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Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The authors combined data from several publicly available data sets of autism and schizophrenia to 

form a super-set of ~1600 healthy controls, ~500 schizophrenia (SZ) patients and 770-1000 autism 

spectrum disorder patients (ASD) patients to characterize the similar and distinct features of network-

level activation and network-level and regional functional connectivity as well as voxel-wise gray 

matter volume and density. 

Data were from six multi-site studies 

1) Bipolar Schizophrenia Network for Intermediate Phenotypes BSNIP-1 

2) Functional Biomedical Informatics Research Network (FBIRN) 

3) Centers of Biomedical Research Excellence (COBRE) 

4) Maryland Psychiatric Research Center (MPRC) 

5) Autism Brain Imaging Data Exchange I (ABIDE I) 

6) Autism Brain Imaging Data Exchange II (ABIDE II) 

For the network-level functional connectivity analyses, the authors make use of a method called 

NeuroMark they developed, previously published in preprint, which is a modification of group 

information guided ICA, to identify network-level independent components from resting state 

functional MRI. The derived network-level time-series resulting from the use of this method are then 

used to calculate network-level correlation matrices which are then compared pairwise across groups 

(controls, and those with SZ and ASD). They conclude that both SZ and ASD exhibit lower functional 

connectivity within the default mode network and sensorimotor domains and increased functional 

connectivity between cognitive control and default mode networks. SZ and ASD unique network-level 

changes were observed in the interaction between visual and cognitive control networks. Both ASD 

and SZ groups had reduced gray matter in the anterior cingulate and insula. Some increases unique to 

the ASD patients were found in gray matter volume. Although there was significant overlap in the 

observed changes in both disorders, aberrations in the ASD were reported to be less significant. 

The extant body of work comparing functional and structural changes across disorders is still relatively 

small, making the topic of the paper and the potential conclusions of the work of interest to the 

community. However, the methods and conclusions are unclear in a number of important ways 

described below. 

1. It is not clear if the result of the NeuroMark method, used to define independent components, 

results in a single component for each network, the time series of which is compared across 

individuals in a group-wise manner, or if it results in a different component for each subject. The 

manuscript seems to imply it is the latter. “Guided by the 53 group-level spatial network maps, 53 

corresponding subject-specific networks were obtained for each subject using a multiple-objective 

optimization framework in GIG-ICA. Each resulting subject-specific functional network reflects brain 

regions with similar activation or high intra-connectivity.” However, there was no analysis of how 

consistent these networks were across individuals, making the subsequent comparison across 

diagnoses hard to interpret. 

2. The authors say that their results are replicated using separate data sets. It appears that they 

really mean that they performed the same analysis on the data from the individual studies (BNSIP-1, 

BIRN, COBRE, MPRC, ABIDE I, ABIDE II) and then performed a meta-analysis to compare the results 

over the individual studies to that of the data set formed by the combination of all data sets. However, 



the meta-analysis is not described in the methods section and the results of the analysis do not 

appear to be included in the paper. I think it would be interesting to determine whether any of the 

features identified through the NeuroMark method were sufficient to classify patient groups. Instead of 

a meta-analysis, a classifier could be built on some of the data and tested on other parts of the data in 

order to determine if these features have predictive power beyond group-wise means. 

3. The authors provide no explanation of why “activation” is an important measure to consider and 

provide no interpretation for these results. In this section, it is not very clear what is meant by weaker 

changes in ASD – i.e. does the ASD group exhibit changes in fewer voxels or are the magnitude of the 

changes smaller. Also this part of the analysis is not mentioned in the methods section so it is not 

clear what regressions were performed before doing this analysis. 

4. The authors use the Brainnetome atlas, one of two atlases for regional functional connectivity. The 

authors indicate the atlas has 274 regions and that they used a smaller subset of 261 of those. 

However, the Brainnetome atlas only has 246 regions. 

5. Mean global signal is reportedly regressed from the time series of the regional functional 

connectivity analysis, but not the time series used in the groups ICA analysis. As mean global signal 

regression is known to induce negative correlations, it seems risky to perform this step in 

preprocessing data for some but not all of the analysis, and makes it more difficult to compare the 

results across them. 

6. The authors did not provide any motivation for the choice of parameters used to determine 

successful normalization of the imaging data in their quality control procedure. Different values were 

chosen for different imaging modalities, which appear to have resulted in a different number of 

subjects for different analyses even within the structural-only analysis: 

modulated structural images 3148: 1661 controls, 517 SZ and 970 ASD 

unmodulated structural images 3374; 1789 controls, 555 SZ and 1030 ASD 

The authors should provide further explanation as to the reason these choices were made. 

7. Several places throughout the results section, percentages are discussed and it is not always clear 

what they refer to. 

8. Weaker changes in the ASD group are reported in relation to the functional connectivity results as 

well and could be made more clear. Do weaker changes indicate fewer changes or smaller differences 

in correlation or both? 

9. In my opinion stacked bar plots are difficult to read. In this case I do not feel bar plots are 

necessary, as the authors appear to report the relative number of subjects in each portion of the 

analysis in an easily interpretable table. 

10. The BSNIP-1 data set contained subjects who were also bipolar. Perhaps these subjects should 

have been removed from consideration as they add to the heterogeneity of the schizophrenia group. 

Reviewer #2 (Remarks to the Author): 

The authors investigated similarities and differences in resting-state fMRI intra-network activation and 

structural MRI grey and white matter density and volume in a large group of individuals with autism 

and individuals with schizophrenia compared to neurotypical controls. Common networks and 

structures were impaired in autism and in schizophrenia, but were more impaired in schizophrenia 

compared to autism. This is an interesting topic, and the large sample size and sophisticated methods 

will greatly benefit the field. Identifying what is common across conditions and what is pathology-

specific assists with identifying biomarkers for identification and treatment. 



However, the big-picture issues that drive the rationale for a study like this are currently lost in the 

writing. The main contributor to this is that the results and discussion sections read like a list of 

structures and networks that are abnormal in one condition or in both. Could the authors please add 

some context to the results to make this easier to read? 

For example, what do abnormalities in these structures/networks reveal for understanding autism 

and/or schizophrenia? What has been previously identified as being related to specific behaviors? Do 

these indicate potential biomarkers? How are these findings useful? Some of this begins to be 

addressed in sections such as “SZ and ASD: unique abnormalities”, but the discussion still contains 

vague phrasing such as “communication between self-related processing and other functions… may 

underlie the differences between SZ and ASD”. Can the authors be more concrete in what they are 

referring to? 

In short, relating these results to what has been found previously and what still needs to be done will 

assist in highlighting why these findings are interesting (which they are). 

I have a couple of other specific points. 

Introduction: 

• I am missing the difference between hypothesis 1 compared to 2 and 3? 

• The sentences following “However, there are notable differences between populations afflicted with 

the two disorders.” Needs references to support the claims. 

• Other references to include directly comparing autism and schizophrenia that may help with adding 

context to the rationale and discussion points: 

Eack, S. M., Bahorik, A. L., McKnight, S. A. F., Hogarty, S. S., Greenwald, D. P., Newhill, C. E., … 

Minshew, N. J. (2013). Commonalities in social and non-social cognitive impairments in adults with 

autism spectrum disorder and schizophrenia. Schizophrenia Research, 148(1–3), 24–28. 

https://doi.org/http://dx.doi.org/10.1016/j.schres.2013.05.013 

Eack, S. M., Wojtalik, J. A., Keshavan, M. S., & Minshew, N. J. (2017). Social-cognitive brain function 

and connectivity during visual perspective-taking in autism and schizophrenia. Schizophrenia 

Research, 183, 102–109. https://doi.org/10.1016/j.schres.2017.03.009 

Haigh, S. M., Eack, S. M., Keller, T., Minshew, N. J., & Behrmann, M. (2019). White matter structure 

in schizophrenia and autism: Abnormal diffusion across the brain in schizophrenia. Neuropsychologia, 

135, 107233. https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2019.107233 

Haigh, S. M., Gupta, A., Barb, S. M., Glass, S. A. F., Minshew, N. J., Dinstein, I., … Behrmann, M. 

(2016). Differential sensory fMRI signatures in autism and schizophrenia: Analysis of amplitude and 

trial-to-trial variability. Schizophrenia Research, 175(1–3), 12–19. 

https://doi.org/http://dx.doi.org/10.1016/j.schres.2016.03.036 

Methods: 

• The correlation cutoffs for fMRI and sMRI differ. What was the reason? How were these thresholds 

obtained? 

• Did motion parameters significantly differ between groups? 

• While the different datasets were included as a factor in the analyses, the datasets themselves were 

comprised from data from multiple sites. Was this accounted for in the analyses too? 

• Similarly, while comparisons between autism and controls were (roughly) age matched, and similar 

with schizophrenia and their controls, autism and schizophrenia individuals were widely different in 

age. Age was included in the analysis; however, comparing a majority pediatric population to an all-

adult population seems a little strange regardless of the analysis conducted. The ABIDE datasets 

include a number of adults with autism. Could the authors match a subset of the autism group to 

schizophrenia to verify that their results still hold? 

Results: 



• Reducing the number of acronyms will help with the readability. 

• Not sure what sentences like this mean: “Notably, within the common changes, ASD in general 

presented weaker changes than SZ (Fig. 3(B)), with 77% and 90% of voxels in the common 

decreases and increases, respectively (Table 1).” 

• A suggestion for a way to make the results easier to follow is to include subsections to individuate 

when discussing common findings across autism and schizophrenia and what findings are diagnosis 

specific. Similarly, separating the description of which networks showed increased compared to 

decreased activity might help. 

• The analysis with symptoms measures seems to suggest that worse default-mode activity relates to 

worse symptoms rather than anything specific. Is this the case? Could the authors include the 

direction of the correlations so that the reader does not have to go to the supplementary materials 

section to be able to tell. 

Discussion: 

• Limitations and future directions missing 

Reviewer #3 (Remarks to the Author): 

The manuscript submitted by Du et al is takes on a very interesting problem related to the common 

and unique variation explained across autism spectrum disorder (ASD) and schizophrenia (SZ) using 

functional and structural MRI data. The authors leverage the leverages the group information guided 

ICA that allows uses network templates as priors to estimate the subject-specific spatial functional 

network. The authors first extract network level impairment – and for each network the authors use a 

t-test to extract networks that show a positive activation, followed by an ANOVA to determine group 

level differences. They further examine group differenced in functional network connectivity using the 

ICA components. While I recognize that there may be some interesting work here, I have significant 

reservations about the methods and how they were applied. Further the reporting of the main results 

is very confusing and hard to follow. 

1) From a very basic standpoint there is significant evidence that data quality will impact the 

measures that the authors choose to use here. There is really good evidence that these data will 

poorly impact all downstream measures. I am somewhat satisified with how the authors treated the 

fMRI analysis – however, I would advise them to perhaps do what has been done in the Satterthwaite 

papers and do a sensitivity analysis examining what happens when some of the data is fed back into 

the analysis. Further, it would be good if the authors cited some of the best practices that they chose 

to follow. On the structural side, however, I would imagine that the authors should have done some 

manual quality control on their data. There is plenty of evidence that this is important, especially in 

the context of ASD and younger populations. A recent paper by Bedford et al (PMID: PMID: 

31028290) clearly demonstrates the importance of detailed quality control and its impact on analytical 

outputs. Work by Pardoe et al (PMID: PMID: 27153982) further motivates this significant need. The 

ad-hoc heuristic used here, does not seem sufficient. 

2) Other groups have provided some overlap of neural phenotypes across disorders. The work by Park 

et al. (PMID: 2968887), Stefanik (PMID: PMID: 29105664), and Yoshihara (PMID: 32300809) all uses 

a network-related methods and are not discussed. The authors may want to look into others. 

3) The segmentation method used for the VBM-style analysis is not referenced and is poorly 

described. 

4) Dealing with site as nuisance variable is problematic. This may simply provide a “statistical” double 

hit where samples are different along sex and age – which is more than likely to be the case in SZ and 

ASD given the differences in age of onset. It would be more appropriate to use a linear mixed effects 

model with site as a random effect, some sort of meta-analytic technique, or COMBAT. 

5) The methods going from individual ICA components to group-level differences extremely hard to 

follow. I would suggest, at least, that the authors consider adding figures to the methods to better 



describe what is going on in this context. 

6) The figures are really hard to parse. The circle plots are tiny and are difficult to understand without 

labelling and nudging towards the parts of the plots that you expect the readers to take away 

information from. Fig 5 does not convince me that these results survive across different parcellation 

techniques. Fig 6 needs to have the colour bars clearly labelled or to have one common colour bar 

across the figure. Given what I understand of figure 6 - it seems unlikely that there is significant 

morphological overall between disorders. I think this needs to be better described. These figs are the 

“meat” of the paper and without them being clearer, I find it hard to believe the take-away message. 



Response letter for manuscript COMMSBIO-20-0724-T 

Evidence of shared and distinct functional and structural brain signatures in schizophrenia 

and autism spectrum disorder 

Yuhui Du, Zening Fu, Ying Xing, Dongdong Lin, Godfrey Pearlson , Peter Kochunov, L Elliot Hong, Shile Qi, Mustafa Salman, Anees 

Abrol, Vince D. Calhoun 

Reviewer #1: 

The authors combined data from several publicly available data sets of autism and schizophrenia to 

form a super-set of ~1600 healthy controls, ~500 schizophrenia (SZ) patients and 770-1000 autism 

spectrum disorder patients (ASD) patients to characterize the similar and distinct features of 

network-level activation and network-level and regional functional connectivity as well as 

voxel-wise gray matter volume and density.  

Data were from six multi-site studies 

1) Bipolar Schizophrenia Network for Intermediate Phenotypes BSNIP-1 

2) Functional Biomedical Informatics Research Network (FBIRN) 

3) Centers of Biomedical Research Excellence (COBRE) 

4) Maryland Psychiatric Research Center (MPRC) 

5) Autism Brain Imaging Data Exchange I (ABIDE I) 

6) Autism Brain Imaging Data Exchange II (ABIDE II) 

For the network-level functional connectivity analyses, the authors make use of a method called 

NeuroMark they developed, previously published in preprint, which is a modification of group 

information guided ICA, to identify network-level independent components from resting state 

functional MRI. The derived network-level time-series resulting from the use of this method are then 

used to calculate network-level correlation matrices which are then compared pairwise across groups 

(controls, and those with SZ and ASD). They conclude that both SZ and ASD exhibit lower 

functional connectivity within the default mode network and sensorimotor domains and increased 

functional connectivity between cognitive control and default mode networks. SZ and ASD unique 

network-level changes were observed in the interaction between visual and cognitive control 

networks. Both ASD and SZ groups had reduced gray matter in the anterior cingulate and insula. 

