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1. List of data points in Fig. 1 
 

Model Name Year Compute (FLOP) FLOP/W of GPU Power (W) Energy (TWh) 
Dropout 2012.5 1.81E+17 1.56E+10 1.16E+07 3.22E-09 
Visualizing and 
Understanding Conv 
Nets 2013.8 5.36E+17 1.83E+10 2.93E+07 8.15E-09 
DQN 2013.9 2.33E+15 1.83E+10 1.28E+05 3.55E-11 
seq2seq 2014.75 8.04E+18 1.83E+10 4.40E+08 1.22E-07 
VGG 2014.7 1.04E+19 1.83E+10 5.68E+08 1.58E-07 
DeepSpeech2 2015.85 2.59E+19 1.83E+10 1.42E+09 3.94E-07 
Xception 2016.7 4.32E+20 1.83E+10 2.37E+10 6.57E-06 
Neural Architecture 
Search 2016.8 1.90E+21 1.83E+10 1.04E+11 2.89E-05 
Neural Machine 
Translation 2016.71 6.83E+21 1.83E+10 3.74E+11 1.04E-04 
Alex Net 2012.3 5.01E+17 1.56E+10 3.20E+07 8.90E-09 
AlphaGoZero 2017.8 1.57E+23 4.97E+10 3.17E+12 8.79E-04 
AlphaZero 2017.9 3.72E+22 4.97E+10 7.48E+11 2.08E-04 
GPT 3 2020.5 3.14E+23 4.97E+10 6.33E+12 1.76E-03 
Gopher 280B 2021.95 6.31E+23 6.15E+11 1.03E+12 2.85E-04 
GPT 2 2019.2 2.49E+21 4.97E+10 5.01E+10 1.39E-05 
Megatron Turing 530B 2020.9 1.35E+24 4.97E+10 2.72E+13 7.55E-03 
Megatron NLG 2019.7 9.10E+21 4.97E+10 1.83E+11 5.09E-05 
Pathways Language 
Model 2022.25 2.50E+24 6.15E+11 4.07E+12 1.13E-03 

 
Supplementary Table 1: Model and GPU dataset found in Supplementary Ref. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 
 

2. Does AI represent all of computing? 
 
AI represents the currently dominant computing market. Past and future computing approaches 
will certainly not embody the flavor of AI we presently witness. However, trends in AI (such as 
the economics-driven growth over the past decade) are indicative of the appetite for computing in 
the economic world. The trends we note here (e.g., a doubling time in performance of 1.3 to 3 
years) held true for the early days of computing as well (e.g., Moore’s-law-driven hardware 
advances and more recent architecture-driven performance advances). Quantum, reversible, 
analog, optical computing, etc., will become dominant in the years to come, and the types of 
problems addressed by them will also evolve, but all such computing approaches strive to maintain 
the high demands of the performance improvement trends that have created a robust market 
demand. 
 
3. Computing trends indicating economics-limited infrastructure development 
 
The initial 6 years of AI (post the 2012 AlexNet resurgence) saw an exponential growth that was 
limited only by improvements to model quality and their convergence accuracy.2 In other words, 
the infrastructure required to support models under research already existed for the initial duration 
of AI research, and the costs of setting up of such infrastructure was not a significant factor in 
pursuing more complex models. Since around 2018, this trend has witnessed fluctuations and 
saturation, which were limited by economics. As an example, the most expensive published model 
(GPT-3) required over US$ 10 million to train once to perform one task (natural language 
processing). It is estimated that GPT-4’s cost was over US$ 100 million. This cost is now a major 
factor in funding of research into newer models, which was not much of a concern roughly 5 years 
ago. We certainly do not envision any hard constraints posed by costs, and the costs of future 
single-task computing infrastructure (for AI or other computing approaches) may very well far 
exceed the present limits we see today. However, we suggest that such costs will be driven by 
economic needs and critical commercial (or defense) applications, and not merely due to academic 
or research interests. It is worth considering two trends – AI (along with training) will be 
increasingly moved to personalized devices as energy efficiency allows, and we are already 
witnessing fluctuations and saturation in AI model sizes. These trends mean that there will be 
empirical limits on the average expenditure on a single AI model, which we predict to be US$ 10 
billion in today’s value (based on the fact that today’s largest corporations are valued at US$ 3 
trillion). Of course, there will be outliers to these trends in the form of unusually large models 
being trained for critical commercial or societal needs, which will likely be achieved via 
conglomerations of massive corporations or international governmental collaborations. 
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4. The calculations behind the three exemplary problems 
 
For each of the three problems we consider, we provide details on the assumptions and sources 
used to identify the computing energy per year for today, presented in Fig. 1. While the simpler 
problems (such as weather modeling) are well defined, the larger problems (such as human 
evolutionary simulation) have not been defined in great detail, and in many cases, the parameters 
going into such problems are unknown. As such, the estimates for large-scale problems beyond 
our present reach are bound to have large error bars (by several orders of magnitude, as described 
in our examples below). Nonetheless, these calculations, along with our projections, give us an 
idea of the human generation that will witness solutions to these problems. 
 
