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Supplementary Figures 

  

Supplementary Figure 1 | Chip System Architecture.  The integrated memristor/CMOS chip 

is comprised of the digital controller and bus shown in green, the mixed-signal interface shown 

in red, and the memristor crossbar shown in blue. 

 

Supplementary Figure 2 | Mixed Signal Interface design. The mixed-signal interface is 

comprised of global configuration registers and timing generation shown in brown, and 162 

configurable channels (shown in green) to provide input and measure output to and from each 

row and column of the memristor crossbar.   



 

Supplementary Figure 3 | Schematic of 13b current-integrating ADC. The 13 bit hybrid 

integrating ADC architecture is comprised of a 5b first stage first-order incremental ADC and a 

9b second stage SAR ADC with 1b stage redundancy for high resolution, small capacitance and 

simplified clocking. 

  

Supplementary Figure 4 | Pulsed-mode DAC scheme. Instead of directly modulating the pulse 

width, we use the number of pulses to represent the input amplitude (effectively modulating the 

pulse width in discrete time domain) to eliminate errors due to pulse rise and fall time. 
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Supplementary Figure 5 | Forward pass mode. The forward pass mode is used to perform 

VMM to update the output neurons. In this configuration, all rows are connected to the ‘Read’ 

DACs, which pulses between 1.2V(VVG) -1.8V(Vread) with the input data represented by different 

pulse widths, and all columns are connected to 1.2V ADC virtual ground (VVG). The colour table 

lists the DAC register configuration used to control the “Read” DACs and ADCs. 

 

Supplementary Figure 6 | Backward pass mode. The backward pass mode is used for 

calculating the vector-transposed matrix multiplication. In this configuration, all columns are 

connected to the ‘Read’ DACs, which pulses between 1.2V(VVG) -1.8V(Vread) with the input data 

represented by different pulse widths, and all rows are connected to 1.2V ADC virtual ground 

(VVG). The colour table lists the DAC register configuration used to control the “Read” DACs 

and ADCs. 



 

Supplementary Figure 7 | Write mode. The write mode is used for programming the memristor 

devices to higher conductance states. In this configuration, all rows are connected to the “Write 

High” DACs (with range 1V(VHalf)-1.9V(VHigh)) and all columns are connected to the “Write 

Low” DACs (with range 1V(VHalf)-0.1V(VLow)). The voltage difference 1.8V of the two DACs 

cross the selected device is used to program the device. The colour table lists the DAC register 

configuration used to control the “Write High” DACs and “Write Low” DACs. 

 

Supplementary Figure 8 | Erase mode. The erase mode is used for programming the memristor 

devices to lower conductance states. In this configuration, all columns are connected to the 

“Write High” DACs (with range 1V(VHalf)-1.9V(VHigh)) and all rows are connected to the “Write 

Low” DACs (with range 1V(VHalf)-0.1V(VLow)). The voltage difference -1.8V of the two DACs 

cross the selected device is used to erase the device. The colour table lists the DAC register 

configuration used to control the “Write High” DACs and “Write Low” DACs. 



 

Supplementary Figure 9 | Top view optical microscope of the integrated chip. The 54×108 

crossbar array (center region) and the extension lines are visible. Every row and column is 

connected to a specific landing pad left open during the CMOS fabrication process. 

  



 

 

Supplementary Figure 10 | Cross-sectional view SEM images of the integrated chip. The 

memristor crossbar array is fabricated on top of the CMOS circuits. The different CMOS wiring 

layers are also visible underneath the memristor array. 
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Supplementary Figure 11 | Programming memristors on chip. Weight update curves from 

several memristor devices measured from the crossbar array in the integrated chip. The devices 

were programmed with 100 write pulse at 1.8V and 100 erase pulses at -1.8V with 82µs pulse 

width, using the on-chip processor and the integrated DAC/ADC circuitry.  

  



 

Supplementary Figure 12 | Line resistance effects. (a) Zoomed-in SEM image of the 

memristor array integrated on top of the CMOS chip. The 54×108 array used in this study is 

composed of 126 8×6 subarrays to work around the periodic deep trenched areas (~2000Å deep) 

created from the design rule. (b) Measured BE and TE line resistance values from the integrated 

array (labeled as ex-situ integration). The line resistances can be significantly reduced if the 

memristor array can be integrated at the local or intermediate interconnect levels (labeled as 

monolithic integration). (c) Schematic of the wiring patterns. The total line resistance seen by the 

device can change significantly even among neighboring devices due to the even/odd 

arrangement of the pad patterns. (d) Simulated results using the memristor model, showing the 

measured on/off ratio can be strongly affected by the voltage loss due to the line resistance. The 

on/off is calculated after 50 consecutive programming pulses. 

