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SUPPLEMENTARY NOTE 1:
NETWORK TRANSLATION PRESERVES THE STOCHASTIC DYNAMICS

Let {S,C,R} and {S, C, 7~€} be an original network and a translated network, respectively. Then, from the definition
of network translation,

Z Ar(n) = Z /N\l;(n) for each vector v € Z%, (S1)

kiV;'c—sz"/ l;:ﬂ,ﬁcff/];:'y

where )\, and 5\,; are the propensities of stochastic models (i.e., continuous-time Markov chains) for {S,C, R} and
{S, C, 7~2}, respectively. Let p,(t) and py(t) be the probabilities of the continuous-time Markov chains associated with
{S,C,R} and {S,C, R} being at state n, respectively. Then, py(t) is the solution of CME given by:

dpn . r
dt - Z Ak (0 — (Vllc - Vk))pnf(y,/efyk) - Z Ak () pn
k=1 h—1
= Z Z )\k(n - (V]/c - Vk))pnf(u,/cfuk) - Z Z )\k<n)pn
YEZ? kv —vp =" YEZL? kv —vp =2
A IézﬂéfﬁfC:'y yEZL IE:D;;71715:7
= Z S‘I}(n - (% - ﬁl}))pn—(le’;—ﬁfc) - Zx%(n)pm
k=1 1

where r and 7 are the total numbers of reactions in the original and the translated reaction networks, respectively,
and the third equality follows from Eq. . Thus, ps(t) and py(t) are the solution of the same CME because the
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CME associated with the translated network is given by

dpn d Y ~
Z)\ u~ — 7)) Pn— (7 —55) — Z)\,;(n)pn
=1

Therefore, py(t) = pn(t) for all n € Z<¢ o as long as they have the same initial condition.

SUPPLEMENTARY NOTE 2: PROPENSITY FACTORIZATION

As we discussed in the main text, to derive a stationary distribution, all the propensities Ag(n) should be factorized

as

Ak(n) = Krf(m)w(n — vg) >,y (52)

for some constants xx > 0 and functions (n) > 0 and w(n) > 0 on aset ' = {n | n > b}, where Ax(n) > 0 if and
only if n > v + b in I’ meaning that v + b represents the minimal copy numbers for the reaction to occur. This

factorization form generalizes the previous result, Eq. (32) in [2], which requires the following factorization:

L
)\k(n) = kC(l’l — Vk) 1{n2uk} (SS)

for ¢ : Z%o — Ry on Z%o Note that if w(n) = and I' = Z%o (i.e., b=0), Eq. is equivalent to Eq. .

1
6(n)
Propensity factorization by solving recurrence relations

To obtain the desired factorization for given propensity functions, we need to solve recurrence relations. Here, we

illustrate how to solve the following factorization equations of Fig. [Tp.

A(na,np) = a1 +asnyg = k10(na,np)w(na,ng), (S4)
A2(na,np) = agna = kab(na,np)w(na — 1,np)l, ,>13, and (S5)
A3(na,np) = asnanp = k30(na,np)w(na —1,np — 1)1y, >1n,>1} (S6)

After setting ki = ag, we divide Eq. and Eq. by Eq. and Eq. , respectively. Then we have

w(na,np) = (%ﬂt}o‘l)w(m‘; —1,np) and w(na — 1,np) = %w(nA —1,np —1). Solving these recurrence relations,
we get w(na,np) = [[;24, %ﬁrf‘l) 75w(0,0). Then #(na,np) is determined as (141“331) ;2 (a;;fal) np! from

the second equality in Eq. . Note that this factorization cannot be accomplished by the previously identified
form (Eq. (S3), A\x = kef(n)f(n — vi) " 1n>,,)), which requires w(na,np) = 6(na,np)~', because Eq.
implies w(na,ng) # 0(na,ng)~!. Here, w(0,0) can be determined by requiring the sum of the stationary distribution

>, 7m(n) to be 1.

Propensities following generalized mass action kinetics can be factorized without solving recurrence relations

If the propensities follow a sort of generalized stochastic mass action kinetics, then their factorization can be easily
obtained. In what follows, we use the convention that Hj_:lo a; =1 for any {a;}.

Theorem 1. Let a biochemical reaction network {S,C, R} be given, and let \i,(n) be the propensity functions of the

associated continuous-time Markov chain. Suppose that there exists a vector b such that form € T = {n | n > b}, we



have A\p(n) > 0 if n > v + b and M\g(n) = 0 otherwise for each k = 1,2,...,r. We further assume that there exist
constants oy > 0 and functions f; : Z>o — R>o,i = 1,...,d such that A\y(n) = ai H?Zl H;”“:(fl filn; — 3) for k =
L,...,7 and alln € T', where vy, is the ith entry of the source complex vector vy. Then Ap(n) = krpf(M)w(n—vi)lin>y,y

on the I' with

d n;
Kk = ag, 0O(n):= H H fi(4), and w(n):= ﬁl{nzb}- (S7)
i=1j=b;+1

Proof. Forn € T,

d ng .
akHM | FA fi(J)l{ NS PR
Il TS fi)

d 2
= OzkH H fz'(j)]-{m—vkizbi}

1=1j7=n;—vi;+1

rrf(m)w(n —vg)Ln>y,) =

d Dkifl
= o H H filni = ), —vpi>by
i=1 j=0
_ ) ak [ T fini—j) ifn>w+b
0 otherwise
= )\k(l’l).

