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Supplementary Note 1: Adaptation of the Bayesian machine for situations where some
observations are not conditionally independent
All results in the main paper are presented in cases where all observations may be considered conditionally independent given
the inferred variable Y (naive Bayesian inference). This is not always the case. In particular, in a situation where two redundant
sensors measure the same phenomenon, they may never be considered independent in a good model, even conditionally to the
inferred variable. For example, if observations O2 and O3 are not conditionally-independent, the p(O2,O3|Y = y) likelihood
may not be factorized, and an appropriate Bayesian inference model may read

p(Y = y|O1,O2, ...,On) ∝ p(O1|Y = y)× p(O2,O3|Y = y)×= ...× p(On|Y = y)× p(Y = y). (1)

This model can still be implemented by a memristor-based Bayesian machine. In that case, observations O2 and O3 should
be pooled into a single column, and their joint value should be used to address the likelihood arrays of this column (see
Supplementary Fig. 1). Nevertheless, it should be highlighted that the memory cost of the Bayesian machine grows with the
number of non-conditionally independent variables.
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Supplementary Figure 1. Architecture of the Bayesian machine with non-conditionally independent observations.
This architecture performs non-naive Bayesian inference following eq. 1, by pooling observations O2 and O3 into the same
column.

Supplementary Note 2: Programming methodology of the Bayesian machine
This note details the programming methodology of the memristor arrays in the fabricated Bayesian machine. Memristors are
programmed with voltages higher than the nominal voltage used for digital circuitry. The higher-than-nominal programming
voltage requirement of memristors is a minor concern in systems that separate memory from computing, as a single dedicated
high-voltage circuitry can be associated with the memory array. The Bayesian machine, by contrast, features multiple small
memory arrays fully embedded within logic. The programming of memristors, therefore, requires the distribution of higher-
than-nominal programming voltages locally and an appropriate programming strategy. Managing this complexity is the largest
design challenge for obtaining a functional Bayesian machine.

The Bayesian machine stores bits using a 2T2R structure (see Suppl. Fig. 2a): the bit cell is composed of a “bit line” and a
“bit line bar” memristor (R and Rb), positioned on the same row, and each associated with a selection nMOSFET. The two
memristors are connected to two different bit lines (BL and BLb) on their bottom electrode side. Conversely, the top electrode
of the two memristors is connected to the same source line, to limit wiring and programming circuitry. This shared source line
requires careful attention when programming the memristors.

In addition to the digital power supply (VDD), two higher-than-nominal supply voltages (VDDR and VDDC) are distributed
to each memory array. Programming operation is controlled by nominal-voltage signals (CBL, CSL, and CWL) and an address,
all provided by the digital control unit of the Bayesian machine. Decoders select the addressed row and column. Then, local
level shifters apply either ground or higher-than-nominal voltages to the crossbar arrays, where needed:

• Each memory row features one level shifter (LS, commanded by CWL), which controls the word line that feeds the gates
of nMOS selection transistors of the memory rows. Depending on the value of CWL, the level shifter of the addressed
row connects its world line either to ground or to the VDDR power supply (see Suppl. Figs. 2b and e).

• Correspondingly each memory column features two level shifters (regular LS, commanded by CSL and tri-state TLS,
commanded by CBL), which control the source lines and the bit lines. These level shifters connect the source line and the
two bit lines either to the ground or to the VDDC power supply. Notice that the two-bit lines BL and BLb are connected
to the same level shifter, and therefore always receive complementary voltage (see Suppl. Figs. 2b and f).

When the system is first characterized, the memristors need to be formed. Suppl. Fig. 2c shows the voltages that need to
be applied on the memristors during the forming step. The Table in Suppl. Fig. 2g lists the associated CSL, and CBL values.
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Note that when one memristor is being formed, the other memristor is unaffected, due to the fact that the bit line and bit line
bar always see complementary voltages (as they are connected to the complementary outputs of the BL level shifter). Once
the proper address, CSL, and CBL values have been set, CWL is raised to one, and forming occurs during the CWL pulse (of
one-microsecond duration, see Suppl. Fig. 2d).

Once the memristors are formed, they are all in a low resistance state. The memristors can then be programmed and
reprogrammed at will, either in low resistance state (LRS) by a SET operation, or to a high resistance state (HRS) by a
RESET operation. In our 2T2R bit cells, the two memristors are always programmed in a complementary fashion: this
complementary technique allows high robustness to memristor variability (see Supplementary Note 8) and read disturb effects
(see Supplementary Note 3).

To program a zero value in the bit cell, the bit line memristor is programmed to high resistance (RESET) and the bit line bar
memristor to low resistance (SET). The opposite is done to program a one value. Suppl. Fig. 2c shows the required voltages to
program one and zero values, and the Table in Suppl. Fig. 2g lists the corresponding CSL and CBL value. The voltage levels of
VDDR and VDDC used for the SET and RESET operations are given in the Methods section of the main article and reminded
in Suppl. Fig. 2d.
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Supplementary Figure 2. Programming circuitry for the likelihood memory arrays. a Detailed schematics of the
likelihood memory array, with its programming and reading periphery circuitry, displaying the voltages needed to perform a
SET operation on the first row, last column left memristor R. b Schematics of the 2T2R bit cell connections to the reading and
programming circuitry. Two level shifters (conventional level shifter LS and three-state level shifter TLS) and one sense
amplifier (PCSA) are implemented in each column. One level shifter is implemented in each row. The digital signal BLEN
allows choosing between the reading or programming mode. c Voltages that need to be applied on the bit line BL, bit line bar
BLb, and source line SL for forming, programming a zero, and programming a one in a 2T2R Bit cell. d Programming voltage
levels and timings used for the Forming, RESET, and SET operations (mentioned in the Methods section of the main article). e
Transistor-level schematics of the level shifter (LS) and f the three-state level shifter (TLS) circuits. g Table summarizing the
configuration of programming signals (level shifters) for the different programming operations supported by the memory array
(forming, programming a zero, and programming a one).
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Supplementary Note 3: Reading strategy and impact of read disturb on the Bayesian
machine