 



 

Supplementary Figure 13 | Voltage loss effects in the memristor array. (a) The effect of 

voltage loss in the integrated 54×108 array, and (b) the resulting on/off ratio affected by the 

voltage loss effect, obtained from SPICE simulations. The voltage loss and on/off ratio values 

are represented by the colour labels shown on the right. (c) The voltage loss effect at different 

regions in the array. The large line resistance effect, combined with the even/odd electrode 

design, leads to large variations among neighboring cells for cells near the edge. Better 

uniformity can be obtained for cells in the center of the array, with a reduced on/off ratio. 

 

 

Supplementary Figure 14 | Improvements with monolithic integration. SPICE simulations 

showing (a) the effect of voltage loss and (b) the expected on/off ratio from a 54×108 array 

integrated at the local interconnect level, showing much reduced line resistance effect and 

improved device uniformity. 

 



Supplementary Figure 15 | Noisy training data set for the SLP. Training data for 5 different 

Greek letters used in the SLP implementation. The training data set for each class includes the 

original image and 15 out of the 25 noisy images created by flipping 1 pixel in the original 

image. 

 

Supplementary Figure 16 | Noisy testing data set for the SLP. Testing data for the Greek 

letters used to test the SLP operation after training. The testing data set includes the 10 noisy 

images not in the training set, created by flipping 1 pixel in the original image for each class.  
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Supplementary Figure 17 | Classification of the quantized PCA data. Outputs from the PCA 

layer were quantized and scaled to the range of 0~63, and used as input to the second perceptron 

layer. The quantized data were then classified by the perception layer, with blue points 

representing the network classified benign data and red points representing the network classified 

malignant data. 
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Supplementary Figure 18 | Replotted classification results in the original space. The 

classified results in Supplementary Figure 17 were then replotted in the original output space 



from the PCA layer, with blue points representing the network classified benign data and red 

points representing the network classified malignant data. 

 

Supplementary Figure 19 | AUC-ROC curve and F1 score of the breast cancer task. The 

experimentally PCA + classifier network show excellent AUC value of 0.996 and high F1 score 

of 0.960, corresponding to sensitivity, specificity and accuracy values of 93.1%, 99.0% and 

94.6%, respectively. 

 

 

 

 



 

Supplementary Figure 20 | Data path during training and inference. (a) All instructions for 

necessary mathematical calculations and data storage are first programed in C code and 

compiled. The entire compiled code is then loaded into the on-chip 32kB SRAM data memory 

by a bootloader. (b) The binary program instructions are executed through the OpenRISC 

processor to run the training and inference algorithms. The vector-matrix multiplication (VMM) 

results are read as charge values from the ADCs. (c) During training, the required weight updates 

are calculated through the OpenRISC processor. Afterwards, the DACs are configured to supply 

the desired pulse widths to the update the memristors. (d) The final output can be transferred to a 

personal computer and accessed by the user. 

 

 



 

Supplementary Figure 21 | Schreier FOM for 180nm and 40nm ADCs. The Schreier FOM is 

used for comparing high-resolution ADC performance across architectures. The data are 

collected from all ADCs published in ISSCC and VLSI conferences from 1997-2018. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 22 | Error rates from different models as a function of weight and 

activation quantization effects. (a) Error rates obtained using quantized weight and activation, 

for 32-bit, 16-bit, 8-bit, 4-bit fixed-point for the MNIST data set [S9]. (b) Error rates as a 

function of activation quantization effect, for weights quantized at 32-bit, 16-bit, 8-bit, 4-bit, for 

CIFAR-10 [S10]. (c) Floating-point vs 8-bit quantized network error rates for various network 

depths of the ResNet model, tested on ImageNet [S11].  

 

 

Supplementary Figure 23 | Quantization effect for common CNN models. The models are 

implemented using 8-bit weight and 8-bit activation. All latency numbers are measured on 

Pixel 2 cell phones using a single core, adapted from tensorflow.org 

(https://www.tensorflow.org/lite/performance/model_optimization) 

 

 

 



 

Supplementary Figure 24 | ADC design choices. (a) Speed and power tradeoffs, and (b) 

resolution and area tradeoffs for reported ADC designs. The data are collected from publications 

at key technology conferences, and scaled to the 40nm technology node.  

 

 

 

Supplementary Figure 25 | ADC power scaling. Tradeoffs in conventional ADC designs 

between (a) speed and accuracy, (b) speed and power, as reported in Supplementary Reference 

[8]. 

 

 

 



 

Supplementary Figure 26 | Shared ADC options. Schematics showing dedicated ADC (a) and 

shared ADC (b) designs. 

 

 

 

Supplementary Figure 27 | ADC area efficiency. Expected area efficiency for different 

memristor half-pitch sizes. The ADC is based on conventional 40nm SAR ADC design, for 6 bit 

[S12] and 8 bit ADCs [S13]. 

