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Table 1 below lists room-temperature Hall mobilities, µHall, reported for the three groups 

of materials (metal-oxide or metal-halide perovskites, conjugated polymers, and crystalline small-

molecule organic semiconductors) in the period between 2003 and 2023.  The listed Hall are 

those reported as extracted directly from measurements, without any normalization or 

theoretical adjustments.  The Table also lists the Hall reliability score, rHall, calculated for each 

paper according to the checklist of Hall effect measurements introduced in this article.  This 

parameter (an integer between 0 and 16) is designed as a metric for evaluating the completeness, 

reliability, and potential reproducibility of Hall mobility measurements reported in papers.  The 

Table is not intended to provide an exhaustive list of literature on each class of materials.  A 

detailed methodology of rHall calculation is given after the Table.   

Table 1.  Papers (with hyperlinks) reporting a Hall mobility, Hall, in perovskites, conjugated polymers, and 
crystalline small-molecule organic semiconductors, published in 2003 - 2023,[1-110] with the Hall reliability 
score rHall calculated according to the procedure described below.  For each paper, the highest reported 

room-temperature Hall is listed.  For papers reporting Hall effect measurements at other temperatures, 

rHall is still calculated, but Hall is omitted from the Table.   

Paper reporting Hall-effect mobility Material 
µHall 

cm2V-1s-1 rHall
 Ref. 

     

Perovskites  
  

 
E. Bellingeri, et al. J. Appl. Phys. (2003) SrTiO3 3.9 9 [1] 

T. Ishikawa, et al. J. Phys. Soc. Jpn. (2004) SrTi16O3 - 5 [2] 

F. Pan, et al. Appl. Phys. Lett. (2004) La:SrTiO3 3 8 [3] 

A. Kalabukhov, et al. Phys. Rev. B (2007) SrTiO3 on LaAlO3 10 1 [4] 

H. Nakamura, et al. J. Phys. Soc. Jpn. (2009) SrTiO3 - 13 [5] 

H. Kim, et al. Phys. Rev. B (2012) (Ba,La)SnO3 300 5 [6] 

I. Chung, et al. J. Am. Chem. Soc. (2012) CsSnI3 585 2 [7] 

H. Kozuka, et al. J. Mater. Chem. (2012) La1−xSrxCoO3 5.8 3 [8] 

Y. Takahashi, et al. J. Solid State Chem. (2013) CH3NH3SnI3 150 1 [9] 

C. Stoumpos, et al. Inorg. Chem. (2013)  CH3NH3SnI3 2320 3 [10] 

A. Ali, et al. J. Korean Phys. Soc. (2013) La0.01Ba0.99TiO3 0.2 6 [11] 

W. Lee, et al. Phys. Status Solidi A. (2015) Ba0.96La0.04SnO3 - 13 [12] 

D. Luo, et al. RSC Adv. (2015) CH3NH3PbI3−xClx 13.5 0 [13] 

M. Vigneshwaran, et al. Chem. Mater. (2016) (CH3NH3)3Bi2I9 2.28 0 [14] 

B. Li, et al. J. Alloy. Compd. (2016) Ba(NbxSn1-x)O3  19.65 0 [15] 

Y. Chen, et al. Nat. Commun. (2016) CH3NH3PbBr3 60 16 [16] 

J. Shiogai, et al. AIP Adv. (2016)  La:BaSnO3 78 1 [17] 

B. Saparov, et al. Chem. Mater. (2016) Cs2SnI6 2.9 3 [18] 

F. Guo, et al. Mater. Res. Lett. (2017) Cs2SnI6 509 0 [19] 

H. Zhang, et al. Cryst. Growth Des. (2017) CsPbBr3 143 1 [20] 

R. Kikuchi, et al. Chem. Mater. (2017) SrNbO2N 0.1 0 [21] 

http://dx.doi.org/10.1063/1.1613373
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http://dx.doi.org/10.1039/c2jm34613c
http://dx.doi.org/10.1016/j.jssc.2013.07.008
http://dx.doi.org/10.1021/ic401215x
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http://dx.doi.org/10.1080/21663831.2017.1346525
http://dx.doi.org/10.1021/acs.cgd.7b01086
http://dx.doi.org/10.1021/acs.chemmater.7b01320
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Paper reporting Hall-effect mobility Material 
µHall 

cm2V-1s-1 rHall
 Ref. 

