌

𝑛
𝑠𝑖) + 𝜁𝑠𝑖) =

𝜌

𝑠𝑖𝜌 ln(2) + 𝑛 ln(2)
+ 𝜁 

and 

𝜕ℒ

𝜕𝜁
= (∑ 𝑠𝑖

𝑛

𝑖=1
) − 𝑃 

yielding  

𝜌

𝑠𝑖𝜌 ln(2) + 𝑛 ln(2)
+ 𝜁 = 0 

and 

(∑ 𝑠𝑖

𝑛

𝑖=1
) − 𝑃 = 0 , 

the latter being the original constraint. 

By considering the constraints for 𝑠𝑖 and 𝑠𝑗, for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 and 𝑖 ≠ 𝑗, 

𝜌

𝑠𝑖𝜌 ln(2) + 𝑛 ln(2)
+ 𝜁 =

𝜌

𝑠𝑗𝜌 ln(2) + 𝑛 ln(2)
+ 𝜁 

which simplifies to 

𝑠𝑖 = 𝑠𝑗  . 

Hence, to maximize 𝐶(𝑠1, 𝑠2, ⋯ , 𝑠𝑛) subject to the constraint ∑ 𝑠𝑖
𝑛
𝑖=1 = 𝑃, all 𝑠𝑖 have to be 

identical, quod erat demonstrandum. It is thus always advantageous in terms of the system’s 

capacity to operate at maximum channel diversity if all other parameters remain unchanged. Stated 

more intuitively, the more effectively independent channels there are, the more information can be 

transferred. 

 

For completeness, we go on to prove that our optimization functional, the effective rank, is 

also maximized if the singular values of the channel matrix are all equal, again assuming fixed 

pathloss. We proceed as before by using the method of Lagrange multipliers. Here, we wish to 

maximize 

𝑅eff(𝜎1′, 𝜎2′, ⋯ , 𝜎𝑛′) = exp (− ∑ 𝜎𝑖′ ln(𝜎𝑖′)

𝑛

𝑖=1

) = ∏ 𝑒−𝜎𝑖′ ln(𝜎𝑖′)

𝑛

𝑖=1

, 

where 𝜎𝑖
′ = 𝜎𝑖/(∑ 𝜎𝑖

𝑛
𝑖=1 ) are the normalized singular values of the channel matrix (see Eq. 2 in the 

main text), subject to the constraint ∑ 𝜎𝑖′
𝑛
𝑖=1 = 1. The Lagrangian for the problem at hand is 

ℒ(𝜎1′, 𝜎2′, ⋯ , 𝜎𝑛′, 𝜁) = 𝑅eff(𝜎1′, 𝜎2′, ⋯ , 𝜎𝑛′) + 𝜁 𝑔(𝜎1′, 𝜎2′, ⋯ , 𝜎𝑛′) , 



 

 

5 

 

with 𝑔(𝜎1′, 𝜎2′, ⋯ , 𝜎𝑛′) = (∑ 𝜎𝑖′
𝑛
𝑖=1 ) − 1. The gradients can thus be evaluated as  

𝜕ℒ

𝜕𝜎𝑖
′ = −𝜎𝑖

′−𝜎𝑖
′

(ln(𝜎𝑖
′) + 1) ( ∏ 𝑒−𝜎𝑗′ ln(𝜎𝑗′)

𝑛

𝑗=1,𝑗≠𝑖

) + 𝜁 

and 

𝜕ℒ

𝜕𝜁
= (∑ 𝜎𝑖′

𝑛

𝑖=1
) − 1 . 

This yields 

0 = −𝜎𝑖
′−𝜎𝑖

′

(ln(𝜎𝑖
′) + 1) ( ∏ 𝑒−𝜎𝑗′ ln(𝜎𝑗′)

𝑛

𝑗=1,𝑗≠𝑖

) + 𝜁 

and  

0 = (∑ 𝜎𝑖′
𝑛

𝑖=1
) − 1 . 