Supplementary Figure 3. Read circuitry for the likelihood memory arrays. This Figure presents circuit schematics (a, d,
and f) and simulations (c, e, g, and h) that explain the reading operation of the memory array. b The read scheme involves a
precharge and a discharge phase. a Schematic and c circuit simulation of the precharge phase. BL and BLb are charged to
VDD. d Schematic and e circuit simulation of the discharge phase, BL and BLb are discharged to GND with different speed. f
Schematics and g circuit simulation of the outputs of the PCSA converging to a stable state, while BL and BLb are completely
discharged to GND. h Experimental measurement of the read disturb on a likelihood memory arrays, with a VDD value of 1.2
volts. Even after 5.7M read operations of the whole array, no error is seen.
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This note explains the reading operation of the memristor states in the fabricated Bayesian machine. During the read mode,
the bit lines are disconnected from the programming level shifter circuit (using the tri-state level shifter TLS, see Supplementary
Fig. 2b) and connected to the precharge sense amplifier (PCSA) circuit. The source line and word line level shifters then act
as buffers supplied by nominal voltage VDD (see Suppl Fig. 3a). The read operation functions in two phases: precharge and
discharge (see Suppl Fig. 3b).

The PCSA is an energy-efficient sense amplifier that operates without any direct current path between the ground and
the power supply, thanks to the initial precharge phase. The details of the operation of this circuit are reported in1, 2, and we
summarize them here. The precharge pulls up all voltages of the sense amplifier and the bit lines to the digital power supply
VDD (Supplementary Figs. 3a and c). In the actual read operation, the two bit lines discharge (Supplementary Figs. 3d,e). The
bit line with the lowest-resistance discharges faster unit its associated inverter output discharges to ground, which latches the
complementary inverter output to the supply voltage (Supplementary Fig. 3f,g). The two output voltages, therefore, represent
the comparison of the two complementary resistance values, which gives the bit stored in the 2T2R bit cell.

The typical operation of a Bayesian machine requires frequent read operation on the likelihood arrays, with rare repro-
gramming: the memristors need to be reprogrammed only when the model is changed (e.g., after a recalibration based on new
training data). It is therefore critical that read operations cannot accidentally change the state of the memory devices (read
disturb effect). To evaluate the existence of read disturb, we performed repeated read operations on one likelihood memory
block of the fabricated memristor machine. The read operations are performed by the on-chip precharge sense amplifiers. We
used a digital power supply voltage of 1.2 volts, as it is the highest digital supply voltage supported by our system (see Figure 3
of the main article), and the more at-risk of read disturb effects. Our experimental setup allows reading the likelihood array
approximately one million times per day. We observed that after five days of continuous read operations, i.e. a total of 5.7
million read operations of a complete likelihood memory array, no likelihood bit had changed (see Supplementary Fig. 3h),
suggesting a high immunity to read disturb effects.

The immunity to read disturb of our machine can be explained by three main reasons:

• Hafnium oxide memristors are naturally resilient to read disturb effects due to the highly nonlinear nature of their
switching process3.

• The complementary 2T2R approach not only reduces the impact of device variability (see Supplementary. Note 8), but
also read disturb effects. Even if the read disturb effect increased the resistance of a low resistance state device, the stored
likelihood would be affected only if the disturbed device ends up in a resistance higher than its complementary high
resistance device (see Supplementary Note 8).

• The precharge sense amplifier used to read the devices naturally mitigates read disturb effects. When the sense amplifier
has identified the stored bit, the nodes connecting the sense amplifier to the memristor array are rapidly pulled down
to the ground, and the read memristors therefore see zero voltage. Therefore, current is applied to the memristors only
during the time needed for the sense amplifier to differentiate between the two possible memory states. This mode of
operation contrasts with conventional current-mode sense amplifiers where current is applied during a fixed time that has
to be chosen in a worst-case scenario4.
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Supplementary Note 4: Architectural details of the Bayesian machine

Supplementary Figure 4. Detailed operation of the Bayesian machine. a Schematic illustrating the detailed architecture
of a likelihood elementary block. b Flowchart of the different operations to perform a Bayesian inference computation in the
Bayesian machine. c Time diagram illustrating the operation of the Bayesian machine.

Operation of the Bayesian machine
This note details the operation of the Bayesian machine once it has been programmed. To understand this operation, Suppl.
Fig. 4a shows a more detailed schematic of the likelihood elementary block (at row m and column n) than presented in the main
paper. The function of this block is to output a bit stream with a probability proportional to the likelihood P(On|Ym). In addition,
Suppl. Fig. 4b shows a flow chart of the stochastic Bayesian inference in the Bayesian machine, and Suppl. Fig. 4c shows a
time diagram of the machine operation The color code throughout Suppl. Fig. 4 is as follows: the blue color corresponds to
random number generation, the orange color to memory read, and the green color to the actual stochastic inference.

Before starting Bayesian inference operations, we first need to load the LFSR seeds. In our design, the input seeds are
loaded from input pads and routed to the four LFSRs of the Bayesian machine by the Bayesian machine digital control unit.
Being able to choose the LFSR seed is important for our study (Figure. 3, main article). In a final design, optimal LFSR
seed values could be loaded automatically by the control unit (see Results section of the main article). As the LFSRs have a
periodical output, the seed initialization needs to be performed only once as long as the digital power supply VDD remains on.

The Bayesian machine performs inference in two main phases:
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• Memory read. Likelihood values are read from the memristor arrays, based on the input observations (acting as row
addresses). Observations O1, ...,On are off-chip inputs loaded from dedicated input pads, then addressed to the likelihood
memory arrays by the Bayesian machine digital control unit (one observation for each column, see Figs. 1 and 2 of the
main paper). All likelihood memory arrays are read simultaneously.

• Iterative stochastic inference phase. At each clock cycle, LFSRs generate new eight-bits pseudo-random numbers.
These numbers feed the Gupta comparator circuits to compute the stochastic bits based on the read likelihood values.
Outputs of Gupta comparator circuits from the same row are fed to a chain of AND gates, to perform the stochastic
multiplications; the results of those multiplications represent the Bayesian machine outputs. All these operations are
performed by purely combinational circuits in one clock cycle. As the periodicity of the LFSRs is 255 cycles, the
maximum number of iterations is 255 cycles.

