nature electronics

Review article

https://doi.org/10.1038/s41928-024-01122-2

End-to-end design of ingestible electronics

In the format provided by the authors and unedited

Contents

Supplementary Table 1: Summary of commercial and custom analog front end circuits	2
Supplementary Table 2: Summary of commercial and custom transceiver (TRX) modules	3
Supplementary Table 3: Summary of powering techniques	4
Supplementary Table 4: Summary of localization techniques for ingestibles	5
References	6-7

Tables

Supplementary	Table 1.	Summary of	commercial	and custom	analog	front end	circuits.
---------------	----------	------------	------------	------------	--------	-----------	-----------

Modality Type N Ref		Name/ Reference	DC Current [µA] (Sampling Rate)	ADC Capabilities	Supply Voltage [V]	Total Power [µW]	Area [mm ²]
	Commercial	AFE4404	600 (100 S/s)	24-bit, 1 kS/s	2	1200	2.6×1.6
Ontical	Commercial	MAX86141	80 (256 S/s)	19-bit, 4096 S/s	1.8	144	2.05×1.85
Οριτεαι	Custom	[1]	117 (360 S/s)	10-bit, 360 S/s	1.2	140.4	2×2
	Custom	[2]	9 (NR)	10-bit, 225 kS/s	1.55	13.95	2×1
Electrochemical	Commercial	NJU9101	250 (1 kS/s)	16-bit, 2 kS/s	2.4	600	4×4
	Commercial	AD5941	6000 (200 kS/s)	16-bit, 1.6 MS/s	2.8	16800	3.6×4.2
	Custom	[3]	2.5 (0.2 S/s)	16-bit, 0.2 S/s	1.2	3	0.36
	Custom	[4]	58 (1 kS/s)	12-bit, 10 kS/s	1.8	104.4	0.47
Bioimpedance	Commercial	ADS1192	280 (500 S/s)	16-bit, 8 kS/s	2.7	756	5×5
	Commercial	MAX30001G	150 (512 S/s)	20-bit, 512 S/s	1.1	165	2. 7 5×2.95
	Custom	[5]	36 (10 kS/s)	9-bit, 1 MS/s	1.8	64.8	0.24
	Custom	[6]	33 (128 kS/s)	12-bit, 128 kS/s	1.2	39.6	0.738

NR - not reported

Modality	Technology (Frequency)	Name/ Reference	Modu- lation	TX/RX Data Rate [Mb/s]	TX (output power)/RX DC Current [mA]	Supply Voltage [V]	TX/RX Energy Efficiency [nJ/bit]	Area [mm ²]	External Compo- nents
	BLE & Zigbee	nRF5340	FSK/ PSK	2	3.2 (0dBm) /2.6	1.8	2.7/2.2	4.4×4.0	MN,ANT, XTAL
		STM32WB	FSK/ PSK	2	5.2 (OdBm) / 4.5	1.8	4.4/3.8	5.1×5.1	MN,ANT, XTAL
	(2.1 0112)	CC2650	FSK/ PSK	2	6.1 (0dBm) /5.9	1.8	5.5/5.3	5.0×5.0	MN,ANT, XTAL
		MAX3266	FSK	2	4.3 (0dBm) /3.3	1.8	3.7/2.8	4.2×3.8	ANT, XTAL
	BLE	QN908	FSK	2	3.5 (OdBm) /3.5	1.8	2.8/2.8	3.3×3.2	MN,ANT, XTAL
	(2.4 GHz)	[7]	FSK	1	5.4 (0dBm) /2.3	1	5.4/2.3	0.85	ANT, XTAL
RF		[8]	FSK	1	3.7 (0dBm) /2.75	1	3.7/2.8	1.9	ANT, XTAL
		[9]	FSK	1	2.9 (-3dBm) /2.3	1	2.9/2.3	1.64	ANT, XTAL
	MICS (400 MHz)	ZL70102	FSK	0.8	5.3 (-3dBm) /4.3	2.8	18.5/15	4.3×3.2	MN,ANT, XTAL
		[10]	FSK	0.2	3.1 (-6dBm) /1.5	1	15.5/7.5	3.5×3.8	ANT
			[11]	PSK	4.5	2.3 (-10dBm) /2.2	1	0.6/0.5	1.7×1.8
	ISM (915 MHz)	[12]	00K	0.25	0.135 (NR) /NR	1.55	0.8/NR	0.003	None
	ISM (915 MHz)	[13]	РРМ	0.03 /0.06	0.05 (-27dBm) /1.55	4	2/29.6	2.2×1.2	ANT
	Backscatter	[14]	00K	0.125 /NR	0.1 (NR) /NR	1.8	1.4/NR	7.5×12	ANT
Ultrasonic	Other	[15]	00K	0.1 /0.025	0.18 (NR) /NR	1	1.8/NR	2.6×6.5	Piezo
Magnetic	Other	[12]	00K	NR /2*10 ⁻¹¹	NR /0.175	1.55	NR /13*10 ³	0.9×0.9	Magnetic Sensor

Supplementary Table 2. Summary of commercial and custom transceiver (TRX) modules.