Some increases unique to the ASD patients were found in gray matter volume. Although there was 

significant overlap in the observed changes in both disorders, aberrations in the ASD were reported 

to be less significant.  

The extant body of work comparing functional and structural changes across disorders is still 

relatively small, making the topic of the paper and the potential conclusions of the work of interest to 

the community. However, the methods and conclusions are unclear in a number of important ways 

described below.  

Response: 



We appreciate your favorable evaluation. To address your concerns, we have added some 

experiments and significantly improved our manuscript. Please see the following responses for the 

details. 

 

1. It is not clear if the result of the NeuroMark method, used to define independent components, 

results in a single component for each network, the time series of which is compared across 

individuals in a group-wise manner, or if it results in a different component for each subject. The 

manuscript seems to imply it is the latter. “Guided by the 53 group-level spatial network maps, 53 

corresponding subject-specific networks were obtained for each subject using a multiple-objective 

optimization framework in GIG-ICA. Each resulting subject-specific functional network reflects 

brain regions with similar activation or high intra-connectivity.” However, there was no analysis of 

how consistent these networks were across individuals, making the subsequent comparison across 

diagnoses hard to interpret. 

Response: 

Thank you for your comment. 

We want to explain that our previously proposed NeuroMark (Du, Fu et al. 2020) framework is 

an extended group information guided independent component analysis (GIG-ICA) that can analyze 

multi-subject fMRI data with prior network templates as guidance. For each subject, NeuroMark 

yields multiple subject-specific brain functional networks (each of which is represented by one 

independent component) and the networks associated time series (each of which corresponds to the 

time course of one component). In our work, 53 functional networks were obtained for each subject, 

and then 53 time series reflecting the fluctuations of those functional networks were used to compute 

the functional network connectivity (FNC) of each subject by computing the Pearson correlations 

between time series. The functional network and FNC measures were used for the statistical 

analyses. 

Using NeuroMark, the inter-subject correspondence of subject-specific functional networks can 

be achieved by utilizing the multi-objective optimization of GIG-ICA, since the multi-objective 

optimization highlights the similarity between each network template and individual-level network, 

at the same time optimizes the independence of each individual-level network. In our previous work, 

we evaluated GIG-ICA using the simulations and test-retest fMRI data (Du and Fan 2013, Du, Allen 

et al. 2016, Du, Lin et al. 2017), which showed its effectiveness in estimating individual-level 

components (functional networks). Using simulations, our previous studies demonstrated that 

individual-level independent components can be estimated with higher accuracy than other 

comparative group ICA methods, under the conditions with different parameter settings. Using 

test-retest fMRI data, our method yielded higher intra class coefficients (ICCs) in the estimated 

networks than traditional independent vector analysis (IVA) method. In our another work (Salman, 



Du et al. 2019), our results supported that GIG-ICA can result in higher classification accuracy than 

the dual regression method in distinguishing schizophrenia patients from healthy controls. 

To further address your concern, we have also added some experiments in this paper to show that 

the individual-level networks were comparable and consistent across different subjects.  

The detailed processing is described in “Methods” section: “We evaluated the spatial similarity 

across the corresponding subject-specific functional networks to verify that the functional network 

patterns were consistent and comparable across different subjects. Particularly, for the functional 

networks estimated under the guidance of a same network template, we computed Pearson 

correlation coefficients between any two subject-specific functional networks, and then averaged all 

coefficients to reflect the inter-subject similarity of the functional network. After that, the 

inter-subject similarity values of all 53 functional networks were further summarized. To investigate 

if the inter-subject similarity of functional networks is relatively stable across different data, we 

performed the above processing for the subjects in each dataset or each group in one dataset.” 

The results are included in the subsection “SZ and ASD show shared and distinct changes in 

brain functional networks” of “Results” section. The descriptions are: “We evaluated the spatial 

similarity of subject-specific functional networks and show the results in the supplementary Fig. S2, 

supporting that each functional network (estimated from one same network template) was 

comparable across different subjects and feasible for further statistical analyses among groups. In 

addition, the network correspondence was relatively stable across different datasets and groups.” 



 
Fig. S2 Inter-subject similarity of functional networks is shown in (A) for all subjects in each dataset and (B) for 

the subjects in each group of dataset, using errorbars. For each dataset or each group in one dataset, the 

inter-subject similarity of 53 networks is shown using an errorbar. 

 

2. The authors say that their results are replicated using separate data sets. It appears that they really 

mean that they performed the same analysis on the data from the individual studies (BNSIP-1, BIRN, 

COBRE, MPRC, ABIDE I, ABIDE II) and then performed a meta-analysis to compare the results 

over the individual studies to that of the data set formed by the combination of all data sets. However, 

the meta-analysis is not described in the methods section and the results of the analysis do not appear 

to be included in the paper. I think it would be interesting to determine whether any of the features 

identified through the NeuroMark method were sufficient to classify patient groups. Instead of a 

meta-analysis, a classifier could be built on some of the data and tested on other parts of the data in 

order to determine if these features have predictive power beyond group-wise means.  

Response: 

Thank you for your comments and suggestions. 

(1) In our previously submitted paper, we described the analysis procedure and results relating 

to the separate datasets in the “Methods” subsection “Comparing functional network connectivity 



revealed by ICA” and the supplementary materials. Considering your concern, we have added more 

details in the updated paper. In the current supplementary S3 section, we added the following 

sentences: 

“Since the primary analyses in our study used all subjects’ data that were available from six 

datasets (BSNIP, FBIRN, COBRE, MPRC, ABIDEI and ABIDEII), it is necessary to validate if the 

group differences found using the whole data consistently exist when using data from each dataset to 

investigate the abnormality of SZ or ASD (e.g., HC vs. SZ differences using FBIRN; HC vs. ASD 

differences using ABIDEI) and using data from any two datasets involving SZ and ASD to 

investigate their differences (e.g., SZ vs. ASD differences using SZ data from FBRIN and ASD data 

from ABIDEI). So, we investigated group differences by performing two-sample t-tests using 

separate datasets and then employed a meta-analysis to summarize the group differences from 

separate analyses. Table S6 includes all our investigations about how we identified group differences 

using separate datasets. Taking HC vs. SZ for example, we performed two-sample t-tests on FNC 

measures using each of the four datasets (BSNIP, FBIRN, COBRE, and MPRC), and then combined 

the p-values from the four comparisons using Fisher’s method. Regarding the combined p-value, we 

performed multiple comparison correction (p<0.01, Bonferroni correction) and then show the mean 

T-value (from the four comparisons) for each FNC passing the correction. Fig. S3 demonstrates the 

combined group differences for HC vs. SZ, HC vs. ASD, and SZ vs. ASD. We found that group 

differences in Fig. S3 showed a similar pattern with that in Fig. 4, supporting that the identified 

overlap and uniqueness of brain abnormality were relatively reliable.” 

(2) According to your suggestions, we have added 12 classification experiments to assess the 

distinguishing ability of our estimated network measures using different datasets. Our results support 

that the neuroimaging measures can classify SZ and ASD well. 

We added one subsection “Classifying SZ and ASD using identified brain changes” to the 

“Methods” section. The added contents are included here for your reference. 

“It is important to examine whether the identified brain changes can be used as biomarkers to 

distinguish the two disorders. To avoid bias, we conducted two-group (SZ and ASD) classification by 

taking different datasets for training and the remaining datasets for testing based on FNC measures. 

Since there were four datasets relating to the SZ group and two datasets relating to the ASD group, 

totally we performed 12 classification experiments using different data assignments. Feature 

extraction and model training were implemented only using the training data, and then the testing 

data were classified and compared with their true class labels. In our work, we extracted the 

disorder-unique and ASD-weaker common FNC changes for every two groups (SZ and ASD) using 

the above mentioned statistical analyses, and then used the union set of those changes as the features. 

Linear support vector machine with a Bayesian optimization technology (A Snoek, A Larochelle et al. 

2012) to optimize the parameter was applied for the model building. Finally, the classification results 

were evaluated using accuracy, sensitivity, and specificity.” 



In the “Results” section, we added the following texts in a new subsection “Brain changes can 

successfully distinguish SZ and ASD”: 

“We were also interested in whether the identified brain changes can be used as promising 

biomarkers to distinguish the two disorders. Our results support that FNC measures performed well 

in classifying SZ and ASD patients. Table 2 shows the classification results that were obtained by 

taking different datasets as training data/testing data (totally 12 classification runs). The mean 

accuracy, sensitivity and specificity across all 12 classification runs were 75%, 83%, and 63%, 

respectively. The best results reached up to 80.0% accuracy, 90.0% sensitivity, and 68.0% specificity, 

even only using features from statistical analyses. The most frequently used features in all 

classification runs included the unique changes of connectivity between SC (e.g. putamen, caudate, 

and thalamus) and SM (e.g. superior parietal lobule, paracentral lobule) domains, and also included 

the ASD-weaker common changes of connectivity between SC and VI/CB domains and between SM 

and VI domains. In our work, relatively lower specificity (compared to sensitivity) meant that SZ 

patients were more likely misdiagnosed as ASD using these connectivity measures.” 

 

Table 2. Classifcation result evaluation of distinguishing SZ and ASD patients using different datasets as the 

training and testing data. 

Training data Testing data 

Accuracy Sensitivity Specificity SZ datasets 

(N) 

ASD dataset 

(N) 

SZ datasets

(N) 

ASD dataset 

(N) 

BSNIP & 

FBIRN (319) 
ABIDEI (398) 

COBRE & 

MPRC (218)
ABIDEII (380) 75.8% 84.2% 61.0% 

BSNIP & 

COBRE (250) 
ABIDEI (398) 

FBIRN & 

MPRC (287)
ABIDEII (380) 73.9% 85.3% 58.9% 

BSNIP & 

MPRC (332) 
ABIDEI (398) 

FBIRN & 

COBRE 

(205) 

ABIDEII (380) 78.1% 80.5% 73.7% 

FBIRN & 

COBRE (205) 
ABIDEI (398) 

BSNIP & 

MPRC (332)
ABIDEII (380) 67.4% 88.7% 43.1% 

FBIRN & 

MPRC (287) 
ABIDEI (398) 

BSNIP & 

COBRE 

(250) 

ABIDEII (380) 78.9% 84.7% 70.0% 

COBRE & 

MPRC (218) 
ABIDEI (398) 

BSNIP & 

FBIRN (319)
ABIDEII (380) 80.0% 90.0% 68.0% 

BSNIP & 

FBIRN (319) 

ABIDEII 

(380) 

COBRE & 

MPRC (218)
ABIDEI (398) 77.9% 80.2% 73.9% 

BSNIP & 

COBRE (250) 

ABIDEII 

(380) 

FBIRN & 

MPRC (287)
ABIDEI (398) 77.2% 85.4% 65.9% 

BSNIP & 

MPRC (332) 

ABIDEII 

(380) 

FBIRN & 

COBRE 

(205) 

ABIDEI (398) 73.1% 76.4% 66.8% 



FBIRN & 

COBRE (205) 

ABIDEII 

(380) 

BSNIP & 

MPRC (332)
ABIDEI (398) 70.4% 88.2% 49.1% 

FBIRN & 

MPRC (287) 

ABIDEII 

(380) 

BSNIP & 

COBRE 

(250) 

ABIDEI (398) 73.8% 78.1% 66.8% 

COBRE & 

MPRC (218) 

ABIDEII 

(380) 

BSNIP & 

FBIRN (319)
ABIDEI (398) 71.7% 77.9% 63.9% 

Footnote: N represents the subject number.  

 

In the “Discussions” section, we also further summarized the point as below: 

“We also found that the disorder-unique and ASD-weaker common abnormality of SZ and ASD 

performed well in distinguishing the two disorders. Satisfactory performances were reliably achieved 

even under the situation of different datasets as the training data/testing data with varied sample sizes. 

The connectivity between the sub-cortical domain and other domains such as sensorimotor, visional 

and cerebellar areas as well as the connectivity between the sensorimotor and visional domains 

played an important role in distinguishing the two disorders, which indicates potential biomarkers 

between the two disorders. To the best of our knowledge, this is the first study applying large-sample 

multi-site fMRI data to perform the direct classification between SZ and ASD. Our work achieved 

relatively higher classification accuracy than a previous study (Mastrovito, Hanson et al. 2018) that 

also directly classified the two disorders using functional connectivity features. They trained a 

classifier on 72 SZs and 37 ASDs and resulted in 75% classification accuracy on independent 5 SZ 

and 27 ASD patients. A recent study from Yoshihara (Yoshihara, Lisi et al. 2020) employed 

functional connectivity features to explore the complex relationship between SZ and ASD as well. In 

their work, dual classifiers were applied to discriminate ASD (or SZ) from HC so as to investigate 

the two disorders using a dimensional method, demonstrating the overlapping but asymmetrical 

relationship between ASD and SZ. Interestingly, they found that SZ subjects showed increased 

classification certainty for the ASD dimension while the ASD subjects did not for the SZ dimension. 

The findings are consistent to our classification results to some degree, as SZ was more likely to be 

grouped into ASD than the opposing situation in our classification experiments.” 

 

3. The authors provide no explanation of why “activation” is an important measure to consider and 

provide no interpretation for these results. In this section, it is not very clear what is meant by weaker 

changes in ASD – i.e. does the ASD group exhibit changes in fewer voxels or are the magnitude of 

the changes smaller. Also this part of the analysis is not mentioned in the methods section so it is not 

clear what regressions were performed before doing this analysis. 

Response: 

Sorry for the confusion. 



(1) In our paper, the brain functional networks were estimated using an ICA-based pipeline (i.e. 

NeuroMark) (Du, Fu et al. 2020). ICA has been very successful in identifying functional networks 

and network-based biomarkers in mental disorders. Using ICA, each brain functional network is 

represented by one spatial independent component (IC) including Z-score for each brain voxel. In 

each functional network, voxels with higher Z-scores have relatively higher activation (or 

intra-connectivity) in the network. We have added descriptions to highlight the importance of 

functional network analysis using ICA. Considering your concern, we changed “activation” to 

“intra-connectivity”. The descriptions are included in the “Results” section. We also include them as 

below for your convenience. 