The Bayesian machine can operate in two modes. In the conventional stochastic inference mode, computation is performed
for a pre-chosen number of cycles. The machine decision is based on bit streams counting of outputs (the number of generated
one values). In the“power-conscious mode”, the Bayesian machine stops the stochastic inference iterations as soon as one of
the outputs produces a bit value of one; the decision is made based on that result (see main paper, Results section).

Steps of a project involving the Bayesian machine
As a summary, Suppl. Fig. 5 also recapitulates the different steps of a project using the Bayesian machine, from training to
on-chip operation. (The technical details corresponding to these different steps are reported in the Methods section of the main
article):

• Collect training data. Any project starts by collecting training data.

• Implement the likelihood model. The likelihoods of the Bayesian models are computed. In our sample gesture
recognition task, likelihoods are modeled by fitting Gaussian laws on the training data (see Methods of the main paper
and Supplementary Note 11). In other situations, likelihood models may also be obtained based on expert knowledge or
prior information5.

• Normalize and quantize likelihoods. For improving the efficiency of stochastic computing, likelihoods are normalized
per column by the maximum likelihood value of the column (see main paper). Likelihoods are then discretized as
eight-bit integers, and models are quantized to the number of observation values supported by the Bayesian machine.

• Program the Bayesian machine. Likelihood values are programmed to the memristors of the Bayesian machine
following the methodology described in Supplementary Note 2.

• Use the Bayesian machine to do inference. The Bayesian machine can finally be used to infer variables based on
observations, using the methodology described in the first part of this Supplementary Note.
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Supplementary Figure 5. The different steps of a project with the Bayesian machine, from training to on-chip
inference. a Diagram summarizing the main steps of a project involving the Bayesian machine, from Bayesian model building
to using the Bayesian machine to perform on-chip inference. b Illustration of the different steps of normalization, discretization,
and quantization of the likelihood factors, necessary before programming the likelihood memory arrays on chip.

Supplementary Note 5: Optimal choice of the LFSR seeds of the Bayesian machine
In its original form, stochastic computing relies on high-quality and non-correlated random numbers. Generating high-quality
random bits and maintaining the independence of stochastic bits after they have been processed by stochastic computing circuits
is a major challenge, leading to costly strategies like randomness isolation and regeneration6. However, in practice, multiple
works have shown that pseudorandomness and correlations are not necessarily a fundamental issue for stochastic computing, if
they are properly considered in the system design7. In the particular case of our Bayesian machine, we found that we could rely
on low-quality, low-cost LFSR-generated random numbers, and still get accurate Bayesian inference, under the condition of
initializing the LFSRs with well-chosen seeds.

Our design exploits one eight-bit LFSR per column, which generates pseudorandom numbers with a periodicity of only
255 clock cycles. Supplementary Fig. 6 highlights the correlation between the random numbers generated by the LFSRs, by
plotting the 255 values generated by each LFSR as a function of the 255 values generated by each other LFSR at the same time.
This Figure is plotted with initially random-chosen LFSR seeds, as in Fig. 3c of the main article. Obvious correlations are
observed between some LFSR. These correlations cause some inputs to the stochastic computing AND gates of the Bayesian
machine to be correlated, leading to the deviations between Bayes’ law and measurements in Fig. 3c.
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This type of correlation is observed with most choices of LFSR seeds. However, the choice of seeds used to generate
Supplementary Fig. 7, referred to as “optimal” in the main article, shows dramatically reduced correlations. This allows
obtaining the highly accurate results of Fig. 3d, and suggests that these seeds should be used for all computations. Due to the
periodicity of the LFSR, LFSR initialization needs to be performed only once, when the system is turned on.

The gesture recognition task of Fig. 4 of the main paper requires six LFSRs. We also used eight-bit LFSRs and optimized
the seed choice for this situation. Fig. 8 shows the correlations between the LFSR outputs in the optimized choice used for all
the results of Fig. 4.

Supplementary Figure 6. Correlations of the random numbers generated by four LFSRs, with initially randomly
chosen seeds used (as in Fig. 3c). Each graph presents the output of one of the four LFSRs of the Bayesian machine, as a
function of the output of another LFSR. Each graph contains 255 points corresponding to the 255 cycles of operation of the
Bayesian machine. Graphs on the diagonal (LFSR1/LFSR1, LFSR2/LFSR2, LFSR3/LFSR3, LFSR4/LFSR4) appear as x=y
lines, by definition. The presence of very discernible patterns in some of the graphs (LFSR1/LFSR3, LFSR1/LFSR4), indicates
the existence of a strong correlation between the output of some LFSRs. On the other hand, the outputs of some LFSRs appear
largely uncorrelated (LFSR1/LFSR2, LFSR2/LFSR3, LFSR2/LFSR4). The seeds for the four LFSRs are, respectively, in
hexadecimal representation: 50, E9, 10, and C6.
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Supplementary Figure 7. Correlations of the random numbers generated by four LFSRs, with the optimal seeds used
in Fig. 3d. This Figure, plotted with the same conventions as Supplementary Fig. 6, shows the absence of evident correlation
between the outputs of the different LFSRs. The seeds for the four LFSRs are, respectively, in hexadecimal representation: EB,
FB, 7F, and 5C.
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Supplementary Figure 8. Correlations of the random numbers generated by six LFSRs, with the optimal seeds used
for all gesture recognition results of the main paper. This Figure, plotted with the same conventions as Supplementary
Fig. 6, shows the absence of evident correlation between the outputs of the different LFSRs. The seeds for the four LFSRs are,
respectively, in hexadecimal representation: EB, FB, 7F, 5C, F3, and D6.
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Supplementary Note 6: Measurements of the likelihoods stored in the demonstrator
For our experiments, we programmed the patterns presented in Suppl. Fig. 9a in the likelihood memory arrays. These artificial
patterns were constructed so that performing Bayesian with random inputs allows exploring the whole range of possible output
probabilities (see Figs. 3c,d of the main article), allowing to test the functionality of the demonstrator.