O

Remark 1. A similar condition was introduced by Eq. (27) in the previous study [2], which is a special case of the
generalized mass action kinetics with b = 0. Furthermore, the associated function f;(n;) can be thought as the “rate
of association” of the ith species as pointed out in [9]. Such rate of association of the species have been also used in

order to generalize the Horn-Jackson-Feinberg theory to deterministic non-mass action system [I1].

Remark 2. The example in Fig. [Bg does not follow the generalized mass action kinetics because the propensity of
the reaction A — Ap, a1na + aanana,, depends on both n4 and n4,, but the latter is not supported in the source
complex. Nevertheless, it can be re-expressed as a1na + agna(Ty — na) using the conservation law: ng +na, = Tp

so it now follows the generalized mass action kinetics.

SUPPLEMENTARY NOTE 3: DERIVATION OF STATIONARY DISTRIBUTIONS

If a network is weakly reversible and has zero deficiency, the deterministic mass action model with any rate constants
always possesses a CBE ¢ € Rd>0 [4,[7,[8]. Then the existence of the propensity factorization ensures that the stationary
distribution of the associated continuous-time Markov chain can be derived analytically. In what follows, x # y means

there is at least one ¢ such that z; < y;.

Theorem 2. For a given biochemical reaction network {S,C, R}, suppose that there exists a complex balanced equi-
librium ¢ € RL,, for the deterministic mass action model for {S,C,R} with rate constants {ky}. Let \i(n) be the
propensity functions of the continuous-time Markov chain associated with the network {S,C, R}. Suppose that there
exists a vector b such that forn € ' = {n | n > b}, we have A\;(n) > 0 if n > v, + b and A\p(n) = 0 otherwise for

each k =1,2,...,r. Assume further that the propensity functions \i(n) can be factorized as

Ae(n) = mrf(n)w(n — vg)1n>y,y onI'={n | n> b}, (S8)
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where 6 and w are non-negative functions such that §(n) > 0 ifn € T'. Then the T is a closed subset, and the stochastic
model admits a stationary measure that can be written as
n

7(n) = 6(n)
0 ifneTe.

ifnel,

If ™ is summable over the state space, then the measure w can be normalized to be a stationary distribution.

Proof. We first show that I' is closed, i.e., there is no transition from I' to I'. Assume that there exists a reaction
fromn € T to n + V,’C — v € I with A\g(n) > 0. This implies that n; + I/]/m- — v < b; for some 4, and thus
n; < b — Vj; + vki < b + v That is, n # v + b, and n > b since n € I'. Therefore, A;(n) = 0 from the definition
of b. This contradicts to Ag(n) > 0, so I is closed.

We turn to showing that the given 7 solves the CME at steady state:

> M= (v —w))m(n = (v, — ) = Y A(m)w(n)  for all n € Z<,,. (9)
k k

Case 1: n € I'°. The right-hand side in Eq. is 0 as m(n) = 0 for n € T°. For the left-hand side in Eq. , if
n— (v, —v) €T, Ag(n— (v, —vg)) = 0 because T' is a closed set, and if n — (v, — 1) € I'°, m(n — (v}, — ) = 0 by
its definition. Therefore, the left-hand side in Eq. is 0.

Case 2: n € I'. For each n € I, we define Kr(n) = {k | n — (v, — v;) € I'}. Then Eq. can be reduced into

> M= (v — v = (v — ) = Y Me(n)m(n)  for all n € Z, (S10)
k€ Kr(n) k

CTL

because m(n — (v}, —vg)) = 0 for each k € Kp(n)°. After the substitution of m(n) = a(n) and Eq. (S8), the Eq. (S10)

becomes

e (h—vk)

LHS = Z Klkme(nf (Vllciyk))w(niyl/c)l{nzwé}

kEKr(n)
=c" Z I{kcykiy’,“w(l’l — Vl;)l{nzyllc}’ (Sll)
k€ Kr(n)
Cn
RHS = e Z rrpf(n)w(mn — vg)ln>,, ) =c” kaw(n — k) 1>} (S12)
k k

We can show that the RHS and LHS are equal by using that ¢ € Rio is a CBE and thus for any fixed complex
z€C,

g Krc’F = E Krc’*.

kv, =z kivp=z

Multiplying ¢™*w(n — 2)1{n>.} on the both sides, we have

Z kre Fw(n — 2) 1>y = Z ket T Fw(n — 2)1n>2y,

k:VL,:Z kivp==z
v —U}, /
> kre Trwn = V) Lnzyy = Y Kkw(D = V) linzy,)-
ki) =z kivg=z

Hence, by summing these up for all z € C and multiplying c™ both sides, we get

c" Z nkc”’“f”’;w(n - V}lﬁ)l{nzyé} =c" Z Kskw(n - Vkl)l{l’lZVk} (813)
k k



because every reaction has exactly one complex as its source complex and product complex. Since the right hand side
of Eq. is equal to the RHS (Eq. ), we need to show that the left hand side of Eq. is equal to the
LHS (Eq. )