“By using NeuroMark, each brain functional network is represented by one spatial independent 

component (IC) including Z-score of each brain voxel, in which the voxels with greater Z-scores 

have relatively higher intra-connectivity in network. Many studies have employed the voxel-wise 

Z-scores as intra-network connectivity measures to study brain abnormality in patients relative to 

healthy controls (Ongur, Lundy et al. 2010, Baggio, Segura et al. 2015) and distinguish patients with 

different disorders (Du, Pearlson et al. 2015, Osuch, Gao et al. 2018, Salman, Du et al. 2019). In this 

work, comprehensive statistical analyses were performed to investigate the shared and distinct 

changes between SZ and ASD (see Fig. 2 for detailed procedure).” 

 (2) In our updated paper, we have revised the descriptions to clarify the statistical analyses. 

The ASD-weaker changes means that the magnitude of ASD changes (relative to HC) was smaller 

than that of SZ changes. The following sentences and one pipeline figure (Fig. 2) have been added to 

the “Investigating brain functional networks revealed by ICA” subsection for addressing your 

concern. 

The statements are: “Next, based on the results from two-sample t-tests, we summarized the 

disorder-common and disorder-unique changes. In terms of the voxels passing ANOVA in each 

network, the voxels with T-values > 0 in both HC vs. SZ and HC vs. ASD reflected the 

disorder-common decreases, and the voxels with T-values < 0 in both HC vs. SZ and HC vs. ASD 

reflected the disorder-common increases. The disorder-unique changes included SZ-unique decrease 

(i.e. ASD-unique increase) and ASD-unique decrease (i.e. SZ-unique increase). The SZ-unique 

decrease involved voxels with both T-values > 0 in HC vs. SZ and T-values < 0 in HC vs. ASD. 

Similarly, the ASD-unique decrease corresponded to the voxles with both T-values < 0 in HC vs. SZ 

and T-values > 0 in HC vs. ASD. After that, we computed the voxel percentage for each of the four 

types of changes within all voxels showing group differences in ANOVA. Furthermore, among the 

voxles showing common decrease, we summarized the percentage of the voxels that had weaker 

decreases in ASD than SZ (i.e. T-values < 0 in SZ vs. ASD), and we called the type of change as 

ASD-weaker decrease within the decrease overlap. Similarly, we obtained the associated results for 

ASD-weaker increase within the increase overlap. The procedure is outlined in Fig. 2.” 

In the updated subsection “SZ and ASD show shared and distinct changes in brain functional 



networks”, we revised the texts as “Notably, for the voxels with commonly decreased changes, 85.3% 

voxels showed weaker (smaller) changes in ASD than SZ; for the voxels with commonly increased 

changes, 94.4% voxels had weaker (smaller) changes in ASD than SZ, supporting that in general 

ASD presented weaker changes than SZ for the shared abnormalities.” 

 

Fig. 2 Statistical analysis outline for identifying and summarizing the shared and distinct brain abnormalities of SZ 

and ASD. The statistical analysis method is consistent for all neuroimaging measures, including functional 

networks, functional network connectivity, functional connectivity, and gray matter volume and density. Regarding 

each measure, ANOVA and two-tailed two-sample t-tests were first performed, resulting in group differences for 

HC vs. SZ, HC vs. ASD, and SZ vs. ASD. For the measures passing ANOVA, different types of changes were then 

summarized, including the common decreases (the voxels with T-values > 0 in both HC vs. SZ and HC vs. ASD), 

the common increases (the voxels with T-values < 0 in both HC vs. SZ and HC vs. ASD), the SZ-unique decrease 

(the voxels with both T-values < 0 in HC vs. ASD and T-values > 0 in HC vs. SZ), and the ASD-unique decrease 

(the voxles with both T-values < 0 in HC vs. SZ and T-values > 0 in HC vs. ASD). The percentage of each type of 

change was calculated as the number of neuroimaging measures relating to the change divided by the number of 



measures passing ANOVA. Among the neuroimaging measures with the common decrease (or increase), the 

percentage of ASD-weaker decrease (or increase) that showed T-values < 0 in SZ vs. ASD in the common decrease 

(or showed T-values > 0 in SZ vs. ASD in the common increase) were further summarized. 

 

(3) In the “Methods” section, we have updated the regression processing about how we removed 

the effects of age, gender and site effects. The sentences are: “Since the selected subjects had group 

differences in age and gender and the data were collected from different sites, we carefully regressed 

out the influences of age, gender and site effects for each subject from the estimated functional and 

structural measures. The regression procedure included three steps. In the first step, we regressed out 

the age, gender, site information, the interaction between age and site, and the interaction between 

gender and site for all subjects in each dataset (e.g. FBIRN). In the second step, we estimated the 

data effects using HCs’ measures for the six datasets that were compared. The third step was further 

regressing out the data effect from each subject’s measures that were already removed the age, 

gender and site effects. The processing is consistent to our previous work (Du, Fu et al. 2020), and is 

also similar to some other studies (Nakano, Takamura et al. 2020).” 

 

4. The authors use the Brainnetome atlas, one of two atlases for regional functional connectivity. The 

authors indicate the atlas has 274 regions and that they used a smaller subset of 261 of those. 

However, the Brainnetome atlas only has 246 regions. 

Response: 

Thank you for your comment. 

In the Brainnetome atlas, there are 274 regions when including cerebellum. We downloaded the 

BN_Atlas_274_combined.nii.gz from the official website 

(http://atlas.brainnetome.org/download.html). We have added some references in the paper to address 

your concern. The sentences are: “In this paper, two brain atlas templates including Automated 

Anatomical Labeling (AAL) (116 regions) (Tzourio-Mazoyer, Landeau et al. 2002) and Brainnetome 

with cerebellum (274 regions) (Jiang 2013, Fan, Li et al. 2016) 

(http://atlas.brainnetome.org/download.html) were utilized to define ROIs separately.” 

 To guarantee the data quality, the ROIs whose representative time series have very low 

variances and mean values across most subjects were excluded from the analyses, resulting in final 

261 ROIs. 

 

5. Mean global signal is reportedly regressed from the time series of the regional functional 

connectivity analysis, but not the time series used in the groups ICA analysis. As mean global signal 

regression is known to induce negative correlations, it seems risky to perform this step in 



preprocessing data for some but not all of the analysis, and makes it more difficult to compare the 

results across them. 

Response: 

Thank you for your comment. 

In studying functional network (or connectivity), the preprocessing steps on fMRI data are often 

slightly different between using the data-driven methods (such as ICA) and using the 

hypothesis-based methods (such as ROI-based method) due to different method properties. 

Consistent with many previous studies (Allen, Erhardt et al. 2011, Chen and Calhoun 2018), we used 

the spatially smoothed data as input for our ICA method, as ICA can denoise the data by 

decomposing artifacts as independent components (like head motion-related component) (Zuo, Kelly 

et al. 2010, Du and Fan 2013). Compared to ICA method, the preprocessing of fMRI data is usually 

stricter for the ROI-based functional connectivity analysis, because the time series of ROIs are 

directly used for computing correlations. In our work, the smoothed data were further detrended and 

band-pass filtered (0.01-0.15Hz), followed by regressing out nuisance covariates including six head 

motion parameters, white matter signal, cerebrospinal fluid signal, and global mean signal, before the 

ROI-based functional connectivity analysis. 

We also want to point out that in using ICA we performed additional preprocessing on the time 

courses of functional networks before computing functional network connectivity, and the 

preprocessing steps also including detrending, filtering, regressing motion were similar to the 

preprocessing for ROI-based analysis. The preprocessing of the time series of functional networks is 

described in subsection “Investigating functional network connectivity revealed by ICA”. The 

sentences are “Each time series was processed by the Z-score transformation, regressing motion, 

de-trending, de-spiking, and band-filtering with 0.01-0.15 Hz prior to computing correlations.”  

As you noted, we regressed out the global mean signal before ROI-based analysis, as previous 

work (Lydon-Staley, Ciric et al. 2019) suggested that the use of global signal regression (GSR) in 

preprocessing pipelines is effective at reducing the association between motion and functional 

connectivity. For ICA-based functional network connectivity, we did not implement GSR as it is 

unusual to perform global mean signal regression on time series of functional networks. 

We confess that it is somewhat difficult to compare functional connectivity under different 

scales, estimated using different methods. However, we hope to provide insights by linking the 

results from different methods, so we assigned the brain atlas-related ROIs to different functional 

domains, consistent with the assignment of ICA components. Our results support that the findings are 

relatively reliable. But, considering your comments, we have added some discussions to point out 

this limitation in our updated paper. The texts are: “The third shortcoming lies in the comparison 

among different neuroimaging measures. In our work, the data-driven and hypothesis-derived 

functional connectivity measures were analyzed and compared with each other. However, it was not 



easy to compare the functional connectivity results due to their various parcellations and 

preprocessing procedures. In addition, we only summarized the association between functional and 

structural changes according to the affected brain regions. Fusion or more advanced methods (Park, 

Raznahan et al. 2018) may be better for cross-modal link in a direct manner.” 

 

6. The authors did not provide any motivation for the choice of parameters used to determine 

successful normalization of the imaging data in their quality control procedure. Different values were 

chosen for different imaging modalities, which appear to have resulted in a different number of 

subjects for different analyses even within the structural-only analysis: 

modulated structural images 3148: 1661 controls, 517 SZ and 970 ASD 

unmodulated structural images 3374; 1789 controls, 555 SZ and 1030 ASD 

The authors should provide further explanation as to the reason these choices were made. 

Response: 

Thank you for your questions. In our work, we used different thresholds for the quality control 

in selecting subjects for fMRI and sMRI respectively, as the two modalities have different properties 

and we wanted to keep the remaining subjects to have balanced sample sizes. The details about 

quality control are described in supplementary “S1. Quality control on preprocessed fMRI and sMRI 

data”. 

Since fMRI data were analyzed by an ICA-based method (i.e. NeuroMark), the consistency 

between individual brain mask and group brain mask is important. In the Group ICA of fMRI 

Toolbox (GIFT) (https://trendscenter.org/software/gift/) that is a widely-applied ICA-based fMRI 

analysis toolbox, a group brain mask is usually obtained based on the individual brain mask and then 

fMRI data within the group brain mask are used for ICA. As such, the similarity between the 

individual brain mask and group brain mask can be used to reflect the quality of individual fMRI 

data and select the subjects. In this paper, the computation methods of the individual and group brain 

masks are all the same to that used in GIFT. In particular, we used three correlations to reflect the 

similarity measures between the two kinds of mask for the top, bottom, and whole parts in brain. 

Different thresholds were used for the three correlations as they corresponded to different parts in 

brain. 

For the sMRI data, our subject selection method was also based on previous experiences. 

Researchers often used the group mean structural image to determine a group mask for multi-subject 

sMRI data analysis. In this paper, we used a threshold 0.2, consistent with previous work by others 

(Ashburner 2015, Zhu, Zhang et al. 2020) to generate the group mask. We used the similarity 

between the individual structural data and group mean structural data within the group mask to 

reflect the quality of each subject’s sMRI data. Similar to fMRI data, we also computed three 

correlations for measuring their similarity in the top, bottom and whole parts. It is worth noting that 



the three thresholds associated the three similarity measures were set to different values between 

fMRI and sMRI due to their data diversity and their difference in computing correlations. Different 

thresholds were used in order to make the selected sample size comparable across fMRI, modulated 

sMRI and unmodulated sMRI. The resulting modulated and unmodulated structural images had 

slightly different subject numbers after the subject selection, because we used the same thresholds for 

the same modality (i.e. sMRI). We believe our subject selection methods are useful for determining 

high-quality data and brain masks for analysis. 

To address your concerns, we have added more details and explanations into the subsection 

“Data and preprocessing” of the “Methods” section. The texts are: “Since different criteria and 

thresholds were used for the quality control of fMRI and sMRI data, the selected subjects were 

slightly different among the three types of data (fMRI, modulated sMRI, and unmodulated sMRI). 

However, the sample sizes of the remaining subjects were comparable.” 

     

7. Several places throughout the results section, percentages are discussed and it is not always clear 

what they refer to.  

Response: 

Thank you for your comment. 

As mentioned before, we have revised the descriptions and added Fig. 2 to clarify the statistical 

analysis steps and explained how we computed the percentages in more detail. The percentage of 

each type of change, including common decreases/increases between ASD and SZ, ASD-unique 

decreases (i.e. SZ-unique increases), and SZ-unique decreases (i.e. ASD-unique increases), was 

calculated as the number of measures relating to the change divided by the number of measures 

passing ANOVA. Among the neuroimaging measures with the common decrease (or increase), the 

percentage of ASD-weaker decrease (or increase) was calculated using the neuroimaging measures 

that showed T-values < 0 in SZ vs. ASD in the common decrease (or measures that showed T-values > 

0 in SZ vs. ASD in the common increase). 

 

8. Weaker changes in the ASD group are reported in relation to the functional connectivity results as 

well and could be made more clear. Do weaker changes indicate fewer changes or smaller 

differences in correlation or both?  

Response: 

Thank you for your comment. 

We have carefully revised the subsection “SZ and ASD show shard and distinct changes in 

functional network connectivity”. The updated descriptions are: “Notably, regarding more than 90% 

of the commonly changed FNCs that showed similar changing trends in SZ and ASD relative to HC, 



ASD showed weaker (smaller) changes than SZ in each of the FNCs. The finding was consistent 

with that from the functional network analyses.” 

 

9. In my opinion stacked bar plots are difficult to read. In this case I do not feel bar plots are 

necessary, as the authors appear to report the relative number of subjects in each portion of the 

analysis in an easily interpretable table. 

Response: 

According to your suggestion, we have removed the original Fig. S1. Thanks. 

 

10. The BSNIP-1 data set contained subjects who were also bipolar. Perhaps these subjects should 

have been removed from consideration as they add to the heterogeneity of the schizophrenia group. 

Response: 

Thank you for the question. In this work, we did not include the patients with psychotic bipolar 

disorders from the BSNIP-1 data for avoiding the heterogeneity. We only included the schizophrenia 

group for the comparisons with autism spectrum disorder group. 

Thank you very much for your review and good suggestions! 

  



Reviewer #2 

The authors investigated similarities and differences in resting-state fMRI intra-network activation 

and structural MRI grey and white matter density and volume in a large group of individuals with 

autism and individuals with schizophrenia compared to neurotypical controls. Common networks 

and structures were impaired in autism and in schizophrenia, but were more impaired in 

schizophrenia compared to autism. This is an interesting topic, and the large sample size and 

sophisticated methods will greatly benefit the field. Identifying what is common across conditions 

and what is pathology-specific assists with identifying biomarkers for identification and treatment. 