 

 



 

Supplementary Figure 28 | Endurance and variability test of the memristor device. (a) 

Endurance test, showing HRS and LRS currents during the write/erase processes. After each 

order of the endurance cycle, the device was programmed and erased another 1000 times, with 

write/erase pulses of +1.8 V and -1.8 V, 200 s, respectively. (b) Device to device variability test 

from 22 stand-alone devices. During the measurement, 50 consecutive programming pulses are 

applied (LTP test), followed by 50 erase pulses (LTD test). The current is measured at 0.6 V 

after each pulse.  

 



 

Supplementary Figure 29 | Tiled architecture based on small crossbar arrays. Every tile 

consists of a memristor array (e.g. 128 × 128) integrated on top of CMOS circuitry forming a 

self-contained unit (macro). The tile-to-tile communication is performed in digital domain.  

 

 

Supplementary Figure 30 | Tiled architecture with high area efficiency. Each macro consists 

of a small memristor array (128 × 128) integrated with underlying CMOS circuitry (DACs, 

ADCs, MUXs, register buffer, etc.). Larger systems are built by tiling the macros through digital 

interfaces. 



Supplementary Notes 

Supplementary Note 1. Device characteristics 

A memristor’s resistance is determined by the internal ion configuration [1], which can be 

modulated by the external electric field and the ion’s concentration gradient. The WOx device’s 

behavior is attributed to the migration of oxygen vacancies (𝑉𝑂s) inside the device. Specifically, 

the memristor dynamics can be described by the following equations: 

𝐼 = (1 − 𝑤)𝛼[1 − exp(−𝛽𝑉)] + 𝑤𝛾 sinh(𝛿𝑉) (1) 

𝑑𝑤

𝑑𝑡
= 𝜆 sinh(𝜂𝑉) −

𝑤

𝜏
 (2) 

where Supplementary Equation (1) is the I-V equation which includes a Schottky term (the 1st 

term) corresponding to conduction in the VO-poor region and a tunneling-like term (the 2nd 

term) corresponding to conduction in the VO-rich region (Supplementary Reference [1]). The two 

conduction channels are in parallel and the internal state variable w represents the relative 

contribution from the two channels. Supplementary Equation (2) is the dynamics equation which 

describes the change rate of the state variable w with respect to the applied voltage, including the 

drift effect under an applied electric field (the 1st term) and the spontaneous diffusion (the 2nd 

term). α,β,γ,δ,λ,η are all positive-valued parameters determined by material properties. τ is the 

diffusion time constant. In our array-level simulation, a series resistance R is also added to the 

device model.  

    The gradual conductance changes is due to modulation of w through the applied programming 

voltages, and can be clearly observed by pulse measurements as shown in Supplementary Figure 

11. Here 50 write pulses (+1.8 V, 82 µs) were applied to the device, followed by 50 erase pulses 

(-1.8 V, 82 µs). The device state was monitored by a small read pulse (0.6 V, 82 µs) after each 

write/erase pulse. All measurements were performed using the on-chip processor and integrated 

DAC/ADC circuitry. 

 

  



Supplementary Note 2. System Architecture 

The custom CMOS circuitry includes an OpenRISC processor with 64KB SRAM and a 

mixed-signal interface with 162 configurable channels as shown in Supplementary Figures 1,2. 

The processor configures the mixed-signal interface through a set of global configuration 

registers and performs write and read operations through digital to analogue converters (DACs) 

and analogue to digital converters (ADCs).  

Since the processor is mainly used for register manipulations, the reduced instruction set 

Alternate Lightweight OpenRISC processor (AltOR32) is used in the design to minimize area 

and power consumption. The SRAM is divided into 3 parts. The processor instruction and data 

memory are mapped to 32 KB SRAM data memory. The remaining 32KB are dual port SRAMs 

that support simultaneous input/output and are assigned as two “ping-pong” memory banks for 

potential data buffering, although in this study the ping-pong memory banks were not used since 

all data can be fit in the data memory.  

The custom mixed-signal interface is shown in Supplementary Figure 2 and includes global 

timing generation and configuration registers, and 162 configurable channels – all can write/read 

to/from the Wishbone bus (the shared digital bus in OpenRISC architecture) and mapped to the 

OpenRISC memory space. Each channel is set to either have an ADC, or 1 of the 3 DACs 

connected to a row or column of the crossbar.  The ADC or DAC connection is set in the mode 

register and the type of DAC connections is set in the DAC register along with the 6b DAC pulse 

input. The timing generator handles both the ADC start signal and creates the duty-cycled pulse-

train for the DACs. 

During operation, the processor is first used to configure the mixed-signal interface by 

setting the configuration registers. The processor is then paused and the control is handed off to 

the timing generator of the mixed-signal interface. The timing generator operates for 64 cycles 

during which VMM operations and memristor weight updates are performed. The control then 

goes back to the processor.  

 

  



Supplementary Note 3. Mode configurations on the integrated chip 

The integrated chip is highly flexible and can be configured into different modes to facilitate 

mapping of a complete computing model. Since there are 2 write DACs, 1 read DAC and a 13bit 

ADC at each row or column, the chip can be configured in four major modes: forward pass 

mode, backward pass mode, forward write mode (write) and backward write mode (erase). 