If ¥ € Kr(n)¢, then n — (v, — 1) € I'° meaning that n; — v, < n; — (v, — vki) < b; for some i and thus
n — v, € I'°. Since the network has the complex balanced equilibrium, the network is weakly reversible [7]. Thus,
there exists a reaction k& whose source complex vj is equal to v;. For such k, by the definition of b, A\;(n) =
wipf(m)w(n — v3)1n>,,y = 0 because n > b and n — v € I'° (e, n — v # b). Since 6(n) > 0, furthermore,
wm = ;) 1>,y = w(n — v )lm>,y = 0. Hence, the left hand side of Eq. is equal to the Eq. and
therefore, Eq. and Eq. are equal. O

Example 1. Here, we illustrate Theorem [2] with the translated EGFR network in Fig. [Bh:

OQTLA(TLA—I)

The CBE ¢ = (ca,ca,) of the deterministic mass action model satisfies the balancing equations for the complex 0:
azca, = a1, for the complex A: a1 + asca, = agca, and for the complex Ap : asca = aszca, + asca,. Thus,
c = (ca,cap) = (5F + 52o2, o). For this example, b = (1,0) since Ax(n) > 0 for n > vy + (1,0), and Ax(n) = 0 for
n such that n > (1,0) and n # v + (1,0) for all k = 1,...,4. Letting fa(na) = na(na —1) and fa, = na,, the
condition in Theorem (1) holds. Therefore, the propensity factorization A\x(n) = rrf(n)w(n — vg)1n>,,} is given by

K =ag, 0na,na,)=nal(na—1)na,!

and

1 1

[ —
Q(TLA,W,AP) {naz1} nA!(nA—l)!nAP!

W(nA,nB) = 1{77,,421}

for (na,na,) €T ={(na,na,) | na >1,n4, > 0}. By Theorem [2] a stationary measure 7(na,na,) is given by
(ﬂ + M)M (u)"“”
(e ) [e DY %) [e%:] .
_ M if
7"'("Fhéh'anp)— ’n,A!(’I’LA—l)!’I’LAP!
0 if (na,na,)ele.

(TLA,TLAP) S F,

where M is a normalizing constant. m(na,n4,) is indeed a stationary distribution because it is summable over I' as

follows:

na NAp na NAp
Q4 aay a1 Q4 aay a1
Z a2 [eDYe %3 a3 < Z a2 [eDYe %3 a3
nA!(nAfl)!nAP! - nA!nAP!
na NAp
(20 22)" (2)
[e3) azQg3 (%]

?”LA!TLAP!

(nAanP)GF (nA-,nAp)GF

< ¥

(TLA,TLAP)EZQZO

Q1Qy g

= exp(— + ) < o0.

«
Q2 GQaC3 Q3

Moreover, since T is closed, the states (na,na,) € I'C are transient as each state in I'® is reachable to I" with either
0 =+ Aor A, - A. This implies that the stochastic process can visit the state n € I'° only finitely many times.
Indeed, if (na,n4,) € T'¢, ie,, ng = 0, then only the reactions 0 - A, Ap — A and Ap — 0 can occur in I'°. Thus,

the process moves along one of the stoichiometric vectors (1,0), (1, —1), and (0,—1), then it eventually escapes from



I'® to I and never comes back to I'°. Due to the transient states, Theorem 6.6, which is the most general version of
the previous work [2], is not applicable to this example.

Let us compute the marginal means and variances of n4 and n4,. For ny4,, the marginal distribution

(o1 /ag)"ap

' )
NAp!

W(nAP):Ml NAp 207

which is a Poisson distribution with rate Z—;, so both the mean and the variance are Z—; Thus, the coefficient of
variation (CV) is %’ and the Fano factor, defined as the variance divided by the mean, is always 1. For ny4, the

marginal distribution
7T(TLA) = Mg

where ug = (a1/as + a1y /asas), and Mj is the normalizing constant.

.(nA -1

My = (Z W) = [Vuol1(2y/uo)]

TLA:1

where I,,,(z) is the modified Bessel function of the first kind. Then the mean and variance are given by

N _ —To(2y/ug)
= Y nan(na) = Vauo O(Qr)

Io@f) Io(2 Uo)z.

na=1
Var(na) = E[n}] — (E[na))* = Vug
The CV and the Fano factor are also given by

oy — «/VarnA ¢ [ 11(2\ﬁ)+ 0(2ya)*
Vo Io(2y/uo) — L(2y/wg)?

Var(nA ( Vo) 10(2\ﬁ)
Fano factor = ————% =1+ /u — ug
E[n] Io(2y/uo) 1(2\/ug)
0.5 0.5
0.4(\ _ 04
S
1)
5 0.3 g 0.3
02 & 02
0.1 0.1
00 5 10 15 20 25 30 00 5 10 15 20 25 30
Qg4 2y Qg4 2

@ g as as

Supplementary Figure 1. The coefficient of variation (CV) and Fano factor of the stationary distribution of na in Fig.
can be determined by the single parameter up = g—;(l + g—;‘) The CV attains the maximum at uo ~ 1.8, and the Fano factor

monotonically increases. Since the Fano factor is always less than 1, this distribution is sub-Poissonian.