However, the big-picture issues that drive the rationale for a study like this are currently lost in the 

writing. The main contributor to this is that the results and discussion sections read like a list of 

structures and networks that are abnormal in one condition or in both. Could the authors please add 

some context to the results to make this easier to read? For example, what do abnormalities in these 

structures/networks reveal for understanding autism and/or schizophrenia? What has been previously 

identified as being related to specific behaviors? Do these indicate potential biomarkers? How are 

these findings useful? Some of this begins to be addressed in sections such as “SZ and ASD: unique 

abnormalities”, but the discussion still contains vague phrasing such as “communication between 

self-related processing and other functions… may underlie the differences between SZ and ASD”. 

Can the authors be more concrete in what they are referring to? In short, relating these results to what 

has been found previously and what still needs to be done will assist in highlighting why these 

findings are interesting (which they are). 

Response: 

We appreciate the favorable evaluation and constructive suggestions. According to your 

comments, we have significantly revised our paper, especially the result and discussion parts. 

In the “Results” section, we added the subsections to explain the common changes and unique 

changes separately to make the manuscript easier to read. We also added two subsections to validate 

that the identified group differences are reliable and can be taken as potential biomarkers in 

distinguishing schizophrenia and autism spectrum disorder. The two subsections are: “Brain changes 

show consistency using age-matched subjects” and “Brain changes can successfully distinguish SZ 

and ASD”. 

In the “Discussions” section, we have revised the texts and added more references so as to make 

the discussion concrete and interesting. In the first paragraph of the “Discussions” section, we also 

summarize the rationale of our study: “SZ and ASD are recognized as distinct illnesses following a 

long-standing nosological development (Sasson, Pinkham et al. 2011, Hommer and Swedo 2015). 

Their similarity in clinical symptoms characterized by social and communication deficits and sensory 

abnormalities (Eack, Bahorik et al. 2013) may originate from the sharing of functional and structural 

alterations (Zheng, Zheng et al. 2018, Rabany, Brocke et al. 2019). Therefore, it is greatly needed to 

unravel how schizophrenia and autism are related and unique in brain abnormality. This is so far the 



largest study that investigates the commonality and specificity between SZ and ASD in both brain 

functional connectivity and gray matter impairments by investigating them simultaneously and 

directly, showing neuroimaging evidence to help elucidate their neural substrates (see Fig. 8 for a 

summary).” 

 

I have a couple of other specific points. 

Introduction: 

• I am missing the difference between hypothesis 1 compared to 2 and 3? 

Response: 

 Thank you very much. Considering your comments, we have updated the descriptions. The 

texts are “In this paper, we propose to use a multi-modality data informed method to 

comprehensively study the similarity and differences between two disorders, aiming to provide 

statistically powerful evidence to address the following questions: (1) What are the common 

abnormalities between SZ and ASD in brain functional networks, functional connectivity, and gray 

matter volume and density? (2) What are the disorder-unique changes of the two disorders in these 

neuroimaging measures? (3) Measured by these biologically meaningful measures, to what extent 

ASD resembles SZ?” 

 

• The sentences following “However, there are notable differences between populations afflicted with 

the two disorders.” Needs references to support the claims. 

Response: 

Thank you for your careful review and good suggestions. We have added references and 

revised the texts. 

The updated descriptions are: “However, there are also notable differences between 

populations afflicted with the two disorders, especially the presence of different atypical behaviors in 

them (Trevisan, Foss-Feig et al. 2020). Patients with SZ often experience hallucinations and 

delusional thoughts that are uncommon in ASD. There is much greater likelihood of restricted and 

repetitive behaviors (Leekam, Prior et al. 2011), stereotyped language, and seizures (Besag 2018) in 

ASD than in SZ. Patients with SZ often show progressive loss of contact, but children with ASD lack 

contact from the start. Therefore, the unique mechanism of the two disorders also needs to be further 

explored.” 

 

• Other references to include directly comparing autism and schizophrenia that may help with adding 

context to the rationale and discussion points: 



Eack, S. M., Bahorik, A. L., McKnight, S. A. F., Hogarty, S. S., Greenwald, D. P., Newhill, C. E., … 

Minshew, N. J. (2013). Commonalities in social and non-social cognitive impairments in adults with 

autism spectrum disorder and schizophrenia. Schizophrenia Research, 148(1–3), 

24–28. https://doi.org/http://dx.doi.org/10.1016/j.schres.2013.05.013 

Eack, S. M., Wojtalik, J. A., Keshavan, M. S., & Minshew, N. J. (2017). Social-cognitive brain 

function and connectivity during visual perspective-taking in autism and schizophrenia. 

Schizophrenia Research, 183, 102–109. https://doi.org/10.1016/j.schres.2017.03.009 

Haigh, S. M., Eack, S. M., Keller, T., Minshew, N. J., & Behrmann, M. (2019). White matter 

structure in schizophrenia and autism: Abnormal diffusion across the brain in schizophrenia. 

Neuropsychologia, 135, 

107233. https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2019.107233 

Haigh, S. M., Gupta, A., Barb, S. M., Glass, S. A. F., Minshew, N. J., Dinstein, I., … Behrmann, M. 

(2016). Differential sensory fMRI signatures in autism and schizophrenia: Analysis of amplitude and 

trial-to-trial variability. Schizophrenia Research, 175(1–3), 

12–19. https://doi.org/http://dx.doi.org/10.1016/j.schres.2016.03.036 

Response: 

Thank you very much for providing the references. They are all useful and helpful to our work. 

We have revised our manuscript by adding discussions and insights based on these references. 

In the second paragraph of “Introduction” section, we added “Remarkably, Eack et al. (Eack, 

Bahorik et al. 2013) found a high degree of shared impairments between the two disorders in both 

social and non-social cognitive domains, especially the slow processing speed and inability to 

understand emotion. All the findings suggest the possibility of common underlying neurological 

mechanisms in SZ and ASD.” 

In the third paragraph of “Introduction” section, we added “In addition to using fMRI and sMRI 

data, Haigh et al. used diffusion data to study the two disorders, revealing SZ-specific changes in its 

greater mean diffusivity than both ASD and HC (Haigh, Eack et al. 2019).” 

In the “Discussions” section, the updated texts in the first paragraph are “SZ and ASD are 

recognized as distinct illnesses following a long-standing nosological development (Sasson, Pinkham 

et al. 2011, Hommer and Swedo 2015). Their similarity in clinical symptoms characterized by social 

and communication deficits and sensory abnormalities (Eack, Bahorik et al. 2013) may originate 

from the sharing of functional and structural alterations (Zheng, Zheng et al. 2018, Rabany, Brocke 

et al. 2019).” 

In the “Discussions” section, we added “The differences in sensorimotor function have been 

disclosed by data analysis methods. For example, by comparing fMRI response to somatosensory 

stimuli, a study from Haigh et al. (Haigh, Gupta et al. 2016) confirms that differential sensory fMRI 

signatures were present between SZ and ASD, with SZ having smaller responses amplitude and ASD 



having less trial-to-trial reliability. Except the discrepancy in sensorimotor system, our work 

observed their unique impairments in terms of the interaction between default mode and 

sensorimotor regions, highlighting the importance of motor systems and their interaction with 

high-level association systems in mental disorders.” 

In the “Discussions” section, the revised texts include: “The disorder-specific abnormality 

identified in our study also involved the communication between the visual and cognitive control 

functions showing decreases in ASD but increases in SZ. In fact, the important relationship between 

visual processing and social perception and cognition in both SZ (Sergi, Rassovsky et al. 2006) and 

ASD (Hellendoorn, Langstraat et al. 2014) has been reported. From a data analysis angle, Eack et al. 

(Eack, Wojtalik et al. 2017) investigated differences between SZ and ASD using fMRI data under a 

design of a visual perspective-taking task, and revealed their unique fronto-temporal connectivity 

changes compared to healthy group. While these studies have indicated the disorder differences in 

visual and cognitive functions, our results clearly support that the interaction between visual and 

cognitive regions had divergent alterations in the two disorders. Measured by spatial functional 

networks, SZ-unique decreases related to the visual and sensory information processing in the middle 

occipital gyrus and inferior parietal lobule, and the ASD-unique decreases involved higher cognitive 

functions such as the superior frontal gyrus. Overall, our findings suggest that unique neural 

mechanisms may be more related to vision intertwined with cognition and sensorimotor.” 

 

Methods: 

• The correlation cutoffs for fMRI and sMRI differ. What was the reason? How were these thresholds 

obtained? 

Response: 

Thank you for your questions.  

In our work, we used different thresholds for the quality control in selecting subjects for fMRI 

and sMRI respectively, as the two modalities have different properties and we wanted to keep the 

remaining subjects to have balanced sample sizes. The details about the quality control are described 

in supplementary “S1. Quality control on preprocessed fMRI and sMRI data”. 

Since fMRI data were analyzed by an ICA-based method (i.e. NeuroMark), the consistency 

between individual brain mask and group brain mask is important. In the Group ICA of fMRI 

Toolbox (GIFT) (https://trendscenter.org/software/gift/) that is a widely-applied ICA-based fMRI 

analysis toolbox, a group brain mask is usually obtained based on the individual brain mask and then 

fMRI data within the group brain mask are used for ICA. As such, the similarity between the 

individual brain mask and group brain mask can be used to reflect the quality of individual fMRI 

data and select the subjects. In this paper, the computation methods of the individual and group brain 

masks are all the same to that used in GIFT. In particular, we used three correlations to reflect the 



similarity measures between the two types of mask for the top, bottom, and whole parts in brain. 

Different thresholds were used for the three correlations as they corresponded to different parts in 

brain. 

For the sMRI data, our subject selection method was also based on previous experiences. 

Researchers often used the group mean structural image to determine a group mask for multi-subject 

sMRI data analysis. In this paper, a threshold 0.2 was used to generate the group mask, consistent 

with previous work by others (Ashburner 2015, Zhu, Zhang et al. 2020). We employed the similarity 

between individual-subject and group mean structural image within the group mask to reflect the 

quality of each subject’s sMRI data. Similar to fMRI data, we also computed three correlations for 

measuring their similarity in the top, bottom and whole parts. It is worth noting that the three 

thresholds associated the three similarity measures were set to different values between fMRI and 

sMRI due to their data diversity and their difference in computing correlations. Different thresholds 

were used in order to make the selected sample size comparable across fMRI, modulated sMRI and 

unmodulated sMRI. The resulting modulated and unmodulated structural images had slightly 

different subject numbers after the subject selection, because we used the same thresholds for them 

(i.e. sMRI). We believe our subject selection methods are useful for determining high-quality data 

and brain masks for analysis. 

To address your concerns, we have added more details and explanations into the subsection 

“Data and preprocessing” of the “Methods” section. The texts are: “Since different criteria and 

thresholds were used for the quality control of fMRI and sMRI data, the selected subjects were 

slightly different among the three types of data (fMRI, modulated sMRI, and unmodulated sMRI). 

However, the sample sizes of the remaining subjects were comparable.” 

 

• Did motion parameters significantly differ between groups? 

Response: 

Thanks for the question. Table S1 in the supplementary materials shows the demographic 

information and head motion measures of fMRI data for each dataset. For each dataset, we also list 

the head motion differences between groups estimated by two-sample t-tests in the following table 

for your convenience. The motion translation measure of each subject was computed by averaging 

translation parameters across time points as well as x, y, and z axes. The motion rotation measure of 

each subject was computed by averaging rotation parameters across time points as well as pitch, yaw 

and roll. It is seen that there was no significant group difference in head motion for each dataset. If 

combing the subjects from all datasets together (totally 2980 subjects), there were some differences 

in motion measures, measured by the p-value from ANOVA (see Table S4). However, the absolute 

difference across the three groups in mean motion translation was smaller than 0.05 mm, and the 

absolute difference across the three groups in mean motion rotation was smaller than 0.07 degree.  



Furthermore, we tried our best to remove out the motion effects from the neuroimaging 

measures. The fMRI data were preprocessed by regressing out six head motion parameters before 

ROI-based functional connectivity analysis. Regarding the functional networks estimated from ICA, 

motion-related artifacts were removed out by decomposing the data into different components 

including motion-related component (Zuo, Kelly et al. 2010, Du and Fan 2013). For functional 

network connectivity estimated from ICA, we also regressed out the motion parameters from the 

time series of functional networks before computing the functional network connectivity.  

 

Table. The head motion measures of fMRI data for each dataset. The motion difference between 

groups was estimated by two-sample t-tests. 

BSNIP 

SZ HC p-value 

transitions: mean (std) 0.1451 (0.1485) 0.1269 (0.1030) 0.1397 

rotations: mean (std) 0.1159 (0.1193) 0.1312 (0.1205) 0.1968 

COBRE 

SZ HC p-value 

transitions: mean (std) 0.1984 (0.1202) 0.2184 (0.1464) 0.3624 

rotations: mean (std) 0.1769 (0.1208) 0.1891 (0.1177) 0.5258 

FBIRN 

SZ HC p-value 

transitions: mean (std) 0.1790 (0.1269) 0.1921 (0.1465) 0.4239 

rotations: mean (std) 0.1982 (0.1592) 0.2132 (0.1551) 0.4223 

MPRC 

SZ HC p-value 

transitions: mean (std) 0.1016 (0.1028) 0.0864 (0.0569) 0.0617 

rotations: mean (std) 0.0819 (0.0977) 0.0728 (0.0553) 0.2419 

ABIDE I 

ASD HC p-value 

transitions: mean (std) 0.2018 (0.1314) 0.1798 (0.1148) 0.0084 

rotations: mean (std) 0.2103 (0.1377) 0.1925 (0.1237) 0.0459 

ABIDE II 

 

ASD HC p-value 

transitions: mean (std) 0.1930 (0.1483) 0.1929 (0.1458) 0.9894 

rotations: mean (std) 0.2036 (0.1560) 0.1936 (0.1437) 0.3285 

 

• While the different datasets were included as a factor in the analyses, the datasets themselves were 

comprised from data from multiple sites. Was this accounted for in the analyses too? 

Response: 

Thank you for the question. As you noted, each dataset (e.g. BSNIP) included the data collected 

at different sites. We did remove all site effects in our analyses. The detailed processing is described 

in the “Data and preprocessing” subsection of the “Methods” section. 

 

• Similarly, while comparisons between autism and controls were (roughly) age matched, and similar 



with schizophrenia and their controls, autism and schizophrenia individuals were widely different in 

age. Age was included in the analysis; however, comparing a majority pediatric population to an 

all-adult population seems a little strange regardless of the analysis conducted. The ABIDE datasets 

include a number of adults with autism. Could the authors match a subset of the autism group to 

schizophrenia to verify that their results still hold? 