     

Z. Su, et al. J. Mater. Sci-mater. El. (2017) CH3NH3PbBr3 2630 0 [22] 

C. Chung, et al. J. Mater. Chem. A (2017)  GO:CH3NH3PbI3  35.3 0 [23] 

B. Li, et al. J. Alloy. Compd. (2017) Ba1-xSmxSnO3 4.266 0 [24] 

D. Ju, et al. J. Mater. Chem. A (2018) MA3Sb2I9 43 1 [25] 

H. Yi, et al. Phys. Rev. Appl. (2018) CsPbBr3 9.5 14 [26] 

E. McCalla, et al. Phys. Rev. Mater. (2018) Ba1−xNdxSnO3−δ 174 0 [27] 

J. Han, et al. Small (2018) CH3NH3PbI3-PbS 1173 0 [28] 

J. Zhang, et al. J. Mater. Sci. (2018) B-γ-CsSnI3 18.48 0 [29] 

J. Shin, et al. Phys. Rev. Mater. (2018) BaSn1−xHfxO3 95.3 0 [30] 

Y. Yang, et al. J. Mater. Sci-mater. El. (2018) NaI:CH3NH3PbI3 63.7 0 [31] 

D. Gao, et al. Phys. Status Solidi-r. (2019) BaTi0.75Nb0.25O3 0.4 0 [32] 

O. Gunawan, et al. Nature (2019) (FA,MA)Pb(I,Br)3  9.8 16 [33] 

T. Lien, et al. Mater. Res. Express (2019) Cs2SnI6 468.1 0 [34] 

Q. Gao, et al. ACS Appl. Mater. Inter. (2019) La0.05Sr0.95PbO3 39.9 0 [35] 

H. Wang, et al. Phys. Rev. Mater. (2019) BaSnO3 37 3 [36] 

D. Shan, et al. Nanoscale Res. Lett. (2019) CH3NH3PbI3 5 0 [37] 

A. Musiienko, et al. Energ. Environ. Sci. (2019) CH3NH3PbBr3 87.1 15 [38] 

K. Miura, et al. Phys. Status Solidi A. (2019) (Ba,La)SnO3 33 2 [39] 

Z. Khan, et al. J. Mater. Sci-mater. El. (2019) CH3NH3PbI3 195 0 [40] 

S. Ullah, et al. Semicond. Sci. Tech. (2020) Cs2SnI6 425 0 [41] 

A. Dayan, et al. Mater. Adv. (2020)  CsSnI3 9 0 [42] 

K. Li, et al. Opt. Mater. (2020) (SmxSr1-x)SnO3 14.8 0 [43] 

A. Kirmani, et al. Plos One (2020) CH3NH3PbBr3 319.98 2 [44] 

F. Li, et al. J. Mater. Chem. A (2020) Rb3Sb2I9 0.26 5 [45] 

L. Jin, et al. J. Mater. Sci-mater. El. (2020) CH3NH3PbI3 90 2 [46] 

X. Wei, et al. Nano Energy (2020) BaZrS3 13.7  12 [47] 

Y. Wang, et al. Nat. Nanotechnol. (2020) CsPbBr3 118 13 [48] 

H. Shaili, et al. RSC Adv. (2021) Pr:SrSnO3 7.6 0 [49] 

A. Musiienko, et al. Adv. Funct. Mater. (2021) CH3NH3PbI3 12 14 [50] 

A. Karim, et al. Sci. Rep. (2021) CH3NH3PbI3−xClx 49 1 [51] 

J. Wang, et al. J. Phys. D. Appl. Phys. (2021) Cs2SnI6 391 0 [52] 

Y. Tomioka, et al. J. Phys. Soc. Jpn. (2021) LaNiO3 - 3 [53] 

Q. Li, et al. Chinese Phys. B (2021)  Sr:Ba0.7La0.3TiO3  0.36 0 [54] 