Remark 3. By the basic Markov properties [I0], Theorem [2| not only provides a stationary measure but also char-
acterizes the status of states. Since m(n) > 0 for each n € T, every state in I" is recurrent as long as the process is
non-explosive (i.e., well-defined for all time t). Since I' is a closed set, furthermore, if a state n € I'® is reachable to
T, then n is transient. Another special case is that a state n is isolated state, i.e., Ay(n) = 0 for all k. In this case,

the set of the single element {n} is an irreducible subset, and w(n) = 1 on {n} is a stationary distribution, obviously.



Remark 4. This theorem does not require nor imply the irreducibility of I'. If T' is not irreducible then for an
irreducible subset I'y C T, we consider a measure 71, = 7T|ner‘g restricted on I'g. This measure is still a stationary
measure and can be a stationary distribution on I'; as long as np, is summable over I'y. For instance, in the
example in Fig. , I" is not an irreducible set, but a union of irreducible subsets I'y, = {(21, 22, 23) € Z?éo | 21 >
1 and 21 + x2 + 23 = Tp}. Since the stationary measure m obtained by Theorem [2|is summable on I'y, for each T,
the restricted stationary measure 7, can be normalized to be a stationary distribution on the irreducible subset.
In this remark, we prove the irreducibility of {(x1,z2,x3) € Z?éo | z1 > 1 and 21 + x2 + 23 = Ty} for Fig. . We
say that for a Markov chain X, state y is accessible from state x and write x —, y if X can reach y starting from x
with positive probability, that is, the probabilities P(X(¢) =y | X(0) = x) > 0 for some ¢ > 0. We say that states =
and y communicate and write x <. y if ¢ —, y and y —, x. For the Markov chain X (¢) associated with a translated
network, we denote by Ac,c, and n the propensity of a reaction C; — C3 and the stoichiometric vector of the
reaction, respectively. Note that if Ao, ¢, (2) > 0 then © —, x + 7 because for a sufficiently small At,

P(X(At) =z + 1| X(0) = 7) = Acy e (@) At + 0(A).

By using this, for the translated network in Fig. [3H, we have (na,nap,nanp) ¢ (Ra — 1,na, + 1,n4,,) and
(na,map,NAapp) e (Ma—1,map, napp+1)forng >2and na+na, +na,, = To because Aaa,(na,Nap, Napp) >
0, ap—app(Mma—1map+1l,na,,) >0and Aappsa(na—1,m4,,n4,,+1) > 0, which imply that (na,na,, napp) —a
(na—L1na, +1,nap) 20 (a—1,nap,nap, +1) =0 (Ma,nan,nars). As <> forms an equivalent class, any two
states in {(z1, z2,23) € Z?;O | 1 > 1 and 1 + x2 + x3 = Ty} communicate so it is irreducible when Ty > 2. If Ty =1
then the set consists of a gingle element (1,0,0), and it is irreducible itself.

Similarly, for the translated network in Fig. [I] we have that (na,ng) ¢ (na+1,np) and (na,np) ¢>¢ (na,np+1)
for any (na,np) € Zzzo because Ao a(na,np) > 0, Aasarp(na +1,n5) > 0 and Ay p_o(na + 1,ng +1) > 0,
which imply that (na,np) —a (na+1,n5) =4 (na+1,npg +1) =, (na,np). As <. forms an equivalent class, any
two states in ZQZO communicate and hence ZQZO is irreducible. The irreducibilities of the other two examples in Fig.

[Bp, g can be shown in similar ways.

Remark 5. By introducing a new factor w(n), Theorem [2| generalizes Theorem 6.6 in [2], which is the most general
version of the previous work [2]. In particular, if the function w(n) for the factorization is (n)~! then Theorem 2
becomes equivalent to Theorem 6.6 in [2]. This generalization is demonstrated by three biologically relevant examples
in Fig. 3l For instance, w(n) = 0(n)~'1,>py in Fig. [3a with the nonzero vector b = (1,0), so this factorization is
not directly covered by the previously identified form, where w(n) = 6(n)~!. However, the additional characteristic
function is somehow negligible under a change of variable n’ = n—b since the state space can be restricted on {n > b}.

Nevertheless, the usefulness of our theorem is clearly demonstrated by the examples in Fig. [1I| and Supplementary
Figs. [3land [4] .

SUPPLEMENTARY NOTE 4:
CASTANET: COMPUTATIONAL PACKAGE FOR DERIVING STATIONARY DISTRIBUTION
FORMULAE

Applying our theoretical framework (Fig. [1]) has two practical difficulties. Translating a given network to a weakly
reversible deficiency zero network (Fig. [1p) is not straightforward as prohibitively many candidates of translated
networks often exist. Furthermore, unless propensity functions follow the generalized mass action kinetics, it is
challenging to check whether the factorization condition holds (Fig. ) as it requires to solve associated recur-
rence relations. Thus, we have developed an open-source and publicly available MATLAB code (GitHub repository:
http://github.com/Mathbiomed/CASTANET) that performs our theoretical analysis to derive stationary distribu-

tions. Specifically, the package checks two conditions: whether a given BRN can be made weakly reversible and of



zero deficiency after network translation, and whether the propensities of the translated network can be factorized as
in Eq. (S2)). If these two conditions are satisfied, the package then calculates the analytic formula for a stationary
distribution. One can easily run our code by simply entering the source complexes, product complexes, and propensity

functions of reactions.