Response: 

In our work, we carefully regressed out the effect of age. However, we also think your 

suggestion is a good idea to test the reliability of our finding. According to your comments, we have 

added experiments that only included age-matched subjects across the three groups to investigate the 

group differences. The added analyses and results are described in two subsections: “Exploring brain 

changes only using age-matched subjects” in the “Methods” section and “Brain changes show 

consistency using age matched subjects” in the “Results” section. We include the added subsections 

as below for your convenience. 

Exploring brain changes only using age-matched subjects 

Since the onset of ASD often occurs during early childhood and the onset of SZ is more 

observed in adults, the data used in above analyses had some differences in age between the two 

disorders. To address this, we also investigated the brain changes using HC, SZ and ASD groups 

with age-matched subjects (with no significant group difference in age, tested by ANOVA). More 

interestingly, we selected two sample sets with varied age ranges (see supplementary Table S7 for 

details). Regarding each sample set, we tested the HC vs. SZ, HC vs. ASD, and SZ vs. ASD 

differences in FNC measures using a similar analysis method in Fig. 2. Finally, we compared the 

brain changes obtained using these age-matched subject sets with the results obtained from all 

available subjects. 

 
Table S7. Two sample sets with slightly different age ranges. Each sample set included age-matched HC, SZ, and 

ASD subjects. 

 HC SZ ASD 

Sample set 1 

Subject number 442 222 130 

Age 

Range [21, 35] [21, 35] [21, 36] 

Mean 26.61 27.09 26.91 

Std 3.88 4.17 4.32 

p-value of age among the three 

groups, tested by ANOVA 
0.0797 

Sample set 2 

Subject number 461 248 104 

Age 

Range [23, 42] [23, 42] [23, 42] 

Mean 30.50 31.09 29.60 

Std 5.67 5.74 5.49 

p-value of age among the three 0.0731 



groups, tested by ANOVA 

 

Brain changes show consistency using age matched subject 

As more data help to generate reliable findings, we used all available data in the above analyses. 

Moreover, we also investigated brain differences in FNC using two sample sets, each of which 

included age-matched three groups (see supplementary Table S7 for the age information). The HC vs. 

SZ, HC vs. ASD, and SZ vs. ASD differences (shown in Fig. 7) support that regardless of the sample 

sets, the group differences using age-matched subjects tended to show similar patterns with the 

results using all available subjects (shown in Fig. 4(A)), suggesting that our findings are relatively 

reliable. 

 

Fig. 7 The HC vs. SZ, HC vs. ASD, and SZ vs. ASD differences in FNC using the sample set 1 and 2 (see Table S7) 

are shown in (A) and (B), respectively. The T-values obtained using two-sample t-tests on any pair of groups are 

displayed for comparing with the results using all subjects (Fig. 4(A)). 

 

Results: 

• Reducing the number of acronyms will help with the readability.  

Response: 

Thank you for your suggestion. We have revised some acronyms.  

 



• Not sure what sentences like this mean: “Notably, within the common changes, ASD in general 

presented weaker changes than SZ (Fig. 3(B)), with 77% and 90% of voxels in the common 

decreases and increases, respectively (Table 1).” 

Response: 

Sorry for the confusion.  

In our updated paper, we have revised the descriptions to clarify the statistical analyses and the 

results. The ASD-weaker changes means that the magnitude of ASD changes (relative to HC) was 

smaller than that of SZ. The following texts and one pipeline figure (Fig. 2) have been added to the 

“Investigating brain functional networks revealed by ICA” subsection for addressing your concern. 

The statements are: “Next, based on the results from two-sample t-tests, we summarized the 

disorder-common and disorder-unique changes. In terms of the voxels passing ANOVA in each 

network, the voxels with T-values > 0 in both HC vs. SZ and HC vs. ASD reflected the 

disorder-common decreases, and the voxels with T-values < 0 in both HC vs. SZ and HC vs. ASD 

reflected the disorder-common increases. The disorder-unique changes included SZ-unique decrease 

(i.e. ASD-unique increase) and ASD-unique decrease (i.e. SZ-unique increase). The SZ-unique 

decrease involved voxels with both T-values > 0 in HC vs. SZ and T-values < 0 in HC vs. ASD. 

Similarly, the ASD-unique decrease corresponded to the voxles with both T-values < 0 in HC vs. SZ 

and T-values > 0 in HC vs. ASD. After that, we computed the voxel percentage for each of the four 

types of changes within all voxels showing group differences in ANOVA. Furthermore, among the 

voxles showing common decrease, we summarized the percentage of the voxels that had weaker 

decreases in ASD than SZ (i.e. T-values < 0 in SZ vs. ASD), and we called the type of change as 

ASD-weaker decrease within the decrease overlap. Similarly, we obtained the associated results for 

ASD-weaker increase within the increase overlap. The procedure is outlined in Fig. 2.” 



 

Fig. 2 Statistical analysis outline for identifying and summarizing the shared and distinct brain abnormalities of SZ 

and ASD. The statistical analysis method is consistent for all neuroimaging measures, including functional 

networks, functional network connectivity, functional connectivity, and gray matter volume and density. Regarding 

each measure, ANOVA and two-tailed two-sample t-tests were first performed, resulting in group differences for 

HC vs. SZ, HC vs. ASD, and SZ vs. ASD. For the measures passing ANOVA, different types of changes were then 

summarized, including the common decreases (the voxels with T-values > 0 in both HC vs. SZ and HC vs. ASD), 

the common increases (the voxels with T-values < 0 in both HC vs. SZ and HC vs. ASD), the SZ-unique decrease 

(the voxels with both T-values < 0 in HC vs. ASD and T-values > 0 in HC vs. SZ), and the ASD-unique decrease 

(the voxles with both T-values < 0 in HC vs. SZ and T-values > 0 in HC vs. ASD). The percentage of each type of 

change was calculated as the number of neuroimaging measures relating to the change divided by the number of 

measures passing ANOVA. Among the neuroimaging measures with the common decrease (or increase), the 

percentage of ASD-weaker decrease (or increase) that showed T-values < 0 in SZ vs. ASD in the common decrease 

(or showed T-values > 0 in SZ vs. ASD in the common increase) were further summarized. 

 



• A suggestion for a way to make the results easier to follow is to include subsections to individuate 

when discussing common findings across autism and schizophrenia and what findings are diagnosis 

specific. Similarly, separating the description of which networks showed increased compared to 

decreased activity might help.  

Response: 

Thank you so much for the good suggestion. We have revised the contents by adding different 

subsections to discuss the disorder-common changes and disorder-unique changes separately. Also, 

we have separated the descriptions with respect to the decreases and increases of brain changes. 

 

• The analysis with symptoms measures seems to suggest that worse default-mode activity relates to 

worse symptoms rather than anything specific. Is this the case? Could the authors include the 

direction of the correlations so that the reader does not have to go to the supplementary materials 

section to be able to tell. 

Response: 

Thank you for the helpful comment. We have revised the descriptions in the “Results” section to 

clarify the correlations between the symptom scores and neuroimaging measures as well as the 

consistency between the correlation directions and group differences. The updated texts are as below. 

“The neuroimaging measures were linked to the clinical scores. For each neuroimaging measure, 

we computed its correlation with the symptom scores for the SZ and ASD groups, separately. As 

shown in Fig. S5, four disorder-common hypo-FNCs were negatively correlated with the ADOS (or 

SRS) in ASD and PANSS positive symptom scores in SZ. Interestingly, they were all from the 

within-domain of SM, AU, and CC. Our results suggest that decreased connectivity strengths 

between regions within the SM, AU and CC domains may relates to worse clinical presentations in 

SZ and ASD.  

Eight disorder-common hyper-FNCs, including those between SM and CB, SC and VI, SC and 

DM, and CC and DM, were positively correlated with the symptom scores in ASD and SZ. That 

means that increased strengths in those connections (such as the connectivity between CC and DM) 

could result in worse clinical presentations for both SZ and ASD. 

Two disorder-unique FNCs showing decreased strengths in ASD but increased strengths in SZ 

were also found to be correlated with the SRS and PANSS positive scores. Notably, each was 

connectivity between the VI and CC domains, again indicating the unique property of visual 

impairment. Moreover, both correlation trends were consistent to the group difference results.” 

 

Discussion: 

• Limitations and future directions missing 



Response: 

Thank you for the suggestion. We have added the following texts to the “Discussions” section. 

“Our study has some limitations that should be considered in future work. In this work, we used 

the age-matched subjects to validate the group differences in FNC and also employed a classification 

strategy to show the effectiveness of the identified differences in differentiating the two disorders. 

However, we did not explore other measures using these procedures due to limited space. Further 

validations on other brain functional and structural measures can be conducted in future work. 

Another limitation is about the effects of “noisy” factors. Minimizing the influences of age, gender, 

site, and motion is often a difficulty. Since there is no ground truth of the group differences, it is hard 

to judge whether these “noises” were clearly regressed out. In our paper, comprehensive processing 

was implemented to handle those covariates. Our results also validated the reliable differences using 

age-matched subjects. However, more advanced algorithms are still needed to deal with those effects. 

The third shortcoming lies in the comparison among different neuroimaging measures. In our work, 

the data-driven and hypothesis-derived functional connectivity measures were analyzed and 

compared with each other. However, it was not easy to compare the functional connectivity results 

due to their various parcellations and preprocessing procedures. In addition, we only summarized the 

association between functional and structural changes according to the affected brain regions. Fusion 

or more advanced methods (Park, Raznahan et al. 2018) might be better for cross-modal link in a 

direct manner. For another possible future direction, we think the identified brain similarity and 

uniqueness in our study could help developing new biotypes within the two disorders, as an 

interesting work (Stefanik, Erdman et al. 2018) has shown greater differences between biotypes than 

original DSM-driven categories among SZ, ASD and bipolar disorders.” 

Thank you for your time and careful review. Hope you will be satisfied with the revisions. 

 

 

  



Reviewer #3 

The manuscript submitted by Du et al is takes on a very interesting problem related to the common 

and unique variation explained across autism spectrum disorder (ASD) and schizophrenia (SZ) using 

functional and structural MRI data. The authors leverage the leverages the group information guided 

ICA that allows uses network templates as priors to estimate the subject-specific spatial functional 

network. The authors first extract network level impairment – and for each network the authors use a 

t-test to extract networks that show a positive activation, followed by an ANOVA to determine group 

level differences. They further examine group differenced in functional network connectivity using 

the ICA components. While I recognize that there may be some interesting work here, I have 

significant reservations about the methods and how they were applied. Further the reporting of the 

main results is very confusing and hard to follow. 

1. From a very basic standpoint there is significant evidence that data quality will impact the 

measures that the authors choose to use here. There is really good evidence that these data will 

poorly impact all downstream measures. I am somewhat satisified with how the authors treated the 

fMRI analysis – however, I would advise them to perhaps do what has been done in the Satterthwaite 

papers and do a sensitivity analysis examining what happens when some of the data is fed back into 

the analysis. Further, it would be good if the authors cited some of the best practices that they chose 

to follow. On the structural side, however, I would imagine that the authors should have done some 

manual quality control on their data. There is plenty of evidence that this is important, especially in 

the context of ASD and younger populations. A recent paper by Bedford et al (PMID: PMID: 

31028290) clearly demonstrates the importance of detailed quality control and its impact on 

analytical outputs. Work by Pardoe et al (PMID: PMID: 27153982) further motivates this significant 

need. The ad-hoc heuristic used here, does not seem sufficient.  

Response: 

Thank you very much for your careful review and comments. We would like to address your 

concerns from the following four points.  

(1) We also think that quality control is very important for further analysis. Regarding the fMRI 

and sMRI data, we did perform the quality control to select subjects with good data quality. We have 

improved the descriptions about the quality control in the supplementary subsection “S1. Quality 

control on preprocessed fMRI and sMRI data”. The texts are included here for your convenience. 

“Regarding the fMRI data, we selected subjects with the following properties: 1) data with head 

motions less than 3º rotations and 3 mm transitions along the whole scanning period; 2) data with 

more than 120 time points in fMRI acquisition; 3) data providing a successful normalization in the 

full brain. For the third point, since good normalization of fMRI data to standard brain template is 

necessary to group ICA, we proposed a method to evaluate the normalization quality of fMRI data 

by comparing the individual brain mask with the group brain mask. Our method was inspired by the 



Group ICA of fMRI Toolbox (GIFT) (https://trendscenter.org/software/gift/) in which a group brain 

mask is usually obtained based on the individual brain mask and fMRI data within the group brain 

mask are used for ICA. As such, the similarity between the individual brain mask and group brain 

mask can be used to reflect the quality of individual fMRI data and then select the subjects. Our 

method was applied to each dataset’s fMRI data, separately. First, using the 3D image in the first 

time point of fMRI data, the individual mask was calculated for each subject by setting the brain 

voxels showing greater values than 90% of the whole-brain mean to 1. Then, we generated a group 

mask by setting voxels included in more than 90% of the individual masks to 1. After that, the spatial 

correlations between the group mask and the individual mask was evaluated for each subject. The 

spatial correlations were calculated using the voxels within the top 10 slices of the mask, within the 

bottom 10 slices of the mask, and within the whole mask, respectively, resulting in three correlation 

values for each subject. If a subject had correlations larger than 0.75 for the top 10 slices, larger than 

0.55 for the bottom 10 slices, and larger than 0.8 for the whole mask, we included this subject for 

further fMRI analysis. Finally, the group mask of each dataset was computed again based on the 

selected subjects’ individual masks. 

For sMRI, we chose the data with good quality by comparing the individual structural image 

with the group mean structural image. This processing was applied to each dataset’s modulated or 

unmodulated sMRI data, separately. First, we calculated the group mean structural image across all 

subjects and then computed a group mask by preserving the voxels of group mean image which 

which have values greater than a constant threshold of 0.2, consistent with previous work by others 

(Zhu, Zhang et al. 2020). Next, for each subject, we calculated spatial similarity between the group 

mean structural image and the individual structural image within the group mask. The spatial 

correlations were calculated using the voxels within the top 10 slices of the mask, within the bottom 

10 slices of the mask, and within the whole brain mask, resulting in three correlation values for each 

subject. If a subject had correlations larger than 0.6 for the top 10 slices, larger than 0.6 for the 

bottom 10 slices, and larger than 0.8 for the whole mask, we included this subject for further sMRI 

analysis. Finally, the group mask of each dataset was computed again based on the selected 

subjects.” 