NR - not reported, MN - matching network, ANT - antenna, XTAL - crystal

Modality	Туре	Output Voltage	Size $[mm^2 \setminus mm^3]$	Capacity / Power	Safety
	Li-ion ^[16, 17]	3 V	Ø 4.8×1.2	1 mAh	Low
			Ø 6.8×2.1	5.5 mAh	LUW
Battoru	Silver evide ^[18,19]	1.55 V	Ø 4.8×1.6	7.5 mAh	Madarata
Dattery	JUVET UNIDE		Ø 6.8×2.8	28 mAh	Moderate
	Solid-state ^[20]	1.5 V	4.4×3×1.1	100 <i>µ</i> Ah	Moderate
	Transient ^[21]	2.5 V	8×10×0.3	0.6 <i>µ</i> Ah	High
	Flexible ^[22]	3.9 V	2.25×1.7×0.13	5.6 <i>µ</i> Ah	Moderate
Enorgy	Piezoelectric ^[23]	0.1 V	25×20×0.075	NR	High
harvesting	Triboelectric ^[24]	0.2 V	16×12×2.5	40 µW	High
	Galvanic ^[25]	0.15 V	3×10×0.25	7 μW	High
Power	Acoustic ^[15]	0.2 V	0.9×0.9×0.5	>200 µW	Moderate
transfer	RF ^[26]	NR	6.8×6.8	>120 µW	Moderate

Supplementary Table 3. Summary of powering techniques.

NR - not neported

Modality	Components	Components	Pill	External	Complexity	Accuracy
	in the pill	in the	components'	station's		
		external	power	power		
		station	consumption	consumption		
Imaging	None	MRI, CT,	None	High	High	High
		X-ray or		(kW-level)		(hundreds of
		ultrasound				μm)
		scanner				
Environmental	pH,	None	Low	None	Low	Low
	temperature		$(\mu W-level)$			(organ-level)
	and O ₂					
	sensors					
RF	RF	RF receiver	High	Moderate	High	Low (few cm)
	transmitter		(mW-level)	(mW-level)		
Ultrasound	Ultrasonic	Ultrasonic	Moderate	Moderate	Moderate	High
	transducer	transducer	(sub-mW)	(sub-mW)		(sub-mm)
Magnetic I	Permanent	Magnetic	None	Moderate	High	Moderate
	magnet	sensors		(mW-level)		(few mm)
Magnetic II	Magnetic	Permanent	Low	Moderate /	Moderate	High
	sensor	magnet or	$(\mu W-level)$	High (tens to		(hundreds of
		electromagnet		hundreds of		μm)
				mW)		

Supplementary Table 4. Summary of localization techniques for ingestibles.