Step 1 & 2) Input a network and propensities.

®+® sources products  lambda_k{1}(n) = alpha(1);
P — 0111 1102 lambda_k{2}(n) = alpha(2)*n(1);
/ LZ,H 0010 0101 lambda_k{3}(n) = alpha(3)*n(1)*n(2);
lambda_k{4} (n) = alpha(4)*n(1);

0o——— ® ®+6

agng

\

Step 3) Search all weakly reversible and deficiency zero translated networks.

Translated | | Translated | | Translated
Network Network Network cee
1 2 3

Step 4) For each translated network, check the propensity factorization Eq. (1) with .(n).

(0]
Step 5) Compute CBE c and derive an analytic formula for the stationary distribution.
Cn
w(n) =M
0c(n)

Output
®+ sources_trans products_trans Index_trans pi
/ TA [O ! 1] [1 ! O] [{1,4} {2} {3}] c(1)"n(1)*c(2)~n(2) /theta
001 010
0 ®

Qg+ asna

Supplementary Figure 2. A step-by-step schematic diagram of CASTANET. Here, 6.(n) is a candidate for propensity factor-

ization. See the manual for details.

Manual for the code

We explain how to enter the input and run the code CRN_main.m with our example in Fig. as follows.
Step 1) Enter the source and the product complexes into sources and products as column vectors.
% Fig.1 example

[00; 10; 11;10]";
[10;11;00; 20]";

sources

products

>> disp(sources)
0111
0010

>> disp(products)



1102
0100

The ith columns of source and product represent the source complex and the product complex of the ith reaction,
respectively. For instance, the fourth columns of source ([1,0]T) and product ([2,0]T) describe the source and
product complexes of the fourth reaction: A(=14+0B) - A+ A(=2A+0B).

Step 2) Enter the propensity functions of all reactions into the cell variable lambda_k and run the section

‘Initialization of all input variables and parameters’ to set up all the input variables.

lambda_k{1}(n) = alpha(1);
lambda_k{2}(n) = alpha(2)#*n(1);
lambda_k{3}(n) = alpha(3)*n(1)*n(2);
lambda_k{4}(n) = alpha(4)#*n(1);

Note that the propensity functions do not need to follow the mass action kinetics. The symbolic variable alpha (k)

represents the rate constants of the reactions. Users can also fix the values of alpha(k) (e.g., alpha(1) = 3;).
Step 3) Run the section ‘Performing Network translation’ to obtain translated networks.
[Solution,Index] = CRN_translation(sources, products, 2);

The third input argument 2 means that the function searches all translated networks whose reaction order is at
most two (i.e., bimolecular). It can be changed to any other positive integer. The ith row of Solution contains
the source and product complexes of the ith translated network. Each element in the ith row of Index is a set of
indices indicating which reactions in the original network are merged to form a reaction in the ith translated BRN.
For instance, if the ij entry of Index is {1,3}, then this indicates that the first and third reactions in the original
BRN were merged to form the jth reaction in the ith translated network. As the outcome, the number of identified
weakly reversible deficiency zero translated networks is reported:

The number of weakly reversible deficiency zero translated networks is 2.

Step 4) Run the section ‘Performing Propensity factorization’ to identify a translated network whose propen-
sity functions satisfy the factorization condition (Eq. ) among all the translated networks obtained in Step 3.
Specifically, for each translated network, the code constructs a candidate (6.(n)) for the function f(n) and checks
the factorization conditions with the candidate .(n). This candidate is necessarily the desired function #(n) if there
exists a factorization (see the next subsection for details). The key function CRN_theta_construction() provides the
candidate, and CRN_check_factorization_condition() examines whether the factorization condition (Eq. )
holds. Since the example in Fig. [T has a translated network satisfying the factorization condition, the code successfully

finds the factorization and displays the following line:
The factorization condition holds for the translated network 1!
If none of the translated networks have the desired propensity factorization, the code displays the following line:

No translated network satisfying the factorization condition is
identified.

Step 5) If a translated network having the propensity factorization is found in Step 4, run the section ¢Compute

CBE and derive a stationary distribution pi(n)’ to compute a complex balanced equilibrium and analytically
derive a stationary distribution. Then the code will provide the translated network and its stationary distribution

formula, which is the same as the stationary distribution of the original network.

Output)
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We have five outputs: source_trans, product_trans, Index_trans, lambda_trans, and pi. The first two outputs
represent the stochiometric vectors of the source complexes and the product complexes in the translated network iden-
tified in Step 4. Index_trans is the row of Index corresponding to the translated network. lambda_trans contains

the propensity functions of the translated network, and pi is a symbolic expression for the stationary distribution.