The latter is once again the original constraint. From the former, it follows for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤

𝑛 and 𝑖 ≠ 𝑘, that  

 

−𝜎𝑖
′−𝜎𝑖

′

(ln(𝜎𝑖
′) + 1) ( ∏ 𝑒−𝜎𝑗′ ln(𝜎𝑗′)

𝑛

𝑗=1,𝑗≠𝑖

) + 𝜁 = −𝜎𝑘
′ −𝜎𝑘

′

(ln(𝜎𝑘
′ ) + 1) ( ∏ 𝑒−𝜎𝑗′ ln(𝜎𝑗′)

𝑛

𝑗=1,𝑗≠𝑘

) + 𝜁 

which simplifies to  

𝜎𝑖
′−𝜎𝑖

′

(ln(𝜎𝑖
′) + 1)𝑒−𝜎𝑘′ ln(𝜎𝑘′) = 𝜎𝑘

′ −𝜎𝑘
′

(ln(𝜎𝑘
′ ) + 1)𝑒−𝜎𝑖′ ln(𝜎𝑖′) 

and then to 

ln(𝜎𝑖
′) + 1

𝜎𝑖
′𝜎𝑖

′ 𝑒𝜎𝑖′ ln(𝜎𝑖′) =
ln(𝜎𝑘

′ ) + 1

𝜎𝑘
′ 𝜎𝑘

′ 𝑒𝜎𝑘′ ln(𝜎𝑘′) 

which ultimately may be recast as  

ln(𝜎𝑖
′) = ln(𝜎𝑘

′ ) . 

This implies 𝜎𝑖
′ = 𝜎𝑘

′ . Hence, to maximize the effective rank subject to the constraint ∑ 𝜎𝑖′
𝑛
𝑖=1 =

1, all normalized singular values 𝜎𝑖
′ have to be identical, quod erat demonstrandum.  

 

 

 

  



 

 

6 

 

IV. Toy Model 

 

Each entry 𝐻𝛼,𝛽 of the channel matrix is an independent transmission measurement in the cavity. 

Each transmission measurement 𝑆(𝑟𝑖, 𝑟𝑗 , 𝑓0), may be interpreted as the Green’s function at the 

working frequency 𝑓0 between the two corresponding antenna positions 𝑟𝑖 and 𝑟𝑗, 𝑟𝑖  ≠ 𝑟𝑗. The 

Green’s function may then be decomposed into the contributions from different cavity modes that 

overlap at the working frequency due to their finite line-widths. Neglecting for clarity’s sake the 

vectorial nature of the electromagnetic field as well as details of the antenna coupling, we can 

write1,2 

𝑆(𝑟𝑖, 𝑟𝑗 , 𝑓0) ∝ ∑
𝛹𝑘(𝑟𝑖)𝛹𝑘(𝑟𝑗)

4𝜋2

𝑐2 (𝑓0
2 − 𝑓𝑘

2) + 2𝜋𝑖𝑓0𝛤𝑘

𝑁

𝑘=1

 , 

where 𝛹𝑘 and 𝑓𝑘 are the eigenvector and eigenvalue of the kth cavity mode that contributes at the 

working frequency 𝑓0. 𝛤𝑘 is the line-width of the 𝑘th mode. The number of contributing modes 𝑁 

can be estimated with Weyl’s law3,4. Accounting for the three-dimensional and vectorial nature of 

our system, this yields  

𝑁 ~ 
8𝜋𝑓0

2𝑉

𝑐3
× 𝛤 , 

where 𝑐 is the speed of light, 𝑉 is the cavity’s volume and 𝛤 is the average modal line-width. In 

lossy cavities, all modal line-widths are essentially equal to 𝛤. For our system, the approximation 

is reasonable to get an idea of the magnitude of 𝑁. 

For our metallic disordered cavity, we obtain an estimate of the average modal line-width 

via the decay rate of the inverse Fourier transform of several experimentally measured 

transmission spectra: 𝛤 ~ 4.1 MHz. We further know that 𝑓0 = 2.47 GHz and 𝑉 = 1.1 m3. 

Inserting these values into 𝑁 ~ 
8𝜋𝑓0

2𝑉

𝑐3 × 𝛤, we find 𝑁 ~ 25.  

In a chaotic cavity, 𝛹𝑘 are seemingly random5,6. We can thus interpret 𝑆(𝑟𝑖, 𝑟𝑗, 𝑓0) as a 

random walk of 𝑁 steps in the complex plane.  

Using our tunable metasurface we can effectively control 𝑝 modal contributions to 

𝑆(𝑟𝑖, 𝑟𝑗 , 𝑓0). Note the importance of the term “effectively” here, since one pixel affects of course 

all modes to some extent. This is a simplification to draft a toy model. 𝑝 is proportional to the 

number of metasurface pixels; in previous work7 (considering the enhancement of the transmitted 
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intensity between two antennas) we found 𝑝 to be roughly a third of the number of metasurface 

pixels. 