A global configuration register on the chip controls the write/read mode of all the rows and 

columns: 

MS_GBL_CFG[2] MS_GBL_CFG[1] MS_GBL_CFG[0] 

GBL_START ROW_MODE COL_MODE 

 

For example, at forward pass mode, all rows are configured as DACs and all columns are 

configured as ADCs, so the ROW_MODE is 1 and COL_MODE is 0. At write mode, all rows 

and columns are configured as DACs, so the ROW_MODE and COL_MODE are both 1.  

The register for the DAC is a 9-bit register that holds the voltage selection data and the 

read/write pulse durations. The lower 6 bits specifies the pulse durations and the higher 3 bits 

selects which voltage reference the DAC connects. The register is loaded by the OpenRISC 

controller via the Wishbone bus.  The DAC registers are loaded serially from their associated 

(addressed) memory locations. 

DAC_REG [8] DAC_REG [7] DAC_REG [6] DAC_REG [5-0] 

VWR_H VWR_L VR PULSE_DUR 

 

The configuration of the DAC registers at four different modes and the corresponding 

pulse signals are shown in the tables in Supplementary Figures 5-8. The four different colours of 

the DAC registers (red, gray, green and yellow) reprent the corresponding 3 DACs and 1 ADC 

the register is used to configure.  

When performing VMM, the chip is configured at read mode (forward or backward 

depends on the eqaution of the operation). During the VMM operation, we apply a discrete-time 

pulse-train input and measure the accumulated charge from each column (row). The column 



(row) ADCs present a 1.2 V virtual ground while the row (column) DACs apply 6-bit 

programmable train of fixed-amplitude 0.6 V “read” pulses (1.8 V-1.2 V). The integrating ADCs 

measure the collected charges over the input period. 

When performing weight update, the chip is configured at write/erase mode (depends on 

the need to increase/decrease the weight). During the write operation, we apply discrete-time 

pulse-trains at both rows and columns. When writing (erasing), the row (column) DACs apply 6-

bit programmable trains of fixed-amplitude “High voltage” pulses (1.9 V-1 V) and the column 

(row) DACs apply 6-bit programmable trains of fixed-amplitude “Low voltage” pulses (0.1 V-1 

V) with the same duration, which effectively generate pulses with 1.8 V (-1.8 V) voltage drop 

across the device. The idle level of both “High voltage” and “Low voltage” are chosen at 1 V, 

which is the halfway of the voltage drop to provide write protection for unselected devices in the 

array. 

  



Supplementary Note 4. SPICE simulation for device variability with line resistance  

To analyze the effect of the series line resistance on the array operation, we performed 

detailed SPICE (Simulation Program with Integrated Circuit Emphasis) simulations using the 

measured line resistance values and a dynamic memristor model (Supplementary Equation (1) 

and (2)) to estimate the voltage loss effect. The parameters used in the simulation are listed 

below.  

Parameter Value Parameter Value 

α 9e-7 β 4 

γ 2.8e-7 δ 6 

λ 0.045 η 6 

τ 10 wmax 1 

wmin 0 R 400Ω 

 

Our SPICE simulations show that although this effect is relatively small during the VMM 

operation due to the high memristor resistance (~ 120-580 kΩ) at 0.6 V used for the inference 

stage, the voltage loss can be significant at the write voltage (1.8 V) due to the much lower 

device (~ 1.7-8.2 kΩ) at the higher voltage due to the non-linear I-V characteristics of the device. 

In the worst case (i.e. the target cell is furthest from the voltage supply), the voltage loss due to 

the line resistance is around 0.33 V, corresponding to a 18.5% drop of the write voltage. The 

reduction of the applied voltage leads to significantly reduced device response, as shown in 

Supplementary Figure 12d. 

Analysis of the integrated array show large device variations can be observed when 

trying to program the device, due to the different line resistances the devices see, as shown in 

Supplementary Figure 13. Near the edges, the effect is significant due to the even/odd wiring 

patterns, as seen in Supplementary Figure 12b and 13c. To achieve more uniform device 

response, we chose the center area of the array in our studies, where the voltage drop due to line 

resistance is roughly similar (Supplementary Figure 13c) that allows us to reliably program the 

devices using the open-loop method.  

We emphasize that this choice is a compromise due to the limitation of cost and the 

university fab facility. Future studies that can allow more direct integration at the local or 

intermediate interconnect levels (which we termed monolithic integration) will effectively 



address this issue. For example, our detailed SPICE simulations show that monolithic integration 

will greatly reduce the line resistance and minimize measured device variability, and allow larger 

arrays to be successfully operated, as shown in Supplementary Figure 14.  