Suppl. Fig. 9b shows the likelihoods actually programmed in the demonstrator, as measured right after the programming
operation (no program-and-verify operation was performed). No error is seen with regards to the intended pattern, highlighting
the performance of our complementary approach to program the memristors. Suppl. Fig. 9c shows measurements of the stored
likelihoods five months after programming (the demonstrator was stored at room temperature during these five months). No
error is seen.

Supplementary Figure 9. Measurements of the likelihoods stored in the demonstrator. a Patterns measured before
forming. The results of the measurement appear random. b Patterns intended to be stored. c Patterns measured immediately
after programming. d Patterns measured after five months, during which the demonstrator was stored at room temperature. a, c,
d are presented in colors to express that they represent on-chip measurements, b is presented in black-and-white to express that
it represents an intended pattern.
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Supplementary Note 7: Features used for the gesture recognition task
Gesture recognition is performed based on ten features (F0 to F9) extracted from recordings of the three-axis accelerator of an
inertial measurement unit (see Methods of the main method). Before feature extraction, we subtracted the average values of the
recording to eliminate gravity.

The first feature F0 is the square root of the mean value of the squared acceleration

F0 =
√

1
T ∑t (ẍ2(t)+ ÿ2(t)+ z̈2(t)). (2)

Features F1, F2, and F3 represent the maximum acceleration along each axis:

F1 = max
t
{|ẍ(t)|}/F0

F2 = max
t
{|ÿ(t)|}/F0

F3 = max
t
{|z̈(t)|}/F0.

(3)

F4 and F5 are calculated using the variance of the acceleration on the three axes:

Var ẍ =
1
T ∑

t
ẍ2(t)

Var ÿ =
1
T ∑

t
ÿ2(t)

Var z̈ =
1
T ∑

t
z̈2(t).

(4)

We then order those three variances as “min” for the smaller one, “inter” for the middle one, and “max‘” for the bigger one and
calculate F4, and F5 as

F4 =
√

min{Var ẍ,T Var ÿ,Var z̈}/max{Var ẍ, Var ÿ,Var z̈}

F5 =
√

inter {Var ẍ,Var ÿ,Var z̈}/max{Var ẍ, Var ÿ,Var z̈}.
(5)

The last features are based on the derivatives series of the acceleration, called “jerk”, calculated via finite difference and
with a filtering:

...x (t) =
ẍ(t +1)− ẍ(t −1)

2
...y (t) =

ÿ(t +1)− ÿ(t −1)
2

...z (t) =
z̈(t +1)− z̈(t −1)

2
jerkk(t) = 0.4×

...
k (t)+0.3× (

...
k (t −1)+

...
k (t +1)) with k = x; y; z

(6)

(we take as convention the values before and after the recording as equal to zero). Features F6 to F9 are then calculated similarly
to F0 to F3, with the jerk replacing the acceleration:

F6 =

√
1
T ∑

t

(
jerk2

x(t)+ jerk2
y(t)+ jerk2

z (t)
)
/F0

F7 = max
t
{| jerkx(t)|}

F0

F6

F8 = max
t
{| jerky(t)|}

F0

F6

F9 = max
t
{| jerkz(t)|}

F0

F6
.

(7)
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Supplementary Note 8: Impact of device variability on the Bayesian machine
Device variability is a strong limitation of memristor technology, particularly for in-memory and near-memory computing,
where strong error-correction codes can not be used. Our design is using a simple strategy to reduce the impact of variability:
the bit cell of the memory arrays is composed of two memristors (2T2R structure), and bits are stored in a complementary
fashion (see Supplementary Notes 2 and 3, and Supplementary Figs. 2 and 3.

Supplementary Fig. 10a illustrates the impact of device variability in the conventional 1T1R approach. In this case,
memristors in LRS mean state zero, and memristors in HRS mean state one. Therefore, a bit error happens whenever a device
meant to be in LRS has a resistance higher than the threshold between LRS and HRS, or a device meant to be in HRS has a
resistance lower than this threshold. In the 2T2R approach of the Bayesian machine (Supplementary Fig. 10b), conversely, two
memristors are always programmed in a complementary fashion. The programmed state is read by comparing the resistance of
the two memristors, using a precharge sense amplifier (see Supplementary Note 3). In that case, a bit error happens if a device
programmed to LRS has a resistance higher than its complementary device programmed to HRS. Therefore, both devices have
to be in a tail of distribution for an error to happen, making bit errors much less likely.

The efficiency of the 2T2R approach to reduce bit errors is confirmed in Supplementary Fig. 10c. This Figure plots the
bit error rate of the 2T2R approach as a function of the one of the 1T1R approach, obtained experimentally and theoretically.
The theoretical result assumes a perfect sense amplifier. The experimental results are reproduced from8 and were obtained
on a different integrated circuit based on the same technology than the Bayesian machine (the Bayesian machine is entirely
dedicated to 2T2R and does not allow estimating the bit error rate of the 1T1R approach). We also plotted the error rate that
would be obtained when using a conventional Single Error Correcting/Double Error Detecting correction code (SECDED, or
extended Hamming) that doubles the number of memristors, as our approach. We see that our approach reduces the number of
bit errors almost equivalently to the SECDED code. However, the SECDED code requires area, delay, and energy-costly error
decoding circuits, while, in our approach, error correction happens naturally within the sense amplifier without any additional
cost.