Now, let us consider the task of achieving optimal channel diversity. We can consider the 

rows of the channel matrix 𝐇 as 𝑛 points in an 𝑛-dimensional space. The effective rank of 𝐇 is 

maximal if all 𝑛 points have the same distance from the origin and if the vectors from the origin 

to these points are orthogonal to each other. 

Clearly, controlling the 𝑁 modal contributions of each of the 𝑛2 channel matrix entries is 

illusive. We manage to impose approximately perfect orthogonality up to 𝑛 = 4 where 𝑛2𝑁 =

400 but we only have 65 metasurface pixels. We also found that approximately perfect 

orthogonality can be achieved for 𝑛 = 2 where 𝑛2𝑁 = 100 with roughly 32 pixels – see 

Supplementary Figure 5a. Moreover, each pixel probably controls even less than one modal 

contribution on average (see above). To achieve optimal channel diversity, the necessary control 

is thus far less than the ability to control all modal contributions. 

To draft a rough toy model that coveys a sense of how many pixels one may need for a given 

number of channels, let us consider the 𝑛 points in 𝑛-space that represent the 𝑛 rows of the channel 

matrix. Their distance from the origin is on average the same (the result of a series of random 

walks along each of the 𝑛 dimensions), so we neglect the need to ensure those distances are equal 

in the following. If we assume the vector from the origin to the first point (corresponding to the 

first row of 𝐇) is fixed somewhere in 𝑛-space, ensuring that the vector from the origin to the second 

point (corresponding to the second row of 𝐇) is perpendicular to the first one is relatively easy: 

there are still 𝑛 − 1 dimensions left. It thus takes very little control to ensure the first two rows are 

orthogonal. Next, assuming the first and second row are now fixed, we must control the third row 

so that it is perpendicular to the first and second one. Again, since there are 𝑛 − 2 dimensions left, 

this is an only slightly more challenging task. A possibly somewhat rough approximation is thus 

to consider the main (dominating) challenge to be the control of the 𝑛th row, since it has to be 

aligned along the only dimension that is still left. The nth row consists of 𝑛 entries, that is of 𝑛 

independent transmission measurements. Then, the difficulty scales linearly with 𝑛. 

While we have made several crude approximations in the above,  

(i) this toy model roughly explains our observation of a linear scaling of the minimum 

number of necessary metasurface pixels with the channel matrix size 𝑛: it takes 32 

pixels to reach perfect channel diversity for 𝑛 = 2, and 65 pixels for 𝑛 = 4; 
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(ii) the order of magnitude of the required number of pixels agrees with the order of 

magnitude estimated for 𝑁; 

(iii) the model conveys to first approximation why the task of achieving optimal channel 

diversity takes as little control as reported in our work, in comparison to the total 

number of modal contributions to all 𝑛2 transmission measurements of which the 

channel matrix consists.  

A more rigorous statistical description of our approach would probably require numerical 

tools found within the realm of random matrix theory to model wave-chaotic systems5,6. However, 

these would have to be adapted to account for tunable boundary conditions before applying them 

to our problem – hence this is clearly outside the scope of our experimental work reported here. 

In Supplementary Figure 5 we present preliminary results of experiments in which we 

repeated the same procedure of optimizing the channel diversity as in the main text in the metallic 

cavity, with varying numbers of controllable phase-binary metasurface pixels, for channel matrices 

of sizes 𝑛 = 2 and 𝑛 = 5. Only 32 phase-binary metasurface pixels are needed to reach optimal 

channel diversity of a 2 × 2 channel matrix in our metallic cavity. 
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V. Improving the Metasurface Design 

 

The employed metasurface is the prototype presented in ref.8 whose pixels offer phase-binary 

control over one polarization of the electromagnetic field. There are various opportunities to 

increase the control of a metasurface pixel over the wave field. 

 

1. Reduce absorption. 

 

In its current design, the metasurface pixel absorbs about half of the incident energy (see 

Figure 4a in ref.8). By reducing this absorption, more weight can be given to the shaped 

reflected rays that interacted with the metasurface relative to rays that were reflected by 

ordinary walls. Recent prototyping suggests that improving details of the metasurface 

design can reduce absorption at least by a factor of about four.  

 

2. Control both polarizations. 

 

The current metasurface design only acts on one of two independent polarizations. The 

concept underlying the metasurface design can be extended to achieve independent control 

over both polarizations on the same pixel (with two independent bias voltages). Since a 

chaotic cavity completely mixes all polarizations, this would double the control over the 

wave field for a fixed metasurface size. 