4.1. Planetary weather modeling 
 
There are firm calculations of the compute operations required to model Earth’s climate with 
prediction durations of up to two weeks. DeBenedictis3 and Malone et al.4 have established the 
factors by which computing operations must increase on top of present-day climate modeling 
computers. Every additional feature on top of present-day capabilities (e.g., increased spatial 
resolution, inclusion of stratospheric climate, inclusion of biogeochemistry, accounting for 
complex reactions, corrections for drift over time, etc.) will require a computing operations to 
increase by a specific factor. As a result, performing reasonably accurate predictions in planetary 
climate, extending to two weeks with finer time steps (~minutes), would incur a compute factor of 
1010-1012 over present-day computers. We use the Japanese Earth Simulator Project as a baseline 
for today’s climate prediction computing,5 which performs >1013 FLOP/s. Thus, an extrapolation 
with the aforementioned compute factors results in a range of >1023 FLOP/s. We use the minimum 
of this range as the compute required for planetary weather modeling. We then calculate the total 
operations for running such a system for one year continuously (to obtain a yearly compute and 
energy cost), and multiply the resulting quantity with the energy efficiency of a widely available 
advanced GPU (NVIDIA A100), which is about 6.24×1011 FLOP/J. This process results in the 
total energy required for one year of continuous planetary weather forecasting, which is the starting 
point for our predictions in Fig. 1. 
 
4.2. Brain-scale modeling 
 
Brain-like intelligence is likely the prime motivator for the world of AI, which, after all, originated 
from early efforts in the 1940s in modeling neurons using electrical circuits.6,7,8 The level of 
computing required to achieve brain-like intelligence has been debated fiercely.  
 
To date, the largest efforts in brain-scale modeling have used spiking neural network frameworks 
with additional complexity to capture synapse dynamics with four different molecular structures. 
A model simulating 68 billion neurons and 5.6 trillion synapses for 1 minute was run on Japan’s 
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K supercomputer (10.51 PFLOP/s, 12.6 MW) over 10 hours.  AI models that aim towards 
developing a general intelligence utilize simple models of synapses and neurons with lower 
efficiency – however the most computationally demanding part is training the network. It is an 
open question if generalized human-level intelligence will emerge from brain-scale AI models.9 
Thus, there are no firm claims on the compute required to emulate brain-like intelligence, let alone 
consensus. Thus, it is unclear if brain-scale modeling will lead to full brain-like intelligence. 
Therefore, we refrain from using brain-like intelligence as a goal, but we instead aim at brain-scale 
modeling, and identify a compute quantity that uses rigorous estimates. 
 
Sandberg and Bostrom11,12 have laid out 11 levels of details in various brain-scale models. The 
most basic ones account for only the number of neurons, while the more complex ones account for 
neurotransmitters, molecular structures, etc. The most complex ones account for molecular and 
quantum kinetics as well. It is not known if such quantum processes are required in a model to 
capture the phenomenological behaviors of a brain, the answer to which may very well depend on 
the behaviors we seek to simulate.  
 
Here we used the estimate of 1025 FLOP/s of compute (Level 6 as laid out by Table 9 of 
Supplementary Ref. 12) for per second brain emulation which accounts for most known 
physiological parameters, with the exception of cellular structures and quantum/molecular 
kinetics.11,12 From this estimate, we follow a process similar to planetary weather modeling to 
arrive at a yearly energy estimate.  
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Supplementary Fig. 1. A plot of energy against years, similar to Fig. 1 (main text), with wedge-
shaped projections corresponding to various levels of brain-scale modeling, as laid out by 
Sandberg and Bostrom11,12. We have already achieved Level 3 models. In Fig. 1 (main text) 
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4.3. Human evolutionary simulation 
 
Human evolutionary simulation aims to capture the behaviors of individual humans, interactions 
among them, environmental interactions and the resulting evolutionary process. In short, this 
problem is a primer for recreating the entire ecosystem in a simulation, and is often discussed in 
the context of whether we are living in a simulation. Notwithstanding the speculative context in 
which this problem is discussed, we consider its most basic version. The first ingredient required 
is to create phenomenological brain-scale simulations. Second, it is important to consider the 
nature of the interactions among individuals, their environmental conditions, hazards, etc. Prior 
studies have predicted the computational requirements of performing such simulations, of course, 
with varying projections. 11-14 From these studies, we choose the minimum projected 
computational requirements being employed to simulate evolution of 50,000 individuals for 50 
years, which resulted in 1028 FLOP/s. Thus, our estimate is the bare minimum compute needed to 
even address a problem of this type, likely at a very small scale. However, achieving the level of 
compute we have estimated for the simplest form of this problem is a necessary first step in 
interplanetary multi-generational missions and colonies. Similar to the two other problems above, 
we converted FLOP/s to an yearly energy estimate in Fig. 1. 
 