The source complexes of the translated network:
011
001

The product complexes of the translated network:
110
010

The index of the translated network:
{14} {2} {3}
ni is the number of the ith species.
1st reaction propensity of the translated network:

alphal + alpha4x*nl

2nd reaction propensity of the translated network:

alpha2*nl

3rd reaction propensity of the translated network:
alpha3*nl1*n2

Analytic formula for the stationary distribution:
piecewise("in((alphal - alpha4)/alpha4, 'integer') |

“(alphal - alpha4)/alpha4 in Dom::Interval([-nl1], [-1]),
(alpha2”(n2 - nl)*alpha4”nl*gamma((alphal + alpha4#*nl)/alphad))/
(alpha3"n2*gamma(nl + 1)*factorial (n2)*gamma(alphal/alpha4)))

Here, piecewise(condition, value) means conditionally defined function in MATLAB. If condition holds then
value is the function output. Since MATLAB symbolic expression uses gamma(a+k+1)/gamma(a+1) to represent
(a+1)(a+2) - (a+k) and the domain of the gamma function does not contain the non-positive integers, the above
complicated expression appears. The above expression certainly the same to the theoretical result.

Note that, technically, this is a formula for a stationary measure, not a distribution. To get the stationary distribu-
tion, the stationary measure needs to be normalized so that the sum of the probabilities over the state space is one,

which is possible only when the formula is summable over the state space.

Underlying algorithm of the code

The code generates all possible network translations under a user-defined maximum reaction order (e.g., 1, 2, and
3 for unimolecular, bimolecular, and termolecular reaction networks, respectively). Among these translated networks,
the code identifies weakly reversible deficiency zero networks. However, because there are sometimes prohibitively
many translated networks (e.g., 864 candidates for the example in Fig. [I| with maximum reaction order 3), checking
weak reversibility and deficiency for all translated network is extremely inefficient. In particular, it greatly increases
computational cost to check weak reversibility and count the number of linkage classes via a connected components

search algorithm (Tarjan’s algorithm [12]). Thus, before performing this calculation, we first simply check whether a
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translated network can have a desired property by using the following necessary conditions of being a weakly reversible

deficiency zero network, which greatly reduce computational cost.

Theorem 3 (Necessary condition of a network to be weakly reversible after network translation). For a given
biochemical reaction network, if there exists a weakly reversible translated network of the given network then for each

species index i, one of the following two conditions holds.

1. The ith coordinates of the stoichiometric vectors of all reactions, v}, — vy, are zero. In other words, {v}; —

Vilayz{g — V2, .. '71/1{7- - V’ir} = {O}

2. There exist both positive and negative numbers among the ith coordinates of the stoichiometric vectors of all

. / / / / / L :
reactions. In other words, the set {v}y — v;1,V}y — Viy, ... V. — V. } has both positive and negative elements.

Proof. This can be proved by contradiction. Suppose that there exists a species index ¢ such that the set of ith
coordinates of all the stoichiometric vectors has only non-negative (non-positive) elements and has at least one positive
(negative) element. Note that this is the negation of the above statement. Since the set of stoichiometric vectors is
invariant under network translation, the weakly reversible translated network also has the same set of stoichoimetric
vectors as the original network does. Note that every reaction in a weakly reversible network belongs to a closed cycle.
However, the reaction whose stoichiometric vector has positive ith coordinate cannot be contained in any closed cycle

because the ith coordinate of every other stoichiometric vector is non-negative. O

If the necessary condition is not satisfied for a given BRN, we do not need to check weak reversibility of all translated

networks, which greatly reduces computational cost.

Theorem 4 (Necessary condition of a network to have zero deficiency). For a given biochemical reaction network,
let n,l, and s be the number of complexes, the number of linkage classes, and the dimension of the subspace spanned

by the stoichiometric vectors, respectively. If the deficiency of the network is zero, then s +1 <n < 2s.

Proof. The deficiency 0 is given by n —[ —s. Since the deficiency of the given network is zero, n = [+ s. As long as the
given network is not the empty network (i.e. S =C = R = (), there exists at least one linkage class, so 1 < [. Each
linkage class consists of at least two complexes so n(=[l+s) > 2l and thus | < s. Therefore, s+1 <n=1+s<2s. [

This condition might appear useless because n can vary among translated network. Nevertheless, s is invariant
under network translation, and furthermore, we no longer need to calculate the number of linkage classes [ for the
condition in Theorem [4 which requires to perform the graph search algorithm and thus takes high computational
cost. Hence, by avoiding this calculation for translated networks that do not satisfy the necessary condition, we can
greatly reduce computational cost.

After identifying a weakly reversible and of zero deficiency network, the code checks whether each translated
network satisfies the factorization condition (Eq. (S2)) by constructing the explicit formula for a candidate 6.(n) for
the function 6(n) in Eq. (S2). The candidate 6.(n) can be constructed as follows. We first derive the recurrence
relation of the function 6(n). If there exists a desired propensity factorization, from the factorization conditions for

reactions ¢ and j at n —v; and n — y;,

)\Z‘(Il — l/j)

/\j (1’1 - Vz)

kil —vj)wn —v; — 1),
ki0(n —v))wn —v; — ;).