(2) We confess that differences in age and gender among groups could influence the results, as 

you pointed out using the reference (Bedford, Park et al. 2020). In our work, we removed out the age 

and gender effects before the statistical analyses on neuroimaging measures. We have revised the 

descriptions to clarify the processing. Please see the last paragraph in the subsection “Data and 

preprocessing” for the details.  

After considering your comments, we have preformed additional experiments that only included 

the age-matched subjects for the statistical analyses. The new results are consistent to our previous 

results. The contents are included in the subsection of “Exploring brain changes using age-matched 

subjects” of the method part and the subsection “Brain changes show consistency using age-matched 



subjects” of the result part. We also include the descriptions as below for your convenience.  

Exploring brain changes using age-matched subjects 

Since the onset of ASD often occurs during early childhood and the onset of SZ is more 

observed in adults, the data used in above analyses had some differences in age between the two 

disorders. To address this, we also investigated the brain changes using HC, SZ and ASD groups with 

age-matched subjects (with no significant group difference in age, tested by ANOVA). More 

interestingly, we selected two sample sets with varied age ranges (see supplementary Table S7 for 

details). Regarding each sample set, we tested the HC vs. SZ, HC vs. ASD, and SZ vs. ASD 

differences in FNC measures using a similar analysis method in Fig. 2. Finally, we compared the 

brain changes obtained using these age-matched subject sets with the results obtained from all 

available subjects. 

 
Table S7. Two sample sets with slightly different age ranges. Each sample set included age-matched HC, SZ, and 

ASD subjects. 

 HC SZ ASD 

Sample set 1 

Subject number 442 222 130 

Age 

Range [21, 35] [21, 35] [21, 36] 

Mean 26.61 27.09 26.91 

Std 3.88 4.17 4.32 

p-value of age among the three 

groups, tested by ANOVA 
0.0797 

Sample set 2 

Subject number 461 248 104 

Age 

Range [23, 42] [23, 42] [23, 42] 

Mean 30.50 31.09 29.60 

Std 5.67 5.74 5.49 

p-value of age among the three 

groups, tested by ANOVA 
0.0731 

 

Brain changes show consistency using age-matched subjects 

     As more data help to generate reliable findings, we used all available data in the above analyses. 

Moreover, we also investigated brain differences in FNC using two sample sets, each of which 

included age-matched three groups (see supplementary Table S7 for the age information). The HC vs. 

SZ, HC vs. ASD, and SZ vs. ASD differences (shown in Fig. 7) support that regardless of the sample 

sets, the group differences using age-matched subjects tended to show similar patterns with the 

results using all available subjects (shown in Fig. 4(A)), suggesting that our findings are relatively 

reliable. 



 

Fig. 7 The HC vs. SZ, HC vs. ASD, and SZ vs. ASD differences in FNC using the sample set 1 and 2 (see Table S7) 

are shown in (A) and (B), respectively. The T-values obtained using two-sample t-tests on any pair of groups are 

displayed for comparing with the results using all subjects (Fig. 4(A)). 

(3) As you mentioned using the reference (Pardoe, Kucharsky Hiess et al. 2016), motion is also 

an effect that could bias the results. Table S1 in the supplementary materials shows the demographic 

information and head motion measures of fMRI data for each dataset. For each dataset, we also list 

the head motion differences between groups estimated by two-sample t-tests in a table (see below) 

for your convenience. The motion translation measure of each subject was computed by averaging 

translation parameters across time points as well as x, y, and z axes. The motion rotation measure of 

each subject was computed by averaging rotation parameters across time points as well as pitch, yaw 

and roll. It is seen that there was no significant group difference in head motion for each dataset, 

measured by two-sample t-tests. If combing the subjects from all datasets together (totally 2980 

subjects), there were some differences in motion measures, measured by the p-value from ANOVA 

(see Table S4), due to the big sample size. However, the absolute difference across the three groups 

in mean motion translation was smaller than 0.05 mm, and the absolute difference across the three 

groups in mean motion rotation was smaller than 0.07 degree. 

Moreover, we tried our best to remove out the motion effects from the neuroimaging measures. 

The fMRI data were preprocessed by regressing out six head motion parameters, before ROI-based 

functional connectivity analysis. Regarding the functional networks estimated from ICA, 

motion-related artifacts were removed out by decomposing the data into different components 

including motion-related component (Zuo, Kelly et al. 2010, Du and Fan 2013). For functional 

network connectivity estimated from ICA, we also regressed out the motion parameters from the 



time series of functional networks before computing the functional network connectivity.  

 

Table. The head motion measures of fMRI data for each dataset. The motion difference between 

groups was estimated by two-sample t-tests. 

BSNIP  SZ HC p-value 

transitions: mean (std) 0.1451 (0.1485) 0.1269 (0.1030) 0.1397 

rotations: mean (std) 0.1159 (0.1193) 0.1312 (0.1205) 0.1968 

COBRE  SZ HC p-value 

transitions: mean (std) 0.1984 (0.1202) 0.2184 (0.1464) 0.3624 

rotations: mean (std) 0.1769 (0.1208) 0.1891 (0.1177) 0.5258 

FBIRN  SZ HC p-value 

transitions: mean (std) 0.1790 (0.1269) 0.1921 (0.1465) 0.4239 

rotations: mean (std) 0.1982 (0.1592) 0.2132 (0.1551) 0.4223 

MPRC  SZ HC p-value 

transitions: mean (std) 0.1016 (0.1028) 0.0864 (0.0569) 0.0617 

rotations: mean (std) 0.0819 (0.0977) 0.0728 (0.0553) 0.2419 

ABIDEI   ASD HC p-value 

transitions: mean (std) 0.2018 (0.1314) 0.1798 (0.1148) 0.0084 

rotations: mean (std) 0.2103 (0.1377) 0.1925 (0.1237) 0.0459 

ABIDEII  

 

 ASD HC p-value 

transitions: mean (std) 0.1930 (0.1483) 0.1929 (0.1458) 0.9894 

rotations: mean (std) 0.2036 (0.1560) 0.1936 (0.1437) 0.3285 

 

(4) Considering your comments, we have also added 12 classification experiments to assess the 

sensitivity of our estimated network measures to different datasets. Our results support that these 

neuroimaging measures can classify SZ and ASD well. 

We added one subsection “Classifying SZ and ASD using identified brain changes” to the 

“Methods” section. The added texts are included as below for your reference. 

“It is important to examine whether the identified brain changes can be used as biomarkers to 

distinguish the two disorders. To avoid bias, we conducted two-group (SZ and ASD) classification by 

taking different datasets for training and the remaining datasets for testing based on FNC measures. 

Since there were four datasets relating to the SZ group and two datasets relating to the ASD group, 

totally we performed 12 classification experiments using different data assignments. Feature 

extraction and model training were implemented only using the training data, and then the testing 

data were classified and compared with their true class labels. In our work, we extracted the 

disorder-unique and ASD-weaker common FNC changes for every two groups (SZ and ASD) using 

the above mentioned statistical analyses, and then used the union set of those changes as the features. 



Linear support vector machine with a Bayesian optimization technology (A Snoek, A Larochelle et al. 

2012) to optimize the parameter was applied for the model building. Finally, the classification results 

were evaluated using accuracy, sensitivity, and specificity.” 

In the “Results” section, we added the following sentences in a new subsection “Brain changes 

can successfully distinguish SZ and ASD”: 

“We were also interested in whether the identified brain changes can be used as promising 

biomarkers to distinguish the two disorders. Our results support that FNC measures performed well 

in classifying SZ and ASD patients. Table 2 shows the classification results that were obtained by 

taking different datasets as training data/testing data (totally 12 classification runs). The mean 

accuracy, sensitivity and specificity across all 12 classification runs were 75%, 83%, and 63%, 

respectively. The best results reached up to 80.0% accuracy, 90.0% sensitivity, and 68.0% specificity, 

even only using features from statistical analyses. The most frequently used features in all 

classification runs included the unique changes of connectivity between SC (e.g. putamen, caudate, 

and thalamus) and SM (e.g. superior parietal lobule, paracentral lobule) domains, and also included 

the ASD-weaker common changes of connectivity between SC and VI/CB domains and between SM 

and VI domains. In our work, relatively lower specificity (compared to sensitivity) meant that SZ 

patients were more likely misdiagnosed as ASD using these connectivity measures.” 

 
Table 2. Classifcation result evaluation of distinguishing SZ and ASD patients using different datasets as the 

training and testing data. 

Training data Testing data 

Accuracy Sensitivity Specificity SZ datasets 

(N) 

ASD dataset 

(N) 

SZ datasets

(N) 

ASD dataset 

(N) 

BSNIP & 

FBIRN (319) 
ABIDEI (398) 

COBRE & 

MPRC (218)
ABIDEII (380) 75.8% 84.2% 61.0% 

BSNIP & 

COBRE (250) 
ABIDEI (398) 

FBIRN & 

MPRC (287)
ABIDEII (380) 73.9% 85.3% 58.9% 

BSNIP & 

MPRC (332) 
ABIDEI (398) 

FBIRN & 

COBRE 

(205) 

ABIDEII (380) 78.1% 80.5% 73.7% 

FBIRN & 

COBRE (205) 
ABIDEI (398) 

BSNIP & 

MPRC (332)
ABIDEII (380) 67.4% 88.7% 43.1% 

FBIRN & 

MPRC (287) 
ABIDEI (398) 

BSNIP & 

COBRE 

(250) 

ABIDEII (380) 78.9% 84.7% 70.0% 

COBRE & 

MPRC (218) 
ABIDEI (398) 

BSNIP & 

FBIRN (319)
ABIDEII (380) 80.0% 90.0% 68.0% 

BSNIP & 

FBIRN (319) 

ABIDEII 

(380) 

COBRE & 

MPRC (218)
ABIDEI (398) 77.9% 80.2% 73.9% 

BSNIP & ABIDEII FBIRN & ABIDEI (398) 77.2% 85.4% 65.9% 



COBRE (250) (380) MPRC (287)

BSNIP & 

MPRC (332) 

ABIDEII 

(380) 

FBIRN & 

COBRE 

(205) 

ABIDEI (398) 73.1% 76.4% 66.8% 

FBIRN & 

COBRE (205) 

ABIDEII 

(380) 

BSNIP & 

MPRC (332)
ABIDEI (398) 70.4% 88.2% 49.1% 

FBIRN & 

MPRC (287) 

ABIDEII 

(380) 

BSNIP & 

COBRE 

(250) 

ABIDEI (398) 73.8% 78.1% 66.8% 

COBRE & 

MPRC (218) 

ABIDEII 

(380) 

BSNIP & 

FBIRN (319)
ABIDEI (398) 71.7% 77.9% 63.9% 

Footnote: N represents the subject number.  

 

In the “Discussions” section, we also further summarized the point as below: 

“We also found that the disorder-unique and ASD-weaker common abnormality of SZ and ASD 

performed well in distinguishing the two disorders. Satisfactory performances were reliably achieved 

even under the situation of different datasets as the training data/testing data with varied sample sizes. 

The connectivity between the sub-cortical domain and other domains such as sensorimotor, visional 

and cerebellar areas as well as the connectivity between the sensorimotor and visional domains 

played an important role in distinguishing the two disorders, which indicates potential biomarkers 

between the two disorders. To the best of our knowledge, this is the first study applying large-sample 

multi-site fMRI data to perform the direct classification between SZ and ASD. Our work achieved 

relatively higher classification accuracy than a previous study (Mastrovito, Hanson et al. 2018) that 

also directly classified the two disorders using functional connectivity features. They trained a 

classifier on 72 SZs and 37 ASDs and resulted in 75% classification accuracy on independent 5 SZ 

and 27 ASD patients.” 

 

2. Other groups have provided some overlap of neural phenotypes across disorders. The work by 

Park et al. (PMID: 2968887), Stefanik (PMID: PMID: 29105664), and Yoshihara (PMID: 32300809) 

all uses a network-related methods and are not discussed. The authors may want to look into others. 

Response: 

Thanks for these very useful references. We have added reviews and discussions about all the 

references that you pointed to our paper. 

In the third paragraph of “Introduction” section, we added the descriptions: “Park et al. found 

significant cortical thickness changes in both ASD and SZ in brain regions relating to the 

frontoparietal and limbic networks, however SZ was found to show decreased cortical thickness, in 



contrast ASD presented increases in cortical thickness (Park, Raznahan et al. 2018).” 

In the “Limitation and future direction” section, we added “The third shortcoming lies in the 

comparison among different neuroimaging measures. In our work, the data-driven and 

hypothesis-derived functional connectivity measures were analyzed and compared with each other. 

However, it was not easy to compare the functional connectivity results due to their various 

parcellations and preprocessing procedures. In addition, we only summarized the association 

between functional and structural changes according to the affected brain regions. Fusion or more 

advanced methods (Park, Raznahan et al. 2018) may be better for cross-modal link in a direct manner. 

For another possible future direction, we think the identified brain similarity and uniqueness in our 

study could help developing new biotypes within the two disorders, as an interesting work (Stefanik, 

Erdman et al. 2018) has shown greater differences between biotypes than original DSM-driven 

categories among SZ, ASD and bipolar disorders.”  

In the first paragraph of “Discussions” section, we added “While some studies have suggested 

that the two disorders are functionally related (Chen, Uddin et al. 2017, Yoshihara, Lisi et al. 2020), 

our work provides quantitative evaluation supporting they are largely overlapped in brain functional 

abnormality.” 

In the seventh paragraph of “Discussions” section, we added “A previous work by Park (Park, 

Raznahan et al. 2018) used cortical anatomy measures to investigate SZ, ASD and attention deficit 

hyperactivity disorder (ADHD), and found that different subcomponents of the extended visual 

network are affected in SZ patients compared with those with ASD and ADHD, supporting our 

finding in terms of their different visual function deficits. While these studies suggested their 

specificity in vision, our work further provides evidence that the way how the visional processing 

interacts with social understanding may be different.” 

In the subsection of “Validation of the finding” in the “Discussions” section, we added “A 

recent study from Yoshihara (Yoshihara, Lisi et al. 2020) employed functional connectivity features 

to explore the complex relationship between SZ and ASD as well. In their work, dual classifiers were 

applied to discriminate ASD (or SZ) from HC so as to investigate the two disorders using a 

dimensional method, demonstrating the overlapping but asymmetrical relationship between ASD and 

SZ. Interestingly, they found that SZ subjects showed increased classification certainty for the ASD 

dimension while the ASD subjects did not for the SZ dimension. The findings are consistent to our 

classification results to some degree, as SZ was more likely to be grouped into ASD than the 

opposing situation in our classification experiments.” 