H. Shaili, et al. J. Alloy. Compd. (2021) CaSnS3 131 0 [55] 

V. Bruevich, et al. Adv. Mater. (2022) CsPbBr3 30 16 [56] 

T. Liu, et al. Appl. Phys. Lett. (2022) MAPb1−xCuxI3 90.1  2 [57] 

J. Zhang, et al. Nanomater. (2022) Li:Cs2SnI6 356.6 0 [58] 

Y. Reo, et al. Adv. Funct. Mater. (2022) (PEA)2SnI4 100 1 [59] 

A. Chauhan, et al. Microelectron. Eng. (2022) CsPbBr2Cl 9 0 [60] 

R. Ismail, et al. Opt. Mater. (2022) CH3NH3PbI3 0.26 0 [61] 

A. Liu, et al. Nat. Electron. (2022) CsSnI3 486 1 [62] 

K. Belthle, et al. Adv. Funct. Mater. (2022) La:BaSnO3 70 1 [63] 

V. Murgulov, et al. J. Mater. Sci. (2022)  Cs2AgBiBr6 2.36 3 [64] 

  
  

 
Polymers  

  
 

S. Chen, et al. J. Phys. Chem. B (2005) PPEEB 0.5 2 [65] 

G. Lee, et al. Curr. Appl. Phys. (2012) P3IT - 0 [66] 

http://dx.doi.org/10.1007/s10854-017-6889-3
http://dx.doi.org/10.1039/c7ta04575a
http://dx.doi.org/10.1016/j.jallcom.2017.03.116
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http://dx.doi.org/10.1002/pssr.201900418
http://dx.doi.org/10.1038/s41586-019-1632-2
http://dx.doi.org/10.1088/2053-1591/ab4d85
http://dx.doi.org/10.1021/acsami.9b07819
http://dx.doi.org/10.1103/PhysRevMaterials.3.075001
http://dx.doi.org/10.1186/s11671-019-3022-y
http://dx.doi.org/10.1039/c9ee00311h
http://dx.doi.org/10.1002/pssa.201700800
http://dx.doi.org/10.1007/s10854-019-00716-3
http://dx.doi.org/10.1088/1361-6641/abbdef
http://dx.doi.org/10.1039/d0ma00452a
http://dx.doi.org/10.1016/j.optmat.2020.110139
http://dx.doi.org/10.1371/journal.pone.0230540
http://dx.doi.org/10.1039/c9ta13352f
http://dx.doi.org/10.1007/s10854-019-02713-y
http://dx.doi.org/10.1016/j.nanoen.2019.104317
http://dx.doi.org/10.1038/s41565-020-0729-y
http://dx.doi.org/10.1039/d1ra06945d
http://dx.doi.org/10.1002/adfm.202104467
http://dx.doi.org/10.1038/s41598-021-90247-x
http://dx.doi.org/10.1088/1361-6463/abd8f2
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http://dx.doi.org/10.1063/5.0095370
http://dx.doi.org/10.3390/nano12132279
http://dx.doi.org/10.1002/adfm.202204870
http://dx.doi.org/10.1016/j.mee.2022.111757
http://dx.doi.org/10.1016/j.optmat.2022.112147
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S. Wang, et al. Nat. Commun. (2012) P3HT - 16 [67] 