By dividing the above equations, we get the following recurrence relation:

O(n —v;) = M X O(n — v;). (S14)
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Let ny be a state satisfying Ag(ng) > 0 for all k. Let us consider a sequence of pairs of source complexes,

(Vars Yy )y (Vass Vby )y« -y (Va,, Vb, ), Such that
m
ng + Z(l/aj — ;) =n. (S15)
j=1

This means that ng — ng+ (v, —v,) = -+ > np+ Z;n:l(yaj —up;) = n is a path from ng to n. For a pair of n and
ng, in order to identify this type of paths, we use the row-style Hermite normal form, an analogue of reduced echelon
form for a matrix over the integers. Specifically, non-zero rows of the Hermite normal form of the matrix whose jth
row is vj4q1 — vq form a basis for the lattice as v; — v; = (v; — 1) — (v; — v1). Thus, by using this basis, one can
identify a path from ng to n [3,[5]. Note that such a path is not unique in general but it is enough to consider a single
path (see below). We multiply Eq. along this path, and then we obtain

f(n) — ﬁ Ao, (0 + Zzij(”“i — )/ Kay (S16)
21 Avy (o + 3207 (v, — w,)) /K,

Note that the RHS of Eq. can be obtained by substituting n in Eq. with n + v; and one can assume

6(ng) = 1 without loss of generality as the factorization holds up to constants.

For a special case, CASTANET uses a more efficient way to identify #(n). Specifically, if the propensity functions
of a translated network follow the generalized stochastic mass action kinetics and all the complexes consist of zero or
one species, then CASTANET constructs the function #(n) by using Eq. .

Based on this expression for #(n), the code constructs the candidate 6.(n) using Eq. with a path from
ng to n. If there exists a desired function #(n) for propensity factorization then it must be the same as the
candidate 0.(n) because both should be expressed as Eq. . Thus, the propensity factorization condition
(Eq. (S2)) can be checked using 6.(n). In the package, CRN_find_elementary_path() generates a path from
ny to n, CRN_theta_construction() constructs 6.(n), and CRN_check_factorization_condition() examines
the factorization condition. The functions CRN_find_elementary_path(), CRN_find_elementary_function() and
CRN_solve_sym_linear() are auxiliary functions to preprocess the input variables into appropriate forms for the
construction code. See README.md in the GitHub repository for details. Finally, a complex balanced equilibrium of
the deterministic mass action model for the translated network is determined by solving the algebraic equation for

the complex balanced equilibrium with the function CRN_compute_cbe().



13

-A+B

-A+B

-A+B

A+B

A+B

A+B

+B

+B

+B

+B

+B

+B

A+B

A+B

Supplementary Figure 3. Our computational package CASTANET identifies BRNs with two species whose stationary distri-

bution can be analytically derived. Specifically, CASTANET translates these networks to be weakly reversible and of zero

deficiency and then finds factorizations for the propensity functions of the translated networks as in Eq. (S8)), thus calculat-

ing their stationary distributions. The figure shows the first 32 networks identified by our package among randomly selected

networks with two species (A and B) and at most bimolecular reactions (e.g., A + B — A). More examples can be found in

https://github.com/Mathbiomed /CASTANET. All kinetics are assumed to follow the mass action kinetics. All rate constants

are set to be one to reduce complexity while arbitrary rate constants are allowed to derive stationary distributions.
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Supplementary Figure 4. Our computational package CASTANET identifies BRNs with three species whose stationary dis-
tribution can be derived. Specificallyy, CASTANET translates these networks to be weakly reversible and of zero deficiency
and then finds factorizations for the propensity functions of the translated networks as in Eq. , thus calculating their
stationary distributions. The figure shows the first 32 networks identified by our package among randomly selected networks
with three species (A, B, and C) and at most bimolecular reactions (e.g., A + B — C). More examples can be found in
https://github.com/Mathbiomed /CASTANET. All kinetics are assumed to follow the mass action kinetics. All rate constants

are set to be one to reduce complexity while arbitrary rate constants are allowed to derive stationary distributions.
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Supplementary Figure 5. Stationary distributions of autophosphorylation networks with non-elementary reactions (e.g., Hill
functions). a, b, ¢ Autophosphorylation networks with non-elementary propensity functions. The propensity functions
£, f1, f2, 9, and h can be Michaelis-Menten or Hill functions, which are often used to describe autophosphorylation, phosphatase-
mediated dephosphorylation, and proteasomal degradation. The propensity functions f, f1, f2, g, and h can be Michaelis-Menten
or Hill functions, which are often used to describe autophosphorylation, phosphatase-mediated dephosphorylation, and pro-
teasomal degradation. In fact, f(na) can be other functions as long as there exists ba such that f(na) > 0 if and only if
na > ba. For the Michaelis-Menten and Hill-type functions, ba = 0 because f(na) > 0 if and only if na > ba = 0. The
restriction f(na) > 0 if and only if na > ba means simply that the propensity is positive when there is a large enough number
of A molecules (i.e., na > ba), and the value of bx is, in turn, the minimum number of species A in the recurrent state. This
indicates that our method can be applied to any typical propensity function f for these networks. Similarly, ﬁ g, and h can
be other functions satisfying the natural positivity condition (e.g, g(na,) > 0 if and only if na, > ba,). d, e, f Stationary
distributions of the autophosphorylation networks with the non-elementary reactions. Note that the stationary distributions