Thanks to the power of the 2T2R approach, we observed no bit error in the Bayesian machine when using the programming
conditions reported in the Methods section of the main article and in Supplementary Note 2. Still, for fundamental reasons, it is
important to understand the impact that bit errors in the memory would have on the operation of the machine. Suppl. Fig. 11
shows the results of simulations of the scaled-up Bayesian machine on the gesture recognition task, where bit errors have been
artificially added into the likelihood memory arrays. Results are reported both using the conventional stochastic computing
strategy with 255 cycles, and the power-conscious strategy, which stops computation as soon as one row provides a one output
(see main text). The results of the power-conscious technique are shown for computations with varying maximum numbers of
clock cycles. The accuracy on gesture recognition shows high resilience to these bit errors, both in the cases of conventional
and power-conscious stochastic computing. Even for bit error rates as high as 10−2, accuracy is reduced by only 0.7 percentage
points with the conventional stochastic computing strategy. This result is similar to what has been observed in hardware neural
networks8 and seems surprising at first: bit errors can affect the most significant bits of stored values, and therefore change the
stored likelihoods very significantly. The tolerance can be tied to two reasons. First, the stochastic nature of computing means
that a majority of rows give zero value (see also Supplementary Note 10). Memory errors in such rows typically have no impact
on the final result. Second, the different features used as inputs of the Bayesian machine carry partially redundant information
(see Supplementary Note 7). Therefore, an error in a likelihood can be compensated by the likelihoods concerning the other
inputs, visibly providing high resilience to the Bayesian machine.
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Supplementary Figure 10. Reduction of the effects of device variability with the 2T2R approach. a In the conventional
approach, an error happens if a device programmed to LRS has a resistance higher than the threshold between LRS and HRS,
or if a device programmed to HRS has a resistance lower than this threshold. b In the 2T2R approach of the Bayesian machine,
an error happens if a device programmed to LRS has a resistance higher than its complementary device programmed to HRS:
both devices have to be in a tail of distribution for an error to happen. c Error rate of the 2T2R approach as a function of the
error rate of the 1T1R approach, in simulations assuming a perfect PCSA (black line) or experimentally measured on the
integrated circuit of8 (light blue points). Blue line: error rate of a SECDED ECC using the same number of devices as our
2T2R approach (see Supplementary Note 8).
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Supplementary Figure 11. Impact of errors on memory bits on the accuracy of the task of gesture recognition.
Simulated mean accuracy on the task of gesture recognition, when bit errors have been artificially introduced in the memory
bits, as a function of memory bit error rate. The simulation was repeated 40 times, the shadows around the graph show the
standard deviation of the mean accuracy along with these repetitions. The results are presented for the power-conscious mode
with a cutoff at 50, 100, and 255 cycles, and for the conventional stochastic computing mode using all 255 cycles.
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Supplementary Note 9: Impact of single-event upsets on the Bayesian machine

Supplementary Figure 12. Impact of single-event upsets on the accuracy on the task of gesture recognition. Simulated
mean accuracy on the task of gesture recognition, when single-event upsets have been artificially introduced in the computation,
as a function of memory bit error rate. The single-event upsets are introduced at the output of the Gupta circuits (i.e., on the
stochastic bit streams created by each likelihood block). The simulation was repeated 100 times, the shadows around the graph
show one standard deviation of the mean accuracy along these repetitions. The results are presented for the power-conscious
mode with a cutoff at 50, 100, and 255 cycles, and for the conventional stochastic computing mode using all 255 cycles.

The Bayesian machine functions based on the principles of stochastic computing, meaning that the final decision is based
on the statistics over several clock cycles. This mode of operation means that bit upsets have typically no catastrophic effects
and get naturally averaged out. This feature provides the Bayesian machine with a natural immunity to single-event upsets,
which may happen in a radiation-rich environment, especially when operating the machine at low supply voltage.

Suppl. Fig. 12 shows simulations of the gesture recognition task where single-event upsets have been artificially introduced
at the output of the likelihood blocks. Simulations are presented using conventional stochastic computing operation with 255
cycles and the power-conscious approach with several maximum numbers of clock cycles. The accuracy shows outstanding
immunity to single-event upsets, particularly in the conventional stochastic computing operation. Even with 10% bit errors, the
final accuracy is barely affected. Immunity is largely improved with regards to the impact of memory bit errors (Suppl. Fig. 11),
as, unlike in the case of memory, a bit error has an impact on a single cycle and may be averaged out by subsequent cycles. The
power-conscious mode, which stops computation as soon as a one is produced at any output, is highly resilient to single-event
upsets, but less than the conventional mode. This result is natural, as single-event upsets then can produce an incorrect one and
stop computation on a wrong answer. In contexts with high levels of single-event upsets (extreme environments), conventional
stochastic computing should therefore be preferred.
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Supplementary Note 10: Explainability of the gesture recognition task
A very significant benefit of Bayesian approaches is their explainability. In the case of our Bayesian machine, just looking at
the standard deviation of the likelihood associated with each input allows understanding which features are important to the
decision (low standard deviation), and which ones are accessory (high standard deviation). Explainability is desirable in many
critical situations for ethical and regulatory reasons9. Additionally, the fact that Bayesian inference takes decisions based on
explainable models has very practical consequences, in particular when we use them with inputs that differ from those used
for training the model. In this type of situation, neural networks, which function by fitting training data, tend to give sure and
unpredictable answers. Due to this issue, neural networks easily give seemingly high-confidence clearly-wrong answers when
presented with out-of-distribution data10, 11. By contrast, Bayesian models excel at recognizing situations where they are not
able to provide a reliable answer12.

To illustrate this capability in the case of our Bayesian machine, we present results about the behavior of Bayesian machines
trained on gesture recognition, when they are presented with data from another subject as the one that they were trained to
recognize. We show that in a vast majority of these cases, the machine correctly identifies that it cannot provide a reliable
answer. More specifically, there can be two signatures that the Bayesian machine cannot provide a confident answer:

• When some observations of the input are particularly unlikely to happen simultaneously in the training data, then all
rows of the Bayesian machine may produce only, or almost only, zeros. This situation can arise, for example, in the event
of a failing sensor, the output of which becomes incoherent with the other sensor readings.

• If the observations are not the signature of a particular situation, then all rows may produce a balanced number of ones.
This situation corresponds to a uniform probability distribution, i.e., a situation where the entropy is maximal, and the
model does not show a strong preference for any answer.