S. Lee, et al. Adv. Funct. Mater. (2014) HBr:PEDOT 8 3 [68] 

B. Gupta, et al. J. Mater. Chem. C (2015) PIM-1 4.4E−6 5 [69] 

D. Scholes, et al. J. Phys. Chem. Lett.  (2015) F4TCNQ:P3HT 0.0241 5 [70] 

S. Senanayak, et al. Phys. Rev. B (2015) 2DPP-TEG 1.2 14 [71] 

S. Ozaki, et al. Synthetic Met. (2016) PEDOT:PSS 0.49 16 [72] 

Y. Yamashita, et al. Chem. Mater. (2016)  CDT-BTZ-C20 2.6 13 [73] 

D. Scholes, et al. Adv. Funct. Mater. (2017) F4TCNQ:P3HT 0.12 5 [74] 

S. Kim. B. Kor. Chem. Soc. (2017)  PEDOT:PSS/GQD 0.23 0 [75] 

R. Fujimoto, et al. Org. Electron. (2017) PBTTT-C16/F4-TCNQ 1.5  16 [76] 

S. Rudd, et al. J. Polym. Sci. Pol. Phys. (2018) Tos/ClO4:PEDOT 3 0 [77] 

T. Aubry, et al. Adv. Mater. (2019) DDB-F72:P3HT 0.1 5 [78] 

D. Scholes, et al. Chem. Mater. (2019) F4TCNQ:P37S 0.17 3 [79] 

Y. Zheng, et al. J. Phys. D. Appl. Phys. (2019) PEDOT:PSS 0.299 0 [80] 

P. Stadler, et al. Org. Electron. (2019) PEDOT:TfO 0.3 8 [81] 

S. Yoon, et al. ACS Appl. Mater. Inter. (2020) F4TCNQ:PIDF-BT 0.7 6 [82] 

H. Li, et al. Adv. Funct. Mater. (2020) FeCl3:PDPP-g32T0.3 2 7 [83] 

J. Park, et al. Adv. Funct. Mater. (2020)  F4TCNQ:PIDF-BT 0.85 7 [84] 

G. Drewelow, et al. Appl. Surf. Sci. (2020) PEDOT 5 0 [85] 

A. Almohammedi, et al. Mat. Sci. Semicon. Proc. (2020) PbI2:P3HT 0.223 1 [86] 

I. Paulraj, et al. ACS Appl. Mater. Inter. (2021)  EG/NaBH4:PEDOT:PSS 33.6 0 [87] 

B. Kim, et al. Adv. Funct. Mater. (2021)  EPG:graphene 701 1 [88] 

Z. Liang, et al. Nat. Mater. (2021) FeCl3:P3HT 0.3 14 [89] 

A. Anbalagan, et al. RSC Adv. (2021) PEDOT:PSS 0.3 0 [90] 

M. Zhang, et al. J. Water Process. Eng. (2022) ZnIn2S4:PEDOT 173.15 0 [91] 

X. Wang, et al. Adv. Mater. (2023) FBDPPV-OEG 0.14 6 [92] 

  
  

 
Organic Crystals  

  
 