Recent prototyping suggests that this is indeed feasible, and first experimental results 

confirm the ability to double the control over the wave field by controlling independently 

both polarizations (page 35 in ref.9). 

 

3. Implement phase-linear control. 

 

The current metasurface design only offers phase-binary control over the wave field with 

each pixel. The PIN-diode could be replaced by a variable capacity, enabling the 

implementation of a phase-linear instead of only phase-binary control.  

The benefit of increasing the available number 𝑧 of discretized phase values diminishes 

rapidly. A simple benchmark model that was studied for wave front shaping in optics 

(focusing a wave on a chosen point behind a multiply scattering layer by shaping the wave 
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front with 𝑧 possible phase steps) shows that phase-binary control achieves 40% of the 

optimum with phase-linear control; 𝑧 = 4 already reaches 80% of the optimum (page 73 

in ref.10). These results indicate that implementing full phase-linear control is probably not 

worth the additional cost. However, increasing 𝑧 from 2 to 4 might be worthwhile. 

 

The above discussion provides indications on how the employed metasurface design could 

be improved. The decision whether it is more convenient to pursue any or several of these routes 

in contrast to simply using a larger metasurface could ultimately be driven by economic aspects. 

Finally, note that our proposed scheme of tweaking a propagation medium’s disorder does not rely 

on the specific design of our metasurface. Although we consider it advantageous, in principle other 

implementations of tunable impedance surfaces such as mushroom structures could be employed, 

too.11,12 

Finally, we point out that the entire optimization procedure could be performed in real time 

with optimized electronics (e.g. using field-programmable-gate-arrays (FPGAs) instead of the 

Arduino microcontroller) such that the reflect-array’s PIN diodes could be switched at MHz rates. 

Hardware solutions in that spirit have been reported, for instance, in refs.13,14, proving that this is 

technologically possible with the current state-of-the-art.   
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Supplementary Figure 1 | Minimum rotation of the mode-stirrer to access an uncorrelated 

realization. a, The matrix shows the correlation 𝒞(𝜃, 𝜃′) between the spectra corresponding to 

mode-stirrer orientations 𝜃 and 𝜃′. b, Aligning this matrix and averaging over one dimension yields 

𝒞̅(𝜃) from which the result ∆𝜃𝑑𝑐 = 12° is extracted. 
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Supplementary Figure 2 | Histograms of experimentally measured pathloss 𝝃 before (blue) 

and after (red) optimizing the channel diversity. Note that the units of pathloss in this figure 

are arbitrary (see discussion in Section II.). The figure is based on the same data of 30 realizations 

as Figure 3 in the main text. The histograms are shown for different sizes of the channel matrix 

(𝑛 = 2, 4, 6). Histograms of the difference between initial and final pathloss for each realization 

are shown in black. 
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Supplementary Figure 3 | Average value and standard deviation of pathloss before (blue 

circle) and after (red triangle) optimizing the channel diversity, and the difference (black 

square). Each data point is based on 30 realizations of the experiment for channel matrices of 

different sizes 𝑛; error bars indicate the standard deviation. Note that pathloss is given in arbitrary 

units here.  
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Supplementary Figure 4 | Contrasting the capacity dependence on SNR for the case of 

perfectly identical or perfectly orthogonal channels, with identical pathloss. See Section III. 

for further details. The figure was plotted for 𝑃 = 1, different values of 𝑃 would essentially just 

shift the curves along the horizontal axis since they can be interpreted as an effectively altered 

SNR. The figure illustrates that maximum channel diversity is always the best choice.  
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     𝑛 = 2                 𝑛 = 5 
 

 
 

Supplementary Figure 5 | Achieved channel diversity as a function of the number of available 

phase-binary metasurface pixels. The presented results are averaged over realizations of disorder 

and displayed for 𝑛 = 2 (a) and 𝑛 = 5 (b). For reference, the benchmark results from the main 

text using zero or all 65 pixels are indicated in blue, as well as the orthogonality benchmark in 

black. 

  

a                                                                     b 



 

 

17 

 

 

Supplementary Figure 6 | Photographic image of the office room setup. Two antenna arrays 

are placed in a heavily furnished office of irregular geometry. The two parts of the metasurface 

reflect-array are also identified in the image.  
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Supplementary Figure 7 | Further details on the realization of the experiment in the office 

room. Figure 4 of the main text is based on this experiment. The office room is shown in 

Supplementary Figure 6. a, Optimization dynamics as function of the iteration. b, Singular value 

spectrum of the channel matrix before and after optimization in the office room. 

 