Based on these considerations, we can define a metric to determine if the Bayesian machine is confident about its output
(Supplementary Fig. 13a illustrates on examples of how this processing is done):

• Concerning the first criterion, we count the number of ones for the four rows. If the number of ones on all rows is smaller
than a certain pre-chosen proportion T of the maximal number of cycles (here 255 cycles), which we call certainty
threshold, we consider that the Bayesian machine is uncertain.

• Concerning the second criterion, we calculate the sum of ones for each row and we divide the sum on the row with the
highest number of ones by the total sum on the four rows. The machine is considered to provide a certain result if this
ratio is higher than 50%.

Supplementary Fig. 13b shows graphically the power of this evaluation of uncertainty. This Figure summarizes the results
of multiple experiments. We have presented each gesture of our dataset to the Bayesian machines trained for each subject. The
x-axis is separated into ten sections corresponding to the ten subjects, and for each subject, the four points are respectively the
signature, the digits one, two and three. The y-axis corresponds to the ten Bayesian machines trained for each subject, and the
four data points represent its four outputs (the digits one, two, three, and the signature). Each point in the colormap indicates
the proportion of gestures corresponding to the x-axis that has been recognized confidently as the output of the y-axis. For this
Figure, a certainty threshold of 10% was used.

The desirable result is that when input and output subjects are mismatched, the colormap appears all-white (meaning the
machine provided no certain results). This is indeed what is largely seen. An exception is the Bayesian machine for subject six,
which tends to recognize a gesture for subjects seven, eight, and nine. Conversely, when input subject and Bayesian machine
subject match, the desired result is a colormap all-black on the diagonals and white elsewhere. The results are very close to this
ideal behavior, with a few gray points indicating the errors of the Bayesian machine.

Supplementary Table 1 details these results quantitatively. It also illustrates how the behavior of the Bayesian machine can
be changed by adjusting the certainty threshold. When a gesture corresponding to the wrong subject is presented, the Bayesian
correctly declares uncertainty 94% to 98% of the time, depending on the certainty threshold. When gestures from the correct
subject are presented, the proportion of time where the machine makes a true mistake (i.e., it identifies the wrong gesture while
being certain) is 5% for a certainty threshold of zero, and can be reduced to 3% with a certainty threshold of 10%. However,
this comes at the prize or more gestures being flagged uncertain. These results illustrate how an operator can adjust the behavior
of the Bayesian machine, by prioritizing the elimination of incorrect answers, or the minimization of uncertain answers. This
degree of freedom can be particularly useful for medical tasks where unjustified intervention due to a wrong answer can have
more cost than non-intervention based on an uncertain answer.
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Supplementary Figure 13. Capability of the Bayesian machine to identify uncertain situations. a Schematic illustration
of the two signatures of an uncertain Bayesian machine (see Supplementary Note 10). b Simulated mean response of the
Bayesian machine, for the gesture recognition task, in situations where a gesture presented to the Bayesian machine may be
from a subject different than the one the machine has been trained for. X-axis: presented gesture. For each subject, the four
points represent the gestures one, two, three, and the signature. Y-axis: used Bayesian machine. The different points represent
the different outputs of the machine with the same order as the X-axis. Color: proportion of cases leading to the output in the
Y-axis for gestures presented corresponding to the X-axis, with the Bayesian machine providing a certain output. The results
are presented for a certainty threshold T of 10%.
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Case when a gesture is presented to the Bayesian machine corresponding to a different subject

T=0 T=5% T=10%
Bayesian machine was uncertain 93% 97% 98%

(desired behavior)
Bayesian machine provided a certain output 7% 3% 2%

Case when a gesture is presented to the Bayesian machine corresponding to the appropriate subject
T=0 T=5% T=10%

Bayesian machine was certain about the correct gesture 88% 80% 71%
(desired behavior)

Bayesian machine was certain about an incorrect gesture 7% 6% 5%
Bayesian machine was uncertain 5% 14% 24%

Supplementary Table 1. Quantitative behavior of the Bayesian machine when input gestures and recognized gestures
may be subject-mismatched. The results are presented for three values of the certainty threshold T.
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Supplementary Note 11: Training the gesture recognition task with reduced datasets

Supplementary Figure 14. Impact of training dataset size on the accuracy of the Bayesian machine. a Illustration of
the small-data challenge. When using a large representative training dataset, likelihood models can be fitted directly to the
training data. Reduced datasets, on the other hand, may be non-representative, and directly fitting a likelihood model to the data
can lead to meaningless results. Incorporating a prior when fitting the likelihood, however, can fix this issue. This possibility is
an important benefit of Bayesian approaches. b Mean simulated accuracy of Bayesian machines as a function of the number of
examples used in the training dataset. The accuracy is plotted in a situation where likelihood models are Gaussian fits of the
training data, and when a normal inverse chi-square prior was used. All results are presented using the conventional stochastic
computing method with 255 cycles. All results are also cross-validated, with 20 different separations between training and
testing sets.

An important benefit of Bayesian approaches is that they adapt well to the quantity of training data. Fitting machine learning
models when very little training data is available is highly challenging, as the training set is not representative. In this situation,
machine learning models tend to “overfit” the few training examples that are given, and to give meaningless predictions when
data that differ from the training examples is given. Fortunately, Bayesian models can deal particularly well with this type of
situation, due to their explainability (see Supplementary Note 10), which allows incorporating prior assumptions into the fitting
process.