V. Podzorov, et al. Phys. Rev. Lett. (2005) rubrene 10 14 [93] 

J. Takeya, et al. Jpn. J. Appl. Phys. (2005) rubrene 1.5 13 [94] 

J. Takeya, et al. Phys. Rev. Lett. (2007) rubrene 7.5 13 [95] 

N. Minder, et al. Adv. Mater. (2012) PDIF-CN2 6 13 [96] 

T. Uemura, et al. Curr. Appl. Phys. (2012) C10-DNTT 11 8 [97] 

T. Uemura, et al. Phys. Rev. B (2012) pentacene 0.6 13 [98] 

B. Lee, et al. Nat. Mater. (2013) rubrene 6.5 14 [99] 

W. Xie, et al. Phys. Rev. Lett. (2014) rubrene 4 13 [100] 

J. Takeya, et al. Thin Solid Films (2014) DNTT 2.1 11 [101] 

H. Yi, et al. Sci. Rep. (2016) rubrene 6 10 [102] 

C. Ohashi, et al. Adv. Mater. (2017)  FeCl3:rubrene 4.6 12 [103] 

X. Ren, et al. Adv. Electron. Mater. (2017) rubrene 14.6 10 [104] 

H. Choi, et al. Adv. Funct. Mater. (2018) rubrene 4.25 16 [105] 

M. Kikuchi, et al. Appl. Phys. Lett. (2019) MoO3:rubrene 0.8 10 [106] 

H. Choi, et al. Adv. Sci. (2020) rubrene 7 16 [107] 

S. Kumagai, et al. Adv. Mater. (2020) PhC2-BQQDI 4 13 [108] 

http://dx.doi.org/10.1038/ncomms2213
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http://dx.doi.org/10.1016/j.synthmet.2016.02.001
http://dx.doi.org/10.1021/acs.chemmater.5b04567
http://dx.doi.org/10.1002/adfm.201702654
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http://dx.doi.org/10.1016/j.orgel.2017.05.019
http://dx.doi.org/10.1002/polb.24530
http://dx.doi.org/10.1002/adma.201805647
http://dx.doi.org/10.1021/acs.chemmater.8b02648
http://dx.doi.org/10.1088/1361-6463/ab04dc
http://dx.doi.org/10.1016/j.orgel.2018.12.001
http://dx.doi.org/10.1021/acsami.9b17825
http://dx.doi.org/10.1002/adfm.202004378
http://dx.doi.org/10.1002/adfm.202001560
http://dx.doi.org/10.1016/j.apsusc.2019.144105
http://dx.doi.org/10.1016/j.mssp.2020.105272
http://dx.doi.org/10.1021/acsami.1c13968
http://dx.doi.org/10.1002/adfm.202105297
http://dx.doi.org/10.1038/s41563-020-00859-3
http://dx.doi.org/10.1039/d1ra03463d
http://dx.doi.org/10.1016/j.jwpe.2021.102494
http://dx.doi.org/10.1002/adma.202300634
http://dx.doi.org/10.1103/PhysRevLett.95.226601
http://dx.doi.org/10.1143/JJAP.44.L1393
http://dx.doi.org/10.1103/PhysRevLett.98.196804
http://dx.doi.org/10.1002/adma.201103960
http://dx.doi.org/10.1016/j.cap.2012.05.046
http://dx.doi.org/10.1103/PhysRevB.85.035313
http://dx.doi.org/10.1038/NMAT3781
http://dx.doi.org/10.1103/PhysRevLett.113.246602
http://dx.doi.org/10.1016/j.tsf.2013.10.150
http://dx.doi.org/10.1038/srep23650
http://dx.doi.org/10.1002/adma.201605619
http://dx.doi.org/10.1002/aelm.201700018
http://dx.doi.org/10.1002/adfm.201707105
http://dx.doi.org/10.1063/1.5116300
http://dx.doi.org/10.1002/advs.201901824
http://dx.doi.org/10.1002/adma.202003245
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H. Choi, et al. Adv. Funct. Mater. (2020) rubrene 5.1 16 [109] 

V. Bruevich, et al. Adv. Funct. Mater. (2021) rubrene 16 13 [110] 

 

The Hall reliability score, rHall, has been calculated using the checklist given below (with 

the number of points assigned for each item indicated).† 

 

1.  Varying the magnetic field and longitudinal excitation current.  

1.1. Varying or reversing the magnetic field (2 points).  Raw Hall data (i.e., the Hall voltage, VHall, 

or the Hall resistance, RHall) or the extracted Hall parameters (i.e., the Hall mobility, µHall, or the 

Hall carrier concentration, nHall) recorded when the magnetic field, B, is changed should be shown.  

At least two measurements at different non-zero magnetic fields must be taken and reported, 

with Hall calculated using the slope ΔVHall/ΔB, rather than an absolute value of as-measured VHall 

at a single value of B.  In this measurement, the field’s magnitude |B| should be varied by at least 

a factor of two.  Alternatively, the field can be zeroed or flipped (its direction changed to the 

opposite).  In the a.c.-Hall methodology using an a.c.-B field and a lock-in detection of VHall, the 

magnetic field’s variation (reversal) is automatically implemented.  If only a description of Hall 

calculation via the magnetic field reversal, sweeping, or zeroing is given, without showing the 

corresponding data, 1 point is assigned.   

1.2. Varying or reversing the longitudinal excitation current (2 points).  Raw Hall data (VHall or 

RHall) or the extracted µHall or nHall, recorded when the longitudinal excitation current, I, or the 

corresponding voltage, V, are changed (both in terms of their magnitude and polarity) should be 

shown.  At least two measurements at different excitation currents must be taken, with Hall 

calculated from the slope ΔVHall/ΔI, rather than an absolute value of as-measured VHall at a single 

value of I.  In such a measurement, the current’s magnitude |I| should be varied by at least a 

factor of two.  Alternatively, the current can be zeroed, or its polarity switched.  In the technique 

of a.c.-current excitation with a lock-in detection of the corresponding voltage, varying (reversing) 

the current is automatically implemented.  If only a description of Hall calculation via the 

http://dx.doi.org/10.1002/adfm.201903617
http://dx.doi.org/10.1002/adfm.202006178
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excitation current reversal, sweeping, or zeroing is given, without showing the corresponding 

data, 1 point is assigned.   