References

- Sonmezoglu, S. & Maharbiz, M. M. 34.4 a 4.5mm3 deep-tissue ultrasonic implantable luminescence oxygen sensor. In 2020 IEEE International Solid-State Circuits Conference (ISSCC), 454–456 (2020).
- [2] Zhu, C., Wen, Y., Liu, T., Yang, H. & Sengupta, K. A packaged ingestible bio-pill with 15-pixel multiplexed fluorescence nucleic-acid sensor and bi-directional wireless interface for in-vivo bio-molecular sensing. In 2020 IEEE Symposium on VLSI Circuits, 1–2 (2020).
- [3] Liao, Y.-T., Yao, H., Lingley, A., Parviz, B. & Otis, B. P. A 3-μW cmos glucose sensor for wireless contact-lens tear glucose monitoring. *IEEE Journal of Solid-State Circuits* 47, 335–344 (2012).
- [4] Xie, C., Ma, Y., Tang, Z. & Zhang, M. Design of a 68 db input dynamic range potentiostat for electrochemical biosensing. In 2021 6th International Conference on Integrated Circuits and Microsystems (ICICM), 426–429 (2021).
- [5] Bai, W., Zhu, Z., Li, Y. & Liu, L. A 64.8μ w > 2.2 g Ω dc-ac configurable cmos front-end ic for wearable ecg monitoring. *IEEE* Sensors Journal **18**, 3400–3409 (2018).
- [6] Ha, H. et al. 22.5 a bio-impedance readout ic with digital-assisted baseline cancellation for 2-electrode measurement. In 2019 IEEE International Solid-State Circuits Conference (ISSCC), 368–370 (2019).
- [7] Sun, Z. et al. A 0.85mm2 ble transceiver with embedded t/r switch, 2.6mw fully-passive harmonic suppressed transmitter and 2.3mw hybrid-loop receiver. In ESSCIRC 2018 – IEEE 44th European Solid State Circuits Conference (ESSCIRC), 310–313 (2018).
- [8] Kuo, F.-W. *et al.* A bluetooth low-energy transceiver with 3.7-mw all-digital transmitter, 2.75-mw high-if discrete-time receiver, and tx/rx switchable on-chip matching network. *IEEE Journal of Solid-State Circuits* **52**, 1144–1162 (2017).
- [9] Liu, H. et al. An adpll-centric bluetooth low-energy transceiver with 2.3 mw interference-tolerant hybrid-loop receiver and 2.9 mw single-point polar transmitter in 65nm cmos. In 2018 IEEE International Solid-State Circuits Conference (ISSCC), 444–446 (2018).
- [10] Song, M. et al. A millimeter-scale crystal-less mics transceiver for insertable smart pills. IEEE Transactions on Biomedical Circuits and Systems 14, 1218–1229 (2020).
- [11] Ba, A. et al. A 0.33 nj/bit ieee802. 15.6/proprietary mics/ism wireless transceiver with scalable data rate for medical implantable applications. IEEE Journal of Biomedical and Health Informatics 19, 920–929 (2015).
- [12] Abdigazy, A. & Monge, M. A bimodal low-power transceiver featuring a ring oscillator-based transmitter and magnetic field-based receiver for insertable smart pills. *IEEE Solid-State Circuits Letters* 5, 154–157 (2022).
- [13] Chuo, L.-X. et al. 7.4 a 915mhz asymmetric radio using q-enhanced amplifier for a fully integrated 3×3×3mm3 wireless sensor node with 20m non-line-of-sight communication. In 2017 IEEE International Solid-State Circuits Conference (ISSCC), 132–133 (2017).
- [14] Lazaro, M., Lazaro, A. & Villarino, R. Long-range lorawan backscatter based sensors for medical and wearable applications. In 2021 51st European Microwave Conference (EuMC), 777–780 (2022).
- [15] Chang, T. C., Wang, M. L., Charthad, J., Weber, M. J. & Arbabian, A. 27.7 a 30.5mm3 fully packaged implantable device with duplex ultrasonic data and power links achieving 95kb/s with lt;104 ber at 8.5cm depth. In 2017 IEEE International Solid-State Circuits Conference (ISSCC), 460–461 (2017).
- [16] Ms412fe seiko instruments coin cell battery. https://www.sii.co.jp/en/me/datasheets/ms-rechargeable/ms412fe-5/. Accessed: 2022-10-10.
- [17] Ms621fe seiko instruments coin cell battery. https://www.sii.co.jp/en/me/datasheets/ms-rechargeable/ms621fe/. Accessed: 2022-10-10.
- [18] Sr416sw seiko instruments coin cell battery. https://www.sii.co.jp/en/me/battery/products/silver-oxide/. Accessed: 2022-10-10.
- [19] Sr626 murata electronics coin cell battery. https://www.murata.com/en-us/products/productdetail?partno=SR626. Accessed: 2022-10-10.
- [20] Ceracharge® tdk solid-state battery. https://product.tdk.com/en/products/solid-state-batt/index.html. Accessed: 2022-10-10.
- [21] Chen, Y. *et al.* Physical-chemical hybrid transiency: A fully transient li-ion battery based on insoluble active materials. *Journal of Polymer Science Part B: Polymer Physics* 54, 2021–2027 (2016).

- [22] Kutbee, A. T. *et al.* Flexible and biocompatible high-performance solid-state micro-battery for implantable orthodontic system. *npj flexible electronics* **1**, 1–8 (2017).
- [23] Dagdeviren, C. *et al.* Flexible piezoelectric devices for gastrointestinal motility sensing. *Nature Biomedical Engineering* 1, 807–817 (2017).
- [24] Yao, G. *et al.* Effective weight control via an implanted self-powered vagus nerve stimulation device. *Nature communications* **9**, 1–10 (2018).
- [25] Nadeau, P. et al. Prolonged energy harvesting for ingestible devices. Nature biomedical engineering 1, 1–8 (2017).
- [26] Abid, A. *et al.* Wireless power transfer to millimeter-sized gastrointestinal electronics validated in a swine model. *Scientific reports* **7**, 1–6 (2017).