Supplementary Note 5. Mapping memristor conductance to synaptic weight in PCA 

A linear conversion is used to map the memristor conductances in the array to the synaptic 

weights 𝑔𝑖𝑗 with range ([-1 1]) used in PCA, by using the relationship: 

𝑔 =
𝐴𝐷𝐶 − 𝑎

𝑏
 (3) 

where ADC is the unconverted ADC output from the circuit, which is converted to the 

current/conductance value through factors a (ADC shift factor, which is about 1900) and 𝑏 

(ADC scaling factor, which is about 1500) in Supplementary Equation (3). The conversion based 

on Supplementary Equation (3) maps the maximum average current to weight 1 and minimum 

average current to weight -1. 

 For each input data, the dot-product of the input data and the jth feature, 𝑦𝑗 is directly 

obtained from the ADC output of the jth column in the 9×2 weight matrix. The column’s weights 

are then updated based on Sanger’s rule:  

Δ𝑔𝑖𝑗 = 𝜂𝑦𝑗 (𝑥𝑖 − ∑ 𝑔𝑖𝑗𝑦𝑗

𝑗

𝑘=1

) (4) 

During training, the desired weight updates are linearly converted into write pulse widths 

and applied to the memristor devices, without using nonlinear compensation schemes such as the 

one discussed Supplementary Reference [2]. Device nonidealities including the nonlinear weight 

updates (as shown in Supplementary Figure 11) caused the experimentally obtained training 

results to differ from the software results (Supplementary Reference [3]), as evidenced in Figs. 

5b-e in the main text. 

 

  



Supplementary Note 6. Scaling of the PCA layer output as perceptron layer input 

The on-chip DACs offer 6-bit resolution and can generate pulses of range 0~63. However, after 

the PCA process, the 2-D projected data have analogue and negative values. To use the PCA 

output data as input to the second, perceptron layer, we need to rescale the data to the range of 

0~63 and quantize them into pulse numbers. 

As can be observed from Fig. 4g and 4h in the main text, most of the PCA output data are 

located in the range of 3~25 in the x axis and -15~3 in the y axis. To quantize and scale the data 

to the range of 0~63 for the perceptron layer, the following formulas are used: 

𝑥̂ = 𝑟𝑜𝑢𝑛𝑑[2𝑥] (5𝑎) 

𝑦̂ = 𝑟𝑜𝑢𝑛𝑑[−3(𝑦 − 3)] (5𝑏)

Notice that some outlier data points would produce values larger than 63. These few points were 

mapped to 0 pulses so that all other points can use as much as the dynamic range of 0~63 as 

possible.  

After quantization and scaling, the data are classified using the perception layer, and the 

results are shown in Supplementary Figure 17. The labels are directly obtained from the neuron 

outputs in the perceptron layer, without reading the weight values. Finally, data were replotted in 

the original PCA output space, using the obtained corresponding label for each data point, as 

shown in Supplementary Figure 18. 

 

 

  



Supplementary Note 7. Evaluation of the PCA + classifier network  

Beyond classification accuracy, the following statistical parameters can be used to further 

evaluate the performance of the network: 

 

• Condition positive (P): the number of real positive cases in the data 

• Condition negative (N): the number of real negative cases in the data 

• True positive (TP): Sick people correctly identified as sick 

• False positive (FP): Healthy people incorrectly identified as sick 

• True negative (TN): Healthy people correctly identified as healthy 

• False negative (FN): Sick people incorrectly identified as healthy 

• Sensitivity (the true positive rate (TPR) or recall): The proportion of actual positives that 

are correctly identified as such (e.g., the percentage of sick people who are correctly 

identified as having the condition). i.e. TP/(TP+FN) 

• Specificity (true negative rate (TNR)): The proportion of actual negatives that are 

correctly identified as such (e.g., the percentage of healthy people who are correctly 

identified as not having the condition). i.e. TN/(TN+FP) 

• Precision (Positive Predictive Value (PPV)):  measure of the classifier exactness.  

i.e. TP/(TP+FP) 

 

The receiver operating characteristic (ROC) curve is a graphical plot that illustrates the 

diagnostic ability of a binary classifier system as its discrimination threshold is varied. The ROC 

curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR, 

which equals to (1 – specificity)) at various threshold settings. The area under curve (AUC) 

represents the degree or measure of separability. It shows how much the model is capable of 

distinguishing between classes. The higher the AUC, the better the model is at predicting 0s as 0s 

and 1s as 1s. By analogy, the higher the AUC, the better the model is at distinguishing between 

http://en.wikipedia.org/wiki/Positive_predictive_value
https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/False_positive_rate


patients with disease and no disease. Therefore, the AUC - ROC curve is an important 

performance measure for a classification problem at various thresholds settings.  

The F1 score is a measure of a test's accuracy. It considers both the precision (PPV) and 

the recall (TPR) of the test to compute the score: PPV is the number of correct positive results 

divided by the number of all positive results returned by the classifier, and TPR is the number of 

correct positive results divided by the number of all relevant samples (all samples that should 

have been identified as positive). The F1 score is the harmonic average of the precision and 

recall, where an F1 score reaches its best value at 1 (perfect precision and recall) and worst at 0. 