of the networks in Fig. [3| are special cases of these formulae.
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Supplementary Figure 6. The stationary distributions of modified autophosphorylation networks with additional trans-
autophosphorylation reactions (dotted boxes). These can be approximated by the stationary distributions of the original
networks as long as the relative magnitude () of the rate constant of a new trans-autophosphorylation reaction (dotted box)
is sufficiently small compared to that of the original trans-autophosphorylation reaction. a Trans-autophosphorylation reaction
A+ Ap — Ap + Ap is added to the original network (Fig. ) Due to this modification, although the modified network can
be translated to a weakly reversible deficiency zero network, a desired propensity factorization does not exist. b Nevertheless,
the stationary distributions m(na) of the modified network (v = 0.05,0.1,0.2, gray lines) calculated from stochastic simulations
can be closely approximated by the stationary distribution of the original network (y = 0, colored line), which is derived by
our method (Fig. [Bb, ¢). ¢ Even the stationary distributions 7(na,) of the modified network are nearly identical to those of
the original network. d Similar to a, adding A + Ap — Ap + Ap makes their propensities unable to be factorized as in Eq.
(S2) even after network translation. e, f, g The stationary distributions, m(na), m(nap), and m(na,,) of the modified network
can be approximated by the stationary distributions of the original network (v = 0), which are obtained by our method (Fig.
, f). h Another trans-autophosphorylation reaction A + A — A + Ap is added to the original network (Fig. ) i,j The
stationary distributions w(n4) and m(na,) of the modified network are nearly identical to the stationary distributions of the
original network (7 = 0). Note that the stationary distribution of the modified network in h can still be analytically derived
because there exists a desired propensity factorization for this modified network after network translation. For each example,

10° simulations were performed using the Gillespie algorithm. See Fig. [3| for the values of parameters.
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SUPPLEMENTARY NOTE 5:
STATIONARY DISTRIBUTIONS OF THE GENETIC TOGGLE SWITCH WITH SLOW PROMOTER
KINETICS (FIG.

To obtain the probabilities of the gene G4 is active (pact) and repressed (prep), we can construct the reduced-order

Markov chain infinitesimal generator A,.:

e E[\;j|gene state j] for i # j
[Ar]i; = 1 T
=€ D gty Mkj fori=j

where )\;; is the propensity of the reaction that changes the gene state from j to ¢, and ¢ is the ratio between the fast

and slow timescale. The gene state 1,2,3, and 4 represent (G&.,. G5,), (Giy,GE,), (Gi,.GE,), and (G1,,GE,),
respectively, where G4, represents nga, = 1 and nga = 0, and Gﬁ‘ep represents nga = 0 and nga = 1,

and it is defined in the same manner for the gene GZ. Then \g; is the propensity of the reaction Ap + G2, —
GE . which changes the gene state from (Gi,,GL,) to (Gau,,GE,). Thus, [A]r = e 'E [Aa|(Giy, GE)] =
GB

le [TLAP ‘(GA

40 GE )] because Aoy =€ - lbnapnge,, and ngs = 1. Since the conditional moment of n4,, is solely

act

determined by the state of the gene G4, [Ar]21 = BE [nAp|GA ] Repeating the similar computations, we get the

infinitesimal generator

A, =
“LE [nap|GA,] — KE [n5,|GE,] e . 0
BE [na,|Golu) ~lu = ko [n5,|GT,] 0 Feu
i o G5 o T et
0 koE [ng,|GE] BE [naplGlp]  —ku— L

Note that A, is Metzler i.e., all the entries are non-negative except for those on the diagonal, and 17 A, = 0. Hence, the

Perron-Frobenius theorem [6] implies that there exists a positive eigenvector p = (p(act,act)> Plact,rep)s Prep.act)s Prep,rep))
corresponding to the eigenvalue 0. Furthermore, we can uniquely determine the eigenvector p using the normaliza-

tion: plact,act) T Plact,rep) T Plrep,act) T Plreprep) = 1. Here, plact(rep),act(,rep)) 15 the probability that the gene state

is (cht(7rep), Gcht(,rep)) [I]. From this eigenvector, we can derive the approximation of the full (i.e., unconditional)

mariginal stationary distribution of fast variable Ap :

TF(TLAP) zp(act,act)ﬂ-(nAP |G:140t7 cht) + p(act,rep)ﬂ'(nAP |G:14ct7 le?ep) (Sl?)

+ p(rep,act)ﬂ—(nAP |Gfepa Gcht) + p(mp,rep)ﬂ(nAP |G;4€p7 Gip)a

where the approximation becomes more accurate as the timescale separation is larger and becomes exact when € — 0.

Since the conditional distribution of the Ap solely depends on the state of the gene G4, it can be reduced as follows:

7T(’anp) ~ (p(act,act) + p(act,rep))ﬂ-(nAp |G;4ct) + (p(rep,act) + p(renre;n))ﬂ-(nAp |Gfep)-

Finally, the probabilities that the gene G4 is active (pyc;) and repressed (prep) are given by

Pact = P(act,act) + P(act,rep) and Prep = P(rep,act) + P(rep,rep)-

The full marginal stationary distributions of all other fast variables: A, B, Bp, can also be obtained by computing the
linear combination of the conditional stationary distributions of each fast variable, similar to Eq. (S17) (Supplementary
Fig. . More details on the derivation of the reduced-order Markov chain are discussed in [I].
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Supplementary Figure 7. Full marginal stationary distributions formulae (solid lines) and the simulation results obtained with
10* times Gillespie algorithms (dots) for A, B, Bp in Fig. See Fig. |4] for the values of parameters.
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