 

2. Linearity of the Hall voltage with the magnetic field and excitation current.   

2.1. Linearity of VHall(I) dependence (1 point).  The dependence of the Hall observables (VHall or 

RHall) or the extracted Hall parameters (µHall or nHall) on the longitudinal excitation current (i.e., 

VHall(I), Hall(I), etc.) should be measured and reported.  The current should cover a sufficiently 

wide range, with its magnitude |I| varied by at least a factor of two.  The measurement should 

demonstrate a linearity of VHall(I) dependence or show that the extracted Hall and nHall are 

independent of I.  This can also be addressed in the a.c.-Hall techniques, including that using an 

a.c.-current excitation with a lock-in detection of the corresponding voltage. 

2.2. Linearity of VHall(B) dependence (1 point).  The dependence of the Hall observables (VHall or 

RHall) or the extracted Hall parameters (µHall or nHall) on the external magnetic field (i.e., VHall(B), 

Hall(B), etc.) should be measured and reported.  The field should cover a sufficiently wide range, 

with its magnitude |B| varied by at least a factor of two.  The measurement should demonstrate 

a linearity of VHall(B) dependence or show that the extracted Hall and nHall are independent of B.  

Alternatively, an a.c.-Hall method with an oscillating B-field and a lock-in detection of the 

corresponding Hall voltage can be employed to address this item. 

 

3. Four-probe conductivity measurements (2 points).  To determine the Hall mobility Hall of the 

sample correctly, one must use of a contact-corrected  conductivity .  The four-probe techniques 

of  measurements based on either the traditional Hall-bar geometry with a rectangular channel 

or a Van der Pauw (VDP) geometry could be used.  However, the VDP technique is particularly 

prone to artifacts and inaccuracies.  Thus, it is important to make sure that the following 

requirements/assumptions are met/valid while using it: (a) all four contacts in VDP geometry 

must be very small compared to the size of the sample, or the sample should be patterned in 

such a way that a finite size of the contacts would not affect the measurement (e.g., using a 

“clover-shaped” pattern); (b) the sample should be homogeneous, and (c) isotropic (in-plane); 

(d) any parasitic voltage drops or offsets associated with, for instance, contact resistance, 
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instrumental offsets, a thermoelectric effect, ionic migration, etc., must be small in comparison 

with the voltage drop between each pair of the voltage probes due to the sample’s resistance.   

Properly using a four-probe technique for measurements of  in Hall effect studies, with 

a detailed description and addressing the above concerns, is important (2 points).  If not using a 

four-probe technique to extract , contact resistance must be shown to be much smaller than the 

channel resistance by other experimental techniques (e.g., transmission line method) (1 point).  

Essentially, it is necessary to experimentally show that the longitudinal voltage drop along the 

conduction channel of the sample/device is much greater than the voltage drop across the 

contacts in the entire excitation voltage or current ranges of the Hall measurements.  If this is 

shown, a two-probe  can be used in the calculation of Hall. 

 

4. Switching between contacts in Van der Pauw configuration (2 points).  If a VDP technique is 

used, it must be shown that the artifacts listed in the previous section are eliminated.  This can 

be done by testing all possible combinations of contact pairs, with the excitation current in both 

polarities for each combination: in total, 8 individual measurements of  and 4 individual 

measurements of VHall (considering that a reversal of the B-field is performed for each choice of 

contacts, as described in sec. 1.1).  The data should be analyzed by calculating the standard 

deviations and the properly calculated mean values for  and Hall.  Importantly, it must be 

checked that the individual measurements of  and Hall are not self-contradictory.  Namely, if 

the standard deviation is not smaller than the mean value, the measurements should be 

considered unreliable, which is most likely caused by a strong asymmetry in the physical 

characteristics of the contacts or inhomogeneities of the sample.  In rare cases, significant 

variability of the measurement results between different contact pairs in VDP measurements can 

be associated with intrinsic or extrinsic anisotropy of samples, as described in the main text, in 

which case further control tests are necessary.  The results of all individual-contact-pair VDP 

measurements, their analysis, and the final calculated averaged values should be presented.  If 

only a description of the use of a proper contact geometry and method, including switching 

between contact pairs, is given, without showing the raw data, 1 point is assigned.  
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5. Long-term evolution and hysteresis of the Hall signal (1 point).  Showing data on the time 

evolution of the Hall signal (VHall or RHall) or the extracted Hall parameters (µHall or nHall) is 

important.  A procedure for subtracting a possible drifting or fluctuating background must be 

explained.  Alternatively, hysteresis in the measured dependences of Hall on the B-field, excitation 

current I, temperature T, or gate voltage VG, should be characterized and shown to be 

insignificant.  For example, demonstrating a good long-term stability of Hall (with the background 

properly subtracted) or a negligible hysteresis in Hall(B, I, T, VG) dependences is sufficient.  This 

section is relevant to both d.c.- and a.c.-Hall measurements. 