The sensitivity, specificity and accuracy for our experimentally implemented PCA + 

classifier network were calculated to be 93.1%, 99.0% and 94.6%, respectively. From the AUC-

ROC curve shown in Supplementary Figure 19, the AUC of classification using the learned 

principal components is 0.996, suggesting the network is almost perfect at distinguishing 

between the positive class and the negative class. The F1 score of the network is 0.960, proving 

the network has excellent precision and sensitivity for breast cancer evaluation. 

 

 

 

https://en.wikipedia.org/wiki/Precision_(information_retrieval)
https://en.wikipedia.org/wiki/Recall_(information_retrieval)
https://en.wikipedia.org/wiki/Harmonic_mean
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall


Supplementary Note 8. Data path during training and inference and on-chip 

implementation of the neuron function  

  As shown in Supplementary Figure 20, at the first step, we program all instructions for 

necessary mathematical calculations and data storage in C code, and compile the C code into 

binary machine code. This process is performed in a personal computer. Note the programming 

and compilation only need to be performed once for every task. The binary code will be used to 

run the training and inference algorithms, and allocate the memory space for the necessary input 

& output data and all the internal intermediate variables. 

Afterwards, we load the final binary code to the chip. Specifically, the binary code is sent 

through the USB port of the computer, and a Serial-to-UART (Universal Asynchronous 

Receiver-Transmitter) board converts the serial data in the USB to the UART protocol and sends 

the compiled code to the memristor chip through the UART interface. The entire compiled 

binary code is loaded into the on-chip SRAM by a bootloader. 

After the binary code is loaded into the on-chip SRAM, the binary program instructions 

are executed, and the entire application will be run on chip. The instructions set the circuit 

configurations and DAC registers (i.e. row/column configurations and the pulse widths for 

weight updates and VMM operations). The VMM results are read as charge values from the 

ADCs and stored in the data memory.  

Then, the VMM outputs are processed by the on-chip OpenRISC processor to calculate 

the required weight updates or for running other operations of the algorithm. The processor 

executes the algorithm as programmed by the C code and sends the results (i.e. batch update 

values) as instructions to the on-chip registers, and the DACs are configured to the new 

configurations for the next operations.  

Finally, after all the instructions have been executed, the output can be supplied to the 

user through the Serial-to-UART interface. 

We note in the networks we run most of the operations are multiplication and 

summations that can be readily implemented in the memristor array and the OpenRISC 

processor. There are two functions that require more complex calculations, namely the Sigmoid 

(for neurons in the PCA classification layer) and Softmax (for neurons in the SLP classification 



layer) activation functions. The Sigmoid is a one-to-one mapping function with can be 

approximated by a piece-wise linear function. As a result, we have successfully implemented the 

Sigmoid function on chip using the OpenRISC processor, and all experiments for the LCA 

network and the entire PCA + Classification network are implemented on chip, without 

communication with the computer during the learning and testing process. However, the Softmax 

function is a n-to-n mapping that computes the ratio of an exponential output of the current class 

over the sum of the exponential outputs of all classes, which is challenging to implement without 

floating point operations.  

In this prototype integrated chip, the OpenRISC processor we use is a striped down 

version called “AltOR32” (Alternative Lightweight OpenRISC 32-bit version) without the 

floating point unit, to reduce power, area and design costs since most of the calculations 

performed in our algorithms are multiplication and summations. The decimal values of the 

parameters were approximated with fixed point representation in the integer domain.  

Therefore, in the Greek letter classification experiment that uses the Softmax function 

during the training process, we made the compromise of calculating the Softmax activation off 

chip in software (Python), the activation value was then passed back to the chip for batch-

gradient descent calculations. We note the current version of the system is developed as a 

prototype that demonstrates the integration of memristor arrays with functional periphery 

circuitry. Not all functions, such as floating point support, were targeted. Designs that include 

floating point unit supports, as well as improved training protocols and more efficient processor 

designs [S4-S6] will be incorporated in future studies. 

 



Supplementary Note 9. Power Estimate  

The power consumption of the integrated system consists of three parts: the digital OpenRISC 

core, the mixed signal interface, and the power consumed by the passive crossbar array. 

Both the digital processor power and the mixed signal interface power are directly 

measured experimentally, by measuring the root mean square (RMS) current with a Fluke meter 

while running the chip. At the maximum frequency of 148 MHz, the digital power reads 235.3 

mW and the total analogue power reads around 64.4 mW. The crossbar array power is obtained 

from the average device current at the read voltage, which yields ~7 mW for the 54×108 array. 

The total power at 148 MHz clock is thus 306.7 mW for the current chip based on 180 nm 

CMOS technology. 