5. A performance doubling time of 1.3 to 3 years 
 
We estimated an optimistic performance doubling time of 1.3 years, following the Huang’s law, 
which accounts for both hardware and non-hardware advances. There are many challenges to 
maintaining this trend, including the obvious physical limits in shrinking devices. Other challenges 
include having to invent new forms of computing, novel algorithms, architectures, software stack, 
etc. As noted in the main text, significant algorithmic advances are not gradual, and are difficult 
to predict. Further, many algorithmic innovations may not be relevant to artificial intelligence. 
Thus, maintaining this trend is our optimistic projection, while this is by no means a limit to any 
new ideas that might break new ground (e.g., quantum computing for specific problems such as 
cryptography). 
 
As it has been generally identified, overhauls in computing require a co-design of the entire 
computing stack from materials to software. However, once the materials hit their physical limits 
(e.g., at a node size of 1 nm, with present node sizes at 5 nm), we will be more constrained in our 
design efforts. In our pessimistic projections, we assume no non-hardware advances. Thus, we 
estimate a pessimistic performance doubling time of 3 years, which is an adverse approximation 
of the slowest that Koomey’s law15 has been (~2.6 years doubling time in the early 2010s). We 
increased the doubling time from 2.6 to 3 years to account for the adverse effects of cluster-scale 
computing compared to chip-scale computing (e.g., due to bottlenecks in inter-chip data movement 
in server racks). 
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6. The limits of digital computers 
 
The Landauer limit is generally accepted as a fundamental limit to the minimum energy required 
to process (flip) a bit of information, which is in the order of kT (k: Boltzmann constant; T: 
temperature).16 For each of the three problems, we calculate the energy required to solve them 
when the supporting infrastructure is operated at the Landauer’s limit. We then report this energy 
as a band in the wedge-shaped projections. Every FLOP takes up to 106 bit flips, assuming high-
precision representation, which can be reduced by modulating the speed required and the 
complexity of the operation involved.17 Here we use this high estimate for bit flips per FLOP 
because most analyses on the various problems we considered here assume double precision 
representation of quantities. Further, operating at the Landauer’s limit means that we consume kT 
amount of energy to manipulate a bit, but we certainly will be spending a significant part of the 
energy in overcoming heating and parasitic losses. To account for such losses, we included a factor 
of 15 in our calculations.  
 
7. The calculations behind solar panel coverage to solve the two larger problems 
 
We considered 400 kWh/m2/year as the energy efficiency of solar panels, which is typical for 
European countries. This quantity could range between 200 and 2500 kWh/m2/year depending on 
the region of the world and other engineering factors. These quantities can be found in several 
publicly available databases.18 We converted the total energy required to solve the two hardest 
problems in our list (i.e., human evolutionary simulation and brain-scale modeling) to area of solar 
panel coverage by dividing the energy required (over a year) to solve the problems by solar panel 
efficiency. Particularly, the solar panel coverage illustrated in Supplementary Fig. 2 was made 
using the energy quantities at the digital limit (the interface between digital and post-digital 
approaches). 
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Supplementary Fig. 2: Illustration of the solar panel coverage required to solve the two larger 
problems in Fig. 1 by operating at the digital limit. Even with the best digital computers, we need 
to cover most of Europe with solar panels to address the simplest forms of human evolutionary 
simulation. 

 
8. The era of memristor-based AI 
 
Over the last five years, research into two-terminal memories, which are generally known as 
memristors, has progressed to manufacturable chip-scale demonstrations of AI functions. Such 
memristor AI chips promise very significant (by up to 5 orders of magnitude) performance 
improvements (in terms of energy and speed) relative to GPUs of similar scales.19 The performance 
improvements are mainly due to the massive parallelism in matrix multiplication operations 
enabled by memristor crossbars. This thrust in research has been accompanied by several small 
start-up companies and large corporations pursuing mass-manufactured memristor-based AI 
chips.20-24 Thus, memristor-based AI that can outperform GPUs is already a reality, though at 
smaller production volumes. The trend is clear – we anticipate production volumes and 
commercial adoption to ramp up over the next five years.19 For a few decades, such memristor-
based AI chips will likely be the backbone of many types of AI, which heavily leverage matrix 
multiplications as their workhorse. The end of the era of memristor-based AI, which is a classical 
computing technique, is likely going to be motivated by the limitations in 3D densities of 
memristor chips (i.e., limitations in size and density scaling), and will likely be succeeded by non-
classical approaches such as quantum computing.  

+ the best digital computers

Europe
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