 

6. Apparent frequency dependence in a.c.-Hall measurements (1 point).  In a.c.-Hall 

measurements, the dependence of the Hall signal (VHall or RHall) or the extracted Hall quantities 

(µHall or nHall) on the frequency, f, of the oscillating B-field or the longitudinal excitation current I 

should be additionally investigated.  A zero-frequency offset of the experimental Hall(f) 

dependence (i.e., the asymptotic value Hall(f  0)) should be taken as the true Hall mobility, 

corrected for the Faraday induction artifact and possible other frequency dependent 

contributions.  For a.c.-Hall measurements, this section and the previous sec. 5 collectively earn 

a maximum of 1 point.   

 

7. Including raw Hall data in publications.   

7.1. Raw Hall data corresponding to the reported Hall should be shown (1 point).  These include 

raw Hall data (VHall or RHall) plotted as a function of important common experimental parameters 

(i.e., B, I, or VG) or as time traces recorded while these parameters are varied.  Alternatively, time 

or frequency (for a.c.-Hall measurements) dependence of the extracted Hall quantities (µHall or 

nHall) could be reported.  These data must be sufficiently detailed to allow, in combination with 

the listed device parameters (sec. 8), an independent extraction of Hall.   

7.2. In VDP measurements, VHall for both combinations of contacts must be reported (1 point).  

When a VDP methodology is used, VHall(B, I) dependences and VHall(t) time traces, or a Table listing 

the results of individual measurements for both combinations of contacts and both current 

polarities (4 measurements in total), should be included in publications.  At the very least, one 
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representative set of such raw data must be shown, in addition to a Table listing all the individual 

results for each combination of contacts, their standard deviation, and the correctly calculated 

final value.  

 

8. Description of studied devices.   

8.1. Contact geometry and relevant dimensions must be explicitly listed (1 point).  All the 

relevant in-plane sample dimensions, including the channel’s width and length, distances 

between the voltage probes and their width, as well as the total thickness of the sample 

(especially important when bulk (3D) conductivity is reported/used), must be listed.  Alternatively, 

a photograph with a scale bar for each key device can be included.  This information, in 

combination with the presented raw Hall data (sec. 7), must be sufficient for an independent 

verification of the reported Hall.  

 8.2. Device architecture and the origin of mobile charges must be discussed (1 point).  A 

sufficiently detailed description of devices’ architecture, including their cross-sectional structure, 

with all the layers’ thicknesses and other relevant dimensions, must be included.  The source of 

mobile charge carriers must be explained (e.g., a carrier injection via an electric-field effect as in 

FETs, a chemical doping or self-doping of films or crystals, a charge-transfer doping at interfaces, 

a photogeneration of carriers as in photo-Hall effect measurements).  This information, together 

with the information on the in-plane device layout (sec. 8.1) and the raw Hall data (sec. 7), must 

be sufficient for an independent verification of the reported Hall.  For example, when FETs are 

used to induce conductivity, the corresponding device parameters, including the type of the gate 

insulator, its thickness, dielectric constant, and the gate-channel capacitance, must be listed.   

8.3. Device photos and sketches should be included (1 point).  Sufficiently high-resolution 

(micro)photographs of key devices must be shown.  All elements of the device should be clearly 

visible.  Alternatively, a detailed sketch of the sample, showing the contact layout and channel 

geometry, can be included.   
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† Points for each item of the checklist were assigned only if the results of the corresponding 

measurement/test/procedure were not self-contradictory or contradicting the other items of the checklist 

or the overall conclusion of a paper.  For instance, if contact switching in VDP geometry (sec. 4) has been 

performed, but individual measurements using different contact pairs led to inconsistent results (e.g., 

drastically different Hall values), and this issue has not been addressed by the authors, zero points would 

be assigned for this item.   
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Form: checklist for Hall mobility reporting 
 