The energy efficiency is estimated using the 148 MHz clock speed and an average 4-bit 

input during inference, which gives around 9.87M VMM operations per second. Multiplying this 

number by 54×108 leads to 5.75×1010 operations per second. Therefore, the energy efficiency 

can be derived by dividing the number of ops/second with the total power, which results in 187.6 

GOPS/W for the current memristor/CMOS chip. 

The custom circuitry was designed in 180nm CMOS and features a generic digital 

processor along with a full set of mixed signal analogue to digital converters (ADC) and digital 

to analogue converters (DAC). Two different approaches were used to estimate the power 

dissipation at the 40 nm technology node. The digital power was estimated using generalized 

scaling (Supplementary Reference [7]) and the mixed-signal power was estimated using a figure 

of merit (FOM) approach. 

In digital circuits, the length scaling factor S, and the supply voltage scaling factor U are 

different during scaling. Specifically, from 180 nm to 40 nm, S = 180 nm/40 nm = 4.5, U = 1.8 

V/1.0 V = 1.8. As a result, the digital power is reduced by a factor of 1/U2 = 0.32, while the 

circuit speed is improved by a factor of S = 4.5. Note the faster processor allows the same 

process to control more channels, so normalizing to the same number of 162 channels, the digital 

power at 40 nm is estimated to be  

𝑃40𝑛𝑚 =
𝑃180𝑛𝑚

𝑈2𝑆
 (6) 



Using the measured digital power at 180nm, the estimated digital power at 40 nm is then 

235.3 mW/((1.8)2×4.5), which is about 16.1 mW. 

The analogue to digital converter performance is evaluated using a figure of merit (FOM) 

approach. An ADC FOM combines several converter performance metrics into one number for 

comparison across ADC architectures. The Schreier FOM is typically used for high-resolution 

converters and is given by the following equation: 

𝐹𝑂𝑀𝑠 = 𝑆𝑁𝐷𝑅 + 10 log (
𝐵𝑊

𝑃
) (7) 

where SNDR is the signal to noise ratio and distortion, BW is one-half of the sampling 

frequency, and P is the power dissipation. To estimate the power scaling from 180nm to 40nm, 

the ADC Performance Survey (Supplementary Reference [8]) was used which aggregates all 

ADCs published in the ISSCC and VLSI circuits conferences from 1997 - 2018. A subset of data 

for 180 nm and 40 nm ADCs is shown in Supplementary Figure 21. The mean FOM between 

sampling frequencies from 100 kHz to 10 MHz for each technology was determined and 

compared. The mean FOM for 40 nm was determined at 172 dB and a conservative estimate of 

165 dB was used for power estimation. Using an estimated 165 dB, which corresponds to 176 

W per ADC, we can estimate the new total analogue power at 40nm to be 19 mW, leading to a 

total system power of 42.1 mW, assuming the 54×108 crossbar power remains at 7 mW. 

Therefore, by simply scaling the system to 40nm technology node, the estimated OPS/W at 148 

MHz is 1.37 TOPS/W. The power efficiency can be further improved by further scaling the 

CMOS circuit to more advanced technology nodes. Additionally, the digital power can be further 

improved by using a more custom controller design instead of using a generic processor, while 

the analogue power can be improved by further optimizations of the ADC circuitry (e.g. 

replacing the fast and high-precision 13-bit ADC with simpler interface circuits), along with 

memristor device optimizations to reduce the crossbar power. 

 

 

 

 



Supplementary Note 10. Analysis of area efficiency  

As the first prototype, we intentionally made the circuit design flexible to serve as an 

evaluation platform, and we were limited to a relatively old CMOS technology (due to cost and 

tool compatibility limitations in a university cleanroom). As a result, the area efficiency is not 

ideal. The total chip area is 6.7 mm × 9.2 mm = 61.64 mm2. The area of the memristor array is 

475 m × 292 m ~ 0.14 mm2. Therefore, the memristor array’s area efficiency (the percentage 

of the array over the entire chip) is about 0.23%. 

A large reason of the low area efficiency can be traced to the conservative design choice. 

To make the chip flexible, we designed 2 write DACs (for positive and negative writes), 1 read 

DAC and a 13bit ADC at each row and each column, so input data can be applied at every row 

and the output can be collected at every column and processed in parallel. The reverse operation 

is also supported for algorithms such as the LCA. The size of the three DACs and the ADC is 

around 74 m × 1800 m ~ 0.1332 mm2 for each such reconfigurable channel. The total area of 

these components for the 162 channels (54 rows and 108 columns) occupy 21.57 mm2, which is 

around 35% of entire chip area. The rest of the chip areas includes the 64 kB SRAM (32 kB data 

memory and 32 kB ping pong memory) and the OpenRISC core, which are 3.79 mm2 and 10.04 

mm2, respectively.  

There are a number of approaches we can take to optimize the chip design and improve 

the area efficiency.  