 

3. The segmentation method used for the VBM-style analysis is not referenced and is poorly 

described. 

Response:  



Sorry for the unclear descriptions. We have added more details to clarify the VBM analysis. The 

texts are: “For sMRI data, the T1-weighted images were first segmented into gray matter, white 

matter, and cerebrospinal fluid by using the standard unified segmentation model (Ashburner and 

Friston 2005). The Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra 

(DARTEL) algorithm was employed to create a group template for spatial normalization of the 

segmented images of each subject. Then, the flow fields generated by DARTEL were used to 

estimate individual-subject images. After that, individual-subject gray matter images were spatially 

normalized to the MNI space, modulated or unmodulated, resliced (1.0-mm isotropic voxels), and 

smoothed (6-mm full-width at half maximum Gaussian kernel). Finally, the obtained gray matter 

volume (modulated data) and density (unmodulated data) can be used for voxel-based morphometry 

(VBM). ” 

 

4. Dealing with site as nuisance variable is problematic. This may simply provide a “statistical” 

double hit where samples are different along sex and age – which is more than likely to be the case in 

SZ and ASD given the differences in age of onset. It would be more appropriate to use a linear mixed 

effects model with site as a random effect, some sort of meta-analytic technique, or COMBAT. 

Response: 

Thanks for your comments. 

(1) Before identifying group differences on brain network measures, we carefully regressed out 

the influences of age, gender and site effects from the estimated network measures for each subject. 

The regression procedure included three steps. In the first step, we regressed out the age, gender, site 

information, the interaction between age and site, and the interaction between gender and site for all 

subjects in each dataset (e.g. FBIRN). In the second step, we estimated the data effects using HCs’ 

measures for the six datasets that were compared. The third step was further regressing out the data 

effect from each subject’s measures that were already removed the age, gender and site effects. The 

processing is consistent to our previous work (Du, Fu et al. 2020), and is also similar to some other 

studies using regression (Nakano, Takamura et al. 2020). 

(2) Considering your comments, we have preformed additional experiments that only included 

the age-matched subjects for the statistical analyses. The contents are included in the subsection of 

“Exploring brain changes using age-matched subjects” of the method part and the subsection “Brain 

changes show consistency using age-matched subjects” of the result part. We selected two sample 

sets with varied age ranges (see supplementary Table S7 for details). Regarding each sample set, we 

tested the HC vs. SZ, HC vs. ASD, and SZ vs. ASD differences in FNC measures using a similar 

analysis method in Fig. 2. The results are shown in Fig. 7 (see below). By comparing the Fig. 7 and 

Fig. 4(A), we think the identified group differences are relatively reliable. 

 



 

Fig. 7 The HC vs. SZ, HC vs. ASD, and SZ vs. ASD differences in FNC using the sample set 1 and 2 (see Table S7) 

are shown in (A) and (B), respectively. The T-values obtained using two-sample t-tests on any pair of groups are 

displayed for comparing with the results using all subjects (Fig. 4(A)). 

 
Fig. 4 (A) Upper subfigures: the T-value maps showing the group differences in FNCs, obtained by two-sample 

t-tests for HC vs. SZ, HC vs. ASD, and SZ vs. ASD. Taking HC vs. SZ for example, positive T-values represented 

that HCs showed higher connectivity strengths than SZs. Lower subfigures: The T-value maps of FNCs 

after  Bonferroni (BFN) corrections. 



(3) In addition, we have performed meta-analysis, and the results are included in the 

supplementary “S3. Meta-analysis of FNC using data from separate datasets”. Fig. S3 demonstrates 

the combined group differences for HC vs. SZ, HC vs. ASD, and SZ vs. ASD using meta-analysis. It 

can be seen that group differences in Fig. S3 showed a similar pattern with that in Fig. 4, supporting 

that the identified overlap and uniqueness of brain abnormality were relatively reliable. 

 
Fig. S3 The combined group differences (HC vs. SZ, HC vs. ASD, and SZ vs. ASD) that were obtained from meta 

analyses on separate datasets. The mean T-values across different comparisons are shown for the FNCs that past 

Bonferroni (BFN) correction in terms of the combined p-values. 

 

5. The methods going from individual ICA components to group-level differences extremely hard to 

follow. I would suggest, at least, that the authors consider adding figures to the methods to better 

describe what is going on in this context. 

Response: 

Sorry for the confusion.  

In our updated paper, we have revised the descriptions to clarify the statistical analyses and the 

results. The statistical analysis steps are consistent across all neuroimaging measures including 

functional networks from ICA, functional network connectivity from ICA, functional connectivity 

from ROI-based method, and gray matter volume and density. The following sentences and one 

pipeline figure (Fig. 2) have been added to the “Investigating brain functional networks revealed by 

ICA” subsection for addressing your concern.  

The statements are: “Next, based on the results from two-sample t-tests, we summarized the 

disorder-common and disorder-unique changes. In terms of the voxels passing ANOVA in each 

network, the voxels with T-values > 0 in both HC vs. SZ and HC vs. ASD reflected the 

disorder-common decreases, and the voxels with T-values < 0 in both HC vs. SZ and HC vs. ASD 

reflected the disorder-common increases. The disorder-unique changes included SZ-unique decrease 

(i.e. ASD-unique increase) and ASD-unique decrease (i.e. SZ-unique increase). The SZ-unique 

decrease involved voxels with both T-values > 0 in HC vs. SZ and T-values < 0 in HC vs. ASD. 

Similarly, the ASD-unique decrease corresponded to the voxles with both T-values < 0 in HC vs. SZ 



and T-values > 0 in HC vs. ASD. After that, we computed the voxel percentage for each of the four 

types of changes within all voxels showing group differences in ANOVA. Furthermore, among the 

voxles showing common decrease, we summarized the percentage of the voxels that had weaker 

decreases in ASD than SZ (i.e. T-values < 0 in SZ vs. ASD), and we called the type of change as 

ASD-weaker decrease within the decrease overlap. Similarly, we obtained the associated results for 

ASD-weaker increase within the increase overlap. The procedure is outlined in Fig. 2.” 

 

Fig. 2 Statistical analysis outline for identifying and summarizing the shared and distinct brain abnormalities of SZ 

and ASD. The statistical analysis method is consistent for all neuroimaging measures, including functional 

networks, functional network connectivity, functional connectivity, and gray matter volume and density. Regarding 

each measure, ANOVA and two-tailed two-sample t-tests were first performed, resulting in group differences for 

HC vs. SZ, HC vs. ASD, and SZ vs. ASD. For the measures passing ANOVA, different types of changes were then 

summarized, including the common decreases (the voxels with T-values > 0 in both HC vs. SZ and HC vs. ASD), 

the common increases (the voxels with T-values < 0 in both HC vs. SZ and HC vs. ASD), the SZ-unique decrease 



(the voxels with both T-values < 0 in HC vs. ASD and T-values > 0 in HC vs. SZ), and the ASD-unique decrease 

(the voxles with both T-values < 0 in HC vs. SZ and T-values > 0 in HC vs. ASD). The percentage of each type of 

change was calculated as the number of neuroimaging measures relating to the change divided by the number of 

measures passing ANOVA. Among the neuroimaging measures with the common decrease (or increase), the 

percentage of ASD-weaker decrease (or increase) that showed T-values < 0 in SZ vs. ASD in the common decrease 

(or showed T-values > 0 in SZ vs. ASD in the common increase) were further summarized. 

 

6. The figures are really hard to parse. The circle plots are tiny and are difficult to understand without 

labelling and nudging towards the parts of the plots that you expect the readers to take away 

information from. Fig 5 does not convince me that these results survive across different parcellation 

techniques. Fig 6 needs to have the colour bars clearly labelled or to have one common colour bar 

across the figure. Given what I understand of figure 6 - it seems unlikely that there is significant 

morphological overall between disorders. I think this needs to be better described. These figs are the 

“meat” of the paper and without them being clearer, I find it hard to believe the take-away message. 

Response: 

    Thank you. Considering your comments, we have revised all figures to make them clear. 

Fig. 5 shows the group difference results of functional connectivity estimated using the AAL 

template. From Fig. 5 (please see below), it is observed that ASD showed a similar changing trend 

with SZ (as shown in the left and middle columns). Furthermore, the changes of ASD were weaker 

than that of SZ (as indicated in the right column of Fig. 5). The finding is consistent to the results 

using ICA based functional connectivity (shown in Fig. 4). Comparing Fig. 5 and Fig. 4(A), we 

found that in general the group differences obtained from different functional connectivity analysis 

methods showed similarity, especially the interaction between the sub-cortical domain and other 

domains (e.g. cerebellum, sensorimotor, and visional regions), between the cerebellum and other 

domains (e.g. sensorimotor, visional, cognitive control, and default mode regions), and the 

interactions within the visional domain and within default mode domain. 

As you noted, the overlapping change degree in the brain structural measures was smaller, 

compared to the brain functional connectivity measures. Table 1 summarized the quantitative results 

that were computed based on the original T-values of the two-sample t-tests (please see Fig. 2 for the 

statistical analysis outline). Fig. 6 shows the group differences in the gray matter volume and density 

measures after multiple comparison correction. We have revised the texts to clarify more. The 

descriptions are: “In addition to brain functional measures, we also assessed brain structural changes 

of the two disorders. The overlapping change degree in the brain structural measures was smaller, 

compared to the brain functional connectivity measures. Measured by the original T-values of 

two-sample t-tests, both SZ and ASD showed overall decreased gray matter volume (40.2% overlap) 

and density (90% overlap) compared to HC (Table 1). As displayed in Fig. 6 that shows the group 

differences after multiple comparison corrections, the regions with the commonly decreased gray 

matter primarily involved anterior cingulate cortex, insula, parahippocampal gyrusm, and 



hippocampus. In contrast to the shared decrease, there was a low degree in the disorder-common 

increases (2% in volume and 0.07% in density) relating to the superior frontal gyrus and cerebellum. 

Notably, ASD also had weaker impairments than SZ in those common changes.” 

We confess that it is somewhat difficult to compare functional connectivity under different 

scales, estimated using different methods. However, we hope to provide insights by linking the 

results from different methods, so we assigned the brain atlas-related ROIs to different functional 

domains, consistent with the assignment of ICA components. Our results support that the findings are 

relatively reliable. But, considering your comments, we have added some discussions to point out 

this limitation in our updated paper. The texts are: “The third shortcoming lies in the comparison 

among different neuroimaging measures. In our work, the data-driven and hypothesis-derived 

functional connectivity measures were analyzed and compared with each other. However, it was not 

easy to compare the functional connectivity results due to their various parcellations and 

preprocessing procedures. In addition, we only summarized the association between functional and 

structural changes according to the affected brain regions. Fusion or more advanced methods (Park, 

Raznahan et al. 2018) may be better for cross-modal link in a direct manner.”  

We appreciate your careful review and constructive suggestions. Hope you will be satisfied with 

the revisions. 

 

Fig. 5 Results from functional connectivity (FC) analysis using ROIs of Automated Anatomical Labeling (AAL) 

template. Upper figures: the original T-value maps representing group differences in FCs revealed by two-sample 

t-tests for HC vs. SZ, HC vs. ASD, and SZ vs. ASD. Lower figures: the T-value maps of FCs after  Bonferroni 

(BFN) corrections. 
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Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

I feel the authors have adequately addressed my concerns in the revised manuscript. The changes 

made 

improved clarity of the methods dramatically. In addition, I feel the added classification results make 

the paper a lot stronger. There was, however, one point of confusion regarding the classification 

procedure. The authors state that 

“...disorder-unique, and ASD-weaker common FNC changes were used as the classification features.” 

However the results section states 

“The most frequently used features in all classification runs included the unique changes of 

connectivity between SC (e.g. putamen, caudate, and thalamus) and SM (e.g. superior parietal lobule, 

paracentral lobule) domains, and also included the ASD-weaker common changes of connectivity 

between SC and VI/CB domains and between SM and VI domains.” 

Ultimately, it is not clear what procedure was used to include or exclude features used for the the SVM 

models. 

A few minor issues: 

Several places the authors use the word 'degrees' in a way that is not clear. For 

example, in the section Unique changes in brain functional networks 

“Both SZ-unique and ASD-unique hypo-connectivity (i.e. decrease) degrees were 

3.8%.” 

and in 

Unique changes in functional network connectivity 

“The degrees of disorder-unique impairments (totaling <25%), with slightly more 

SZ-unique decreases, were much lower than the overlap degrees” 

Typo in this heading: 

SZ and ASD show shard and distinct changes in functional network connectivity 

Fig. S3 typo “FNCs that past” should read “FNCs that passed” 

Reviewer #2 (Remarks to the Author): 

I reviewed this paper previously and appreciate all the work that the authors put in to address 

concerns. The additions to the text to summarize and clarify the findings have greatly helped my 

understanding. I have a few minor suggestions. 

First, the relationships between symptoms and neuroimaging measures are small (all r<.2) and are 

likely only significant due to the large sample size (and the large number of correlations conducted, 

although the authors did adjust their critical alpha value). I have some concern over how meaningful 

these relationships really are. In a similar vein that small sample sizes can lead to spurious results, 

very large sample sizes can highlight ‘effects’ or ‘relationships’ that are not meaningful when 

considering what the results mean for understanding symptomology. Including some caution when 

describing these relationships would be helpful. 

In addition, symptom data are often not normally distributed (for example the positive PANSS scores) 

and Spearman’s correlations are typically conducted to correct for this. Finally, in the main document, 

the authors write ‘ADOS (or SRS)’ and make it sound as though these measures are interchangeable. 

The authors treat them as different measures in their analyses and so this should be clarified in the 

main text. 

Second, there are a number of very dense figures in this paper. For instance, Figure 2 does not seem 

to add to the explanation of the analyses, especially with text like ‘ASD-weaker change in common 



decrease’. Decrease compared to what? Whereas other figures such as Figure 4B are helpful but small 

(had to zoom in 250% to see the FNCs properly). If possible, improving the readability of the figures 

would be helpful. Please be consistent in either using ‘decrease’ or ‘hypo’ etc. as these seem to be 

interchangeable(?) 

Regarding the supplementary materials, the order of the information added into the subsections in the 

supplementary materials does not match the order of the main paper. Keeping these two documents 

as similar as possible will assist reading. 

Fig S3 is not mentioned in the main document. 