For example, Suppl. Fig. 14a illustrates the challenge of training the Bayesian machine on the gesture recognition task
in a very small-data situation. When enough training data is available, Gaussian likelihood models can be directly fitted to
this data. When very little data is available, fitting a Gaussian to the data easily gives a meaningless result. A solution is to
incorporate prior assumptions on what the mean value and standard deviation are expected to be. In the Bayesian statistics
field, an established technique for doing this is to infer likelihood model parameters from the training data using a prior on the
model. If we want to fit a Gaussian model with mean µ and variance σ2 to N data points xi, Bayesian inference suggests that
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the probability distribution on the model parameters given the values of the datapoint is

p(µ,σ2|x1, ...,xN) ∝ p(x1, ...,xN |µ,σ2)× p(µ,σ2) ∝

N

∏
i=1

exp(−(xi −µ)2/2σ
2)× p(µ,σ2), (8)

where p(µ,σ2) expresses the prior belief on the values of µ and σ2. A relatively established choice13 for this prior is the
normal inverse chi-squared (or NIX) distribution:

p(µ,σ2) ∝

(
1

σ2

)(ν0+3)/2

exp

(
−

ν0σ2
0 +κ0 (µ −m0)

2

2σ2

)
. (9)

In this prior, m0 expresses the believed mean value and κ0 the degree of confidence about it, σ2
0 the believed value of the

variance, and ν0 the degree of confidence about it. The normal inverse chi-squared distribution is the conjugate prior for the
normal distribution that allows the derivation of closed-form expressions: by combining equations (8) and (9), it can be shown
(see13, p. 136) that the expectation for µ is

µ̄ =
κ0m0 +∑

N
i=1 xi

κ0 +N
. (10)

The expectation for σ2 is

σ̄2 =
1

κ0 +N

(
ν0σ

2
0 +

N

∑
i=1

(xi − x̄)2 +
Nκ0

κ0 +N
(m0 − x̄)2

)
, (11)

where x̄ = (∑N
i=1 xi)/N. Equations (10) and (11) can be used to train likelihood models in small data situation. For our work,

we normalize each feature with zero being the lowest value in the small-data training dataset and one the highest value. We
choose as prior m0 = 0.5, σ2

0 = 0.25, with a confidence κ0 = 1, ν0 = 1.
Supplementary Fig. 14b shows the mean accuracy for the gesture recognition task, as a function of the number of examples

of gesture that was used for training. The results are cross-validated, meaning that 20 different separations between the training
and testing sets are performed for each situation. The results are presented when the likelihoods are just fitted to the data (as
prescribed in the main paper), and when this operation is done with a prior using equations (10) and (11). When using a prior,
an accuracy of 78% is obtained when using only two samples per gesture, 87% accuracy is obtained using five samples. Without
the prior, respectively seven and twelve samples per gesture are needed to obtain the same accuracies. When the number of
training examples is increased, the benefits of the prior progressively disappear: for more than 20 examples, using the prior
brings no discernible benefits. These results highlight the excellent ability to deal with small-data situations, which may be
particularly useful, e.g., for medical applications.
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Supplementary Note 12: Discussion of the design choices of the Bayesian machine
Comparison with memristor-based neural networks accelerators
In recent years, several realizations have shown the potential of using memristors or other emerging resistive memories such as
phase-change memory (PCM) and spin-torque magnetic random access memory (MRAM) for machine learning accelerators.
All these implementations associate closely memory and computing functions to eliminate the energy cost of the von Neumann
bottleneck. Besides this fundamental concept, they differ massively in the way that they use the memory devices.

At the end of the main paper, Extended Data Table 1 lists major characteristics of our work and high-profile fabricated
machine learning accelerators employing in- or near-memory computing based on emerging memories, published since 2020.
All these published works target neural networks: our system is the first fabricated memristor-based Bayesian machine.
Interestingly, these neural network realizations show a wide range of design choices, reflecting adaptation to different types of
technologies, and different design styles. Still, Bayesian computing differs significantly from neural networks, which led us to
choices that stand out.

Some memristive technologies and phase change memories feature analog storage. Some neural network implementations
(14,15,16 and17) exploit this property. On the other hand, others rely on single-bit basic cells to simplify the periphery circuitry18

or due to limitations of the device19. Note that19 relies on single-bit-per-cell storage, but still uses analog computation to
compute neuronal activation function. Despite the complexity of the associated analog or mixed-signal circuitry (analog-to-
digital or time-to-digital-converter), the use of analog storage can be attractive for neural network implementations for two
main reasons:

• The basic operation of a neural network, multiply-and-accumulate (MAC), can naturally be realized using Ohm’s law
and Kirchhoff’s current law when memristors are used this way. When performing this in-memory computing operation,
several devices can be read simultaneously, using the same periphery circuitry. This parallelism greatly reduces the
energy cost of analog and mixed-signal periphery circuitry.

• Only low precision is required for synaptic weight for neural network inference.

The situation is different for Bayesian inference. First, MAC is not needed, greatly limiting the main benefit of analog
computation in neural networks and increasing its energy cost due to periphery circuits. Additionally, higher precision is
required for storing likelihood than for synaptic weights in neural networks (our machine uses eight-bit precision, which is not
achieved with analog memristors). For this reason, our design relies on single-level bit cells read with extremely simple and
highly energy-efficient precharge sense amplifiers. These sense amplifiers apply a current to the memristors only as long as
necessary to differentiate the resistance between a memristor and a complementarily-programmed one (see Supplementary
Note 3), whereas the analog approach needs to apply a current long enough for the voltages to stabilize, which usually involves
relatively slow feedback circuit. Also, our approach avoids the need for energy-hungry analog-to-digital or time-to-digital
converters, as the sense amplifiers naturally provide a digital output. The reliance on this periphery circuitry has other important
benefits that distinguish our work from neural networks implementations.

• Our circuit is highly flexible in terms of supply voltage (see main article, Fig. 3). Due to its differential nature, the sense
amplifier functions over a wide range of voltage, without any need for recalibration or adjustment of any reference. This
feature can be particularly useful in environments with little energy available (e.g., relying on variable energy harvesting),
or in conjunction with dynamic voltage scaling. By contrast, neural network accelerators employing analog and/or
mixed-signal circuitry are designed to function at a specific supply voltage.

• Analog approaches usually require calibration and compensation mechanisms to eliminate circuit and device imperfections
(e.g., voltage offsets due to circuit variability)16–19. Our simple read circuit does not need any of this, greatly simplifying
circuit operation and its flexibility in all types of conditions.

The memristor-based neural network accelerators have reached better technological maturity than our Bayesian system,
with several systems implemented in sub-30-nanometer CMOS17–19. The memory array in18, based on a fully commercial
technology, possesses an impressive number of 2M devices. At the same time, state-of-the-art memristor-based network
accelerators usually feature a single memory array15–19, or in the case of14, three independent memory arrays. Our Bayesian
system is composed of 16 tiny memory arrays that function together to perform Bayesian inference. Our system, therefore,
validates the possibility of distributing locally to multiple memory arrays the multiple higher-than-nominal voltages to form
and program memristors (see Supplementary Note 2).