 
This form is recommended for use by authors or reviewers of experimental manuscripts reporting Hall mobility (Hall) measurements in 

semiconducting materials. It is based on the Hall checklist described in detail in Bruevich, V. & Podzorov, V. Reporting Hall effect measurements 

of charge carrier mobility in emerging materials, Nat. Electron. (2024). Completing this form should help authors to improve the thoroughness 

and reliability of their Hall effect measurements. Likewise, reviewers can use this form to evaluate completeness, reliability, and potential 

reproducibility of Hall measurements reported in manuscripts. Adhering to the checklist and completing this form are especially recommended 

when novel (underexplored) materials or materials and devices with relatively low charge carrier mobilities are investigated.  

 

Are the following details of Hall measurements included in the manuscript? 

 

1. Varying (reversing) the magnetic field and longitudinal excitation current. 

 Magnetic field (B) variation/reversal  

Hall extraction takes into account zero field offset 

 Yes State where this can be found in the manuscript 

 No Explain why this is not reported 
   

Current variation/reversal  

Hall extraction takes into account current offset 

 Yes State where this can be found in the manuscript 

 No Explain why this is not reported 

2. The linearity of the Hall voltage with the magnetic field and excitation current. 

 VHall(B) or RHall(B) dependences  

For extraction of Hall, these dependences should be 

linear with B  

 Yes State where this can be found in the manuscript 

 No Explain why this is not reported 

 Elsewhere Include a reference to your prior paper for the same system/material(s) 
   

VHall(I) or RHall(I) dependence  

For extraction of Hall, these dependences should be 

linear with I 

 Yes State where this can be found in the manuscript 

 No Explain why this is not reported 

 Elsewhere Include a reference to your prior paper for the same system/material(s) 

3. Addressing contact artifacts via proper use of four-probe conductivity measurements. 

 All reported Hall-effect and conductivity data 
were obtained using a four-probe technique 

 Yes State where this is described in the manuscript 

 No Explain why this was not the case 
   

Contact resistance is shown to be negligible 

If four-probe technique was not used in extracting 

Hall, verify that contact resistance is negligible  

 Yes State where this is described in the manuscript 

 No Explain why this was not done 

 Elsewhere Include a reference to your prior paper for the same system/material(s) 

4. Switching between contacts in Van der Pauw (VDP) configuration (only for VDP measurements). 

  was measured using all VDP contact 
configurations and current polarities 

 Yes State where this can be found in the manuscript 

 No Explain why this was not done 
   

VHall was measured using all VDP contact 
configurations and current polarities 

 Yes State where this can be found in the manuscript 

 No Explain why this was not done 

5. Long-term evolution and hysteresis of the Hall signal. 
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 Temporal evolution of the Hall effect  

For instance, VHall (t) or µHall (t) data 

 Yes State where this can be found in the manuscript 

 No Explain why this is not reported 
   

Hysteresis in Hall measurements 
 Yes State where this can be found in the manuscript 

 No Explain why this is not reported 

6. Apparent frequency dependences, VHall(f) or Hall(f) (only for a.c.-Hall measurements using a B-field oscillating at freq. f). 

 
Dependence of VHall or Hall on the frequency f 
of B field 

 Yes State where this can be found in the manuscript 

 No Explain why this is not reported 

 Elsewhere Include a reference to your prior paper for the same system/material(s) 

7. Including raw Hall data in the publication. 

 Raw data for the best/representative sample 

For instance, VHall or RHall. A reader should be able to 
verify the reported Hall mobility calculation 

 Yes State where this information can be found in the manuscript 

 No Explain why this is not reported 

 Elsewhere Include a reference to your prior paper for the same system/material(s) 

8. Providing a sufficiently detailed description of the studied devices. 

 Contact geometry and relevant dimensions 

All dimensions or detailed image included 

 Yes State where this information can be found in the manuscript 

 No Explain why this is not reported 
   

Device architecture (cross-section) and origin 
of mobile charges 

 Yes State where this information can be found in the manuscript 

 No Explain why this is not reported 
 

  

Device photos and/or sketches 

Image of the reported key device with a scale bar 

 Yes State where this information can be found in the manuscript 

 No Explain why this is not reported 

 

Additional Comments/Notes: 
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