There are some typos scattered. For example, “S4. Shard and distinct changes of SZ and ASD in 

whole-brain functional connectivity using Brainnetome atlas template. Using the Brainnectom 

template,…” 

Reviewer #3 (Remarks to the Author): 

The authors have performed a series of new analyses and have added some text to the main body of 

the manuscript. However, while they have added some information, I'm not convinced that they have 

answered all of my concerns. The answer to most of the data quality and sampling issues seem to be 

regressions and leaning back on some thresholds. Specifically: 

Comment 1: Is it possible to do a sensitivity analysis that demonstrates what the impact of the lower 

quality (as per motion QC) is on the reported results). Why is age matching a help here? ASD severity 

deceases as a function of age in most cases (for example), so this further biases the results). The 

statement "It is seen that there was no significant group difference in head motion for each dataset, 

measured by two-sample t-tests." is a bit tough to believe as it goes again almost all of the functional 

connectivity literature related to ASD. The table provided also disagrees with this statement as it 

shows clear group differences between cases and controls in certain datasets. This confuses the issue 

further. It is also unclear to me as to what comment the classifications are meant to address. 

Figure 2 provided seems to have several errors, including greater than and less than signs pointing in 

the wrong direction.



Response letter for manuscript COMMSBIO-20-0724-B 

Evidence of shared and distinct functional and structural brain signatures in schizophrenia 

and autism spectrum disorder 

Yuhui Du, Zening Fu, Ying Xing, Dongdong Lin, Godfrey Pearlson , Peter Kochunov, L Elliot Hong, 

Shile Qi, Mustafa Salman, Anees Abrol, Vince D. Calhoun 

 

Reviewer #1: 

I feel the authors have adequately addressed my concerns in the revised manuscript. The changes 

made improved clarity of the methods dramatically. In addition, I feel the added classification results 

make the paper a lot stronger. There was, however, one point of confusion regarding the 

classification procedure. The authors state that “...disorder-unique, and ASD-weaker common FNC 

changes were used as the classification features.” However the results section states “The most 

frequently used features in all classification runs included the unique changes of connectivity 

between SC (e.g. putamen, caudate, and thalamus) and SM (e.g. superior parietal lobule, paracentral 

lobule) domains, and also included the ASD-weaker common changes of connectivity between SC 

and VI/CB domains and between SM and VI domains.” Ultimately, it is not clear what procedure 

was used to include or exclude features used for the the SVM models. 

Response: 

We appreciate the favorable evaluation and helpful suggestion. Regarding the SVM-based 

classification, we have revised the descriptions to clarify. 

In the “Methods” section, the revised texts are “Regarding feature selection, we first 

implemented the above-mentioned statistical analyses on the training data, and then took the FNCs 

with disorder-unique changes (i.e. SZ-unique decrease and ASD-unique decrease) and the 

ASD-weaker changes within the disorder-common changes (i.e. ASD-weaker decrease within the 

common decrease and ASD-weaker increase within the common increase) as the features.” 

In the “Results” section, the updated descriptions are “We were also interested in whether the 

identified brain changes can represent promising biomarkers to distinguish the two disorders. As 

described in the method section, we used the disorder-unique (SZ-unique and ASD-unique) measures 

and the ASD-weaker measures (within the disorder-common changes) as features for classification. 



Our results support that FNC measures performed well in classifying SZ and ASD patients. Table 2 

includes the classification results from 12 classification experiments that took different datasets as 

training and testing data for a comprehensive evaluation. The mean accuracy, sensitivity and 

specificity across all classifications were 75%, 83%, and 63%, respectively. The best results reached 

up to 80.0% accuracy, 90.0% sensitivity, and 68.0% specificity.” 

 

A few minor issues: 

Several places the authors use the word 'degrees' in a way that is not clear. For example, in the 

section Unique changes in brain functional networks “Both SZ-unique and ASD-unique 

hypo-connectivity (i.e. decrease) degrees were 3.8%.” and in Unique changes in functional network 

connectivity “The degrees of disorder-unique impairments (totaling <25%), with slightly more 

SZ-unique decreases, were much lower than the overlap degrees”  

Response: 

Thank you for your comment. The ‘degree’ meant the percentage of each type of change (e.g. 

SZ-unique decrease) that was calculated as the number of neuroimaging measures relating to the 

change divided by the number of measures passing ANOVA. We have revised the texts to keep 

consistency. 

 

Typo in this heading: SZ and ASD show shard and distinct changes in functional network 

connectivity. 

Fig. S3 typo “FNCs that past” should read “FNCs that passed” 

Response: 

    The typos have been corrected. Thank you very much. 

 

 

 

 

  



Reviewer #2: 

I reviewed this paper previously and appreciate all the work that the authors put in to address 

concerns. The additions to the text to summarize and clarify the findings have greatly helped my 

understanding. I have a few minor suggestions. 

Response: 

Thanks for the careful review and good suggestions. We have improved our paper according to 

the comments. 

First, the relationships between symptoms and neuroimaging measures are small (all r<.2) and are 

likely only significant due to the large sample size (and the large number of correlations conducted, 

although the authors did adjust their critical alpha value). I have some concern over how meaningful 

these relationships really are. In a similar vein that small sample sizes can lead to spurious results, 

very large sample sizes can highlight ‘effects’ or ‘relationships’ that are not meaningful when 

considering what the results mean for understanding symptomology. Including some caution when 

describing these relationships would be helpful. 

Response: 

We agree with the comment and appreciate the suggestion. Considering the suggestion, we have 

added some texts into “Limitations and future directions” section to point out the limitation. 

The descriptions are “Another point that needs more concerns is that the biomarker-symptom 

associations in this work were not very significant (correlations were about 0.2). In future, validation 

using independent data may be needed to further validate the associations.” 

 

In addition, symptom data are often not normally distributed (for example the positive PANSS scores) 

and Spearman’s correlations are typically conducted to correct for this. Finally, in the main document, 

the authors write ‘ADOS (or SRS)’ and make it sound as though these measures are interchangeable. 

The authors treat them as different measures in their analyses and so this should be clarified in the 

main text. 

Response: 

Thanks. 

According to the comment, we have computed Spearman rank correlation between each 



neuroimaging measure and symptom score. Considering many previous studies used Pearson 

correlation to explore biomarker-symptom association (Yerys, Herrington et al. 2017, Liu and Huang 

2020), we include both Pearson correlation and Spearman rank correlation in the updated Fig. S6 

(previous Fig. S5). To maximize the reliability, we only show the neuroimaging measures with 

p-value < 0.01 for both Pearson and Spearman rank correlations in Fig. S6. The conclusion is 

consistent to that in our previous manuscript. In addition, we have revised the descriptions to clarify 

the associations in more detail. The following includes the updated texts and Fig. S6.  

“Some important neuroimaging measures were linked to the symptom scores. In order to 

evaluate the relation between each neuroimaging measure and symptom score, we computed both 

Pearson correlation and Spearman rank correlation correlation between them for the SZ and ASD 

groups, separately. As shown in Fig. S6, two FNCs showing disorder-common decreases were 

negatively correlated with the symptom scores (p-value < 0.01 in both Pearson and Spearman 

correlations) such as ADOS and SRS in ASD. Interestingly, they were all from the within-domain 

connectivity (SM and CC). In sum, our results suggest that decreased connectivity strengths between 

brain regions within the SM and CC domains may relates to worse clinical presentations in disorders. 

Five disorder-common increased FNCs, including those between SM and CB, SC and VI, SC 

and DM, and CC and DM, were positively correlated with the symptom scores in ASD and SZ. That 

means that increased strengths in those connections (such as the connectivity between CC and DM) 

could result in worse clinical presentations for both SZ and ASD. 

Two disorder-unique FNCs showing decreased strengths in ASD but increased strengths in SZ 

were also found to be correlated with the SRS in ASD and PANSS positive scores in SZ. Notably, 

each was connectivity between the VI and CC domains, again indicating the unique property of 

visual impairment. Moreover, the correlation trends were consistent to the group difference results.” 

 



 

Fig. S6 Associations between the FNC strengths and symptom scores of SZ and ASD, measured by Pearson 

correlation and Spearman rank correlation. (A), (B), and (C) include the correlations for the FNCs with 

disorder-common decrease, the FNCs with disorder-common increase, and the FNCs with disorder-unique changes, 

respectively. In the title of each subfigure, we show Pearson correlation (r1 and p1) and Spearman rank correlation 

(r2 and p2) for reflecting the association and we also show T-values obtained from two-sample t-tests on any two 

groups for reflecting the group difference. 



Second, there are a number of very dense figures in this paper. For instance, Figure 2 does not seem 

to add to the explanation of the analyses, especially with text like ‘ASD-weaker change in common 

decrease’. Decrease compared to what? Whereas other figures such as Figure 4B are helpful but 

small (had to zoom in 250% to see the FNCs properly). If possible, improving the readability of the 

figures would be helpful. 

Response: 

Thanks for the helpful suggestion. 

Regarding Fig. 2, we have revised the texts of the caption in Fig. 2 and some descriptions in the 

main text to clarify the analyses. In addition, we have improved Fig. 2 accordingly.  

 
Fig. 2 Statistical analysis outline for identifying and summarizing the common and unique brain abnormalities of 

SZ and ASD. The statistical analysis procedure is consistent across all neuroimaging measures mentioned in Fig. 1. 



Regarding each measure, analysis of variance (ANOVA) and two-tailed two-sample t-tests were first performed, 

resulting in group differences for HC vs. SZ, HC vs. ASD, and SZ vs. ASD. For the measures passing ANOVA, 

different types of changes were then summarized, including the disorder-common decrease compared to HC (the 

voxels with T-values > 0 in both HC vs. SZ and HC vs. ASD), the disorder-common increase compared to HC (the 

voxels with T-values < 0 in both HC vs. SZ and HC vs. ASD), the SZ-unique decrease (the voxels with both 

T-values < 0 in HC vs. ASD and T-values > 0 in HC vs. SZ), and the ASD-unique decrease (the voxles with both 

T-values < 0 in HC vs. SZ and T-values > 0 in HC vs. ASD). For each of the four types of changes, the percentage 

was calculated as the number of neuroimaging measures relating to the change divided by the number of measures 

passing ANOVA. Among the measures with the disorder-common decrease (or increase), the percentage of 

ASD-weaker decrease (or increase) than SZ, that showed T-values < 0 in SZ vs. ASD in the disorder-common 

decrease (or showed T-values > 0 in SZ vs. ASD in the disorder-common increase), were further summarized. 

 

The revised texts in the Method section include “Next, based on the results from two-sample 

t-tests, we summarized the disorder-common and disorder-unique changes. In terms of the voxels 

passing ANOVA in each network, the voxels with T-values > 0 in both HC vs. SZ and HC vs. ASD 

reflected the disorder-common decreases compared to HC, and the voxels with T-values < 0 in both 

HC vs. SZ and HC vs. ASD reflected the disorder-common increases compared to HC. The 

disorder-unique changes included SZ-unique decrease (i.e. ASD-unique increase) and ASD-unique 

decrease (i.e. SZ-unique increase). The SZ-unique decrease involved voxels with both T-values > 0 

in HC vs. SZ and T-values < 0 in HC vs. ASD. That means for these voxels, network Z-score showed 

decrease in SZ compared to HC, but showed increase in ASD compared to HC. Similarly, the 

ASD-unique decrease corresponded to the voxles with both T-values < 0 in HC vs. SZ and T-values > 

0 in HC vs. ASD. After that, we computed the voxel percentage for each of the four types of changes 

within all voxels showing group differences in ANOVA. Furthermore, among the voxles showing 

disorder-common decrease, we summarized the percentage of the voxels that had weaker decreases 

in ASD than SZ (i.e. T-values < 0 in SZ vs. ASD), and we called the type of change as ASD-weaker 

decrease within the common decrease. Similarly, we obtained the associated results for ASD-weaker 

increase within the common increase. The procedure is outlined in Fig. 2.” 

For Fig. 4, we have separated the original figure into two figures (Fig. 4 and Fig. 5) to show the 

results more clearly. The other figures in the paper have been relabeled  

 

Please be consistent in either using ‘decrease’ or ‘hypo’ etc. as these seem to be interchangeable(?) 

Response: 



    Many thanks for the suggestion. In the whole manuscript, we have replaced the 

‘hypo-connectivity’ by ‘decreased connectivity’ and replaced the ‘hyper-connectivity’ by ‘increased 

connectivity’ to keep consistency. The related figures have also been updated. 

 

Regarding the supplementary materials, the order of the information added into the subsections in the 

supplementary materials does not match the order of the main paper. Keeping these two documents 

as similar as possible will assist reading. 

Response: 

    Thanks. To keep the two documents as similar as possible, we have revised the titles of 

subsections in the supplementary materials to facilitate the understanding of them.  

 

Fig S3 is not mentioned in the main document. 

Response: 

Sorry for our mistake. In the updated manuscript, we have added some descriptions in terms of 

Fig. S4 (previous Fig. S3) in the result section. The texts are “As shown in Fig. S4, the overall results 

were replicated using separate datasets and details are provided in supplementary section S4.” 

 

There are some typos scattered. For example, “S4. Shard and distinct changes of SZ and ASD in 

whole-brain functional connectivity using Brainnetome atlas template. Using the Brainnectom 

template,…” 

Response: 

The typos have been corrected. Thank you very much. 

  



Reviewer #3: 

The authors have performed a series of new analyses and have added some text to the main body of 

the manuscript. However, while they have added some information, I'm not convinced that they have 

answered all of my concerns. The answer to most of the data quality and sampling issues seem to be 

regressions and leaning back on some thresholds. Specifically: 

Comment 1: Is it possible to do a sensitivity analysis that demonstrates what the impact of the lower 

quality (as per motion QC) is on the reported results). Why is age matching a help here? ASD 

severity deceases as a function of age in most cases (for example), so this further biases the results). 

The statement "It is seen that there was no significant group difference in head motion for each 

dataset, measured by two-sample t-tests." is a bit tough to believe as it goes again almost all of the 

functional connectivity literature related to ASD. The table provided also disagrees with this 

statement as it shows clear group differences between cases and controls in certain datasets. This 

confuses the issue further. It is also unclear to me as to what comment the classifications are meant to 

address. 

Response: 

Thanks for the comments. We would respond to the comments in three points.  

(1) In our previous paper, we handled the head motion issue from three aspects. First, we 

performed the rigid body motion correction to correct the head motion and regressed out nuisance 

covariates including six head motion parameters from fMRI data in the preprocessing step. Second, 

we only selected the subjects with head motions less than 3º rotations and 3 mm transitions along the 

whole scanning period (i.e. all time points) in our analyses, in order to further decrease the effect of 

head motion. From Table S1, it is seen that the mean of