This discussion allows us to clearly define the contribution of our realization:

• Our integrated circuit is the first fully fabricated memristor-based Bayesian inference system.
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• Compared with memristor-based neural network accelerators, our system shows outstanding flexibility and simplicity
(possibility to vary supply voltage, absence of calibration or compensation), and high robustness to read disturb (see
Supplementary Note 3), device variability (see Supplementary Note 6), and outstanding robustness to single-upset events
(see Supplementary Note 7). All these features are due to the use of single-level cells read with particularly simple,
robust, and energy-efficient precharge sense amplifiers.

• Our integrated circuit is a full system that features 16 memory blocks that perform Bayesian inference together, therefore
solving the challenge of the distribution of the various voltages to form memristors.

Choice of Bayesian paradigm

This work Dalgaty et al. Dalgaty et al.
202120 202121

Current status Full system implemented Hybrid SW/HW exp. Hybrid SW/HW exp.
Device HfOx memristor HfOx memristor HfOx memristor

Use of the device Local digital memory Local analog memory Local analog memory
Concept Low-energy Bayesian inference Bayesian learning Bayesian neural network inference

Gao et al., Vodenicarevic et al., Faria et al.,
202122 201723 201824

Current status Simulated Hybrid SW/HW exp. Simulated
Device Memristor Stochastic MTJ Stochastic MTJ

Use of the device Local analog memory RNG RNG
Concept Resilient neural network inference Low-energy Bayesian inference Low-energy Bayesian inference

Supplementary Table 2. Comparison of our work with approaches of the literature associating nanoelectronics with
Bayesian concepts. Abbreviations. SW: software. HW: hardware. MTJ: magnetic tunnel junction. RNG: random number
generation.

In the literature, other works have explored connections between emerging memories and Bayesian inference. Supplementary
Table 2 lists several recent works along this idea, and compares them with the Bayesian machine.

Our Bayesian machine is the only fully fabricated nanomemory-based Bayesian system. Other works from the state of the
art either relied on computer simulations22, 24, or on hybrid hardware/software realizations, where experimental nanodevices are
used, and the rest of the system is simulated on a computer20, 21, 23. Second, and more fundamentally, the Bayesian machine
differs conceptually from other proposals of the literature.

The works of20, 21 focus on the implementation of Bayesian neural networks, a special class of Bayesian model that can
model uncertainty much better than conventional neural networks, but do not feature the explainability of the more traditional
Bayesian inference addressed by our machine. These two works use memristors as main memory, as in our machine, and
exploit the variability of memristors as a source of random variable. On the other hand our machine focuses on reliability by
eliminating the impact of memristor variability (see Supplementary Note 6).

The work of22 uses Bayesian inference in a very different way. Unlike all other works reported in Supplementary Table 2, the
final goal of this work is to implement non-Bayesian machine learning model (a conventional neural network). By treating these
networks as Bayesian neural networks modeling memristor variability, the authors are able to tolerate memristor imperfection
better than more conventional approaches. In this work, memristors also implement memory.

References23, 24 differ from all other works of Supplementary Table 2, in that the nanodevices are not used as memory, but
as random bit generators (replacing the linear feedback shift registers). These works are not full-system studies, as they do not
address the memory question. Also, they focus on random variables with binary values, unlike our Bayesian machine that deals
with multiple-valued inputs and outputs. On the other hand, we see in the next section that incorporating some ideas from these
works is a natural prospect for our Bayesian machine.

Assessment of stochastic computing and of the reliance on linear-feedback shift registers for random bit
generation
Finally, we evaluate the choice of stochastic computing for performing Bayesian inference. A major benefit of stochastic
computing is its intrinsic tolerance to single-event upsets (see Supplementary Note 9). It also has favorable properties in terms
of energy consumption.
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To evaluate stochastic computing, we designed an alternative implementation of the Bayesian machine relying on con-
ventional integer (i.e., fixed point) arithmetic, and using the same 130-nanometer process as the one use for the stochastic-
computing-based Bayesian machine. We find that this implementation requires 0.31 nanojoules to perform the arithmetic
operations of Bayesian inference. The energy consumed by the stochastic computing version of the Bayesian machine is
reported in Fig. 4f of the main article. We see that when using the power-conscious approach, the stochastic computing
version is always at least three times more energy-efficient than the conventional arithmetic version. On the other hand, the
conventional stochastic computing version is more energy-efficient than conventional arithmetic if we target an accuracy on
gesture recognition of 86% or less. This result is consistent with the general idea that stochastic computing is favorable in
situations where the highest precision is not required.

The energy efficiency of the stochastic Bayesian machine could significantly improve in the future. Fig. 4d of the main
article reveals that in the current design, 75% of the energy is spent for the random number generation by the LFSRs and their
distribution to the likelihood blocks (“vertical wires”). Several recent works have shown the possibility of generating random
bits at a very low energy cost using stochastic nanodevices such as superparamagnetic tunnel junction23–26 or random telegraph
noise in RRAMs27. These proposals rely on natural fluctuations of the devices due to thermal or random telegraph noise
and can therefore generate random bits relying only on read operation, at a very low cost. They could be distributed within
likelihood arrays, thanks to their small area, and generate random bits at a much lower energy cost than LFSR (in the order
of femtojoule/bit) and without requiring vertical wires. In the particular case of “p-bits”, the Gupta circuit, which consumes
in our design 22% of the inference energy could also be avoided, as this concept provides random bits with easily adjustable
probabilities25, 26.

Note that other works have proposed to generate random bits by exploiting the write operations of emerging memories (e.g.,
in spin-torque MRAM28 or in RRAM29). These proposals can generate high-quality random bits at high speed, but would not
necessarily be adapted for the Bayesian machine. Due to the need for a write operation to generate a random bit, their energy
consumption is comparable or higher than the LFSRs used in the current version of the machine.
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