For many applications we can replace the 13-bit ADC used in this evaluation chip with 8-

bit ADCs without loss of accuracy. For example, Supplementary Figures 22 and 23 show 

simulation results comparing floating point activations (corresponding to the ADC outputs) vs. 8 

bit activations for commonly used algorithms, as well as weight quantization effects for some 

models [S9-S11]. Reducing the required ADC precision to 8 bit will significantly decrease the 

ADC area, as shown in Supplementary Figure 24b. The chip area will also be naturally reduced 

with more advanced technology nodes [S12, S13]. For instance, state-of-the-art 40 nm 8-bit 

ADCs occupy ~1650 m2 [S13], which will reduce the ADC area by a factor of 20 compared 

with the current chip. The DAC area is relatively much smaller. For example, the total DAC area 

for a 128 ×128 memristor crossbar array would be 173 m2 with the 40 nm technology node. 



The ADC area can be further reduced through optimization of the array interface 

structure. Instead of using a dedicated ADC at each crossbar column and row, multiple columns 

can share a single ADC by sequentially sampling one column at a time, e.g. via time-

multiplexing, as shown in Supplementary Fig. 26. This approach is feasible since ADCs can 

operate at speeds of several GHz while the read operation through the memristor takes longer 

time (e.g. 10 ns). Using this shared ADC approach, the physical ADC area can be significantly 

reduced. Note here we are trading the system speed for the peripheral circuitry area. However, 

due to the in-memory operations and high level of parallelism, the memristor-based systems do 

not need to operate at very high frequency to achieve the desired outputs. For example, our 

previous analysis has shown that even at a system speed of 10 Mhz, very high energy efficiency 

of 60.1 TOPS/W can still be achieved [S14]. 

Another potentially promising approach for area efficiency is to exploit a concept we 

termed “array ADCs”, where the core component of the ADC is shared among different columns 

but each column maintains a dedicated latch to accumulate data locally so the column outputs 

can still be processed in parallel. This approach can potentially reduce the overall ADC area 

without having to reduce the system clock. Similar approaches have been used in column-

parallel CMOS sensor arrays [S15-S18] or multi-channel biomedical and physical detectors 

[S19-S25]. These ADCs are designed for parallel multi-node sampling applications, which is an 

excellent match for the tasks discussed here, although circuit optimizations have not been 

extensively studied since these prior applications do not require high-speed operations. 

Optimizing the ADC design using the array ADC concept will be a key direction in our future 

studies. 

With technology scaling, proper ADC resolution selection, and optimized design through 

shared ADC or array ADC approaches, we expect the area efficiency of the integrated chip to be 

significantly improved, and can potentially reach 100%, as shown in Supplementary Figure 27.  



Supplementary Note 11. Tiled architecture and performance comparison with conventional 

CMOS systems 

To scale up the system, instead of simply increasing the crossbar size, we plan to tile 

small crossbars together to form large-scale neural networks, as schematically shown in 

Supplementary Figure 29.  

A scalable architecture would be to use the memristor - CMOS integration at a macro 

level, e.g., a 128 × 128 crossbar with the underlying interfacing circuits form a self-contained, 

modular unit (macro). The macro can be tiled to construct systems of larger scale. Since the 

macro has a digital interface, the tiling and scaling up would be both straightforward and robust. 

The CMOS circuits underneath the memristor array will consist of decoders and MUXs 

for the random-access operation of the memristor array, and DACs and ADCs for sampling 

crossbar input and output signals. The CMOS layer will also host some digital circuitry used for 

simple signal processing operations. Moreover, a centralized control circuitry may be needed to 

facilitate the overall system operation and control the data flow. Tile-to-tile data communications 

will be performed in the CMOS layer in the digital domain, as shown in Supplementary Figure 

30, following previous architecture designs [S26][S27]. 

Previous analyses on the effects of different components in the interface circuitry [S28] 

have shown that the interface performance parameters such as power, area and latency are 

dominated by those of the ADCs. The optimization of ADCs is thus critical for memristor-based 

computing architectures. Fortunately, ADC size and power decrease exponentially as the tile size 

is reduced, as discussed in Supplementary Note 10 and Supplementary Figure 24. For example, 

dividing one large crossbar into 2 smaller ones will require 2 ADCs vs 1. However, each of the 

ADC for the smaller array can have one fewer bit compared with the ADC used for the larger 

array. In general, reducing the ADC bit by 1 will reduce the area and energy by ½, respectively, 

as shown in Supplementary Figure 24. As a result, there likely will not be significant increase in 

ADC area or power when using several smaller crossbar/interface circuitry tiles vs one larger 

crossbar/interface circuitry. 

Future studies that can allow more direct integration at the local or intermediate 

interconnect levels (which we termed monolithic integration) will significantly alleviate the line 



resistance issue and enable larger arrays to be integrated and operated. Combined with more 

optimized circuit designs (e.g. as discussed in Supplementary Note 10), and the use of the 

scalable tiled architecture, we expect practical memristor-based in-memory computing systems 

can be built with high energy efficiency and high throughput [S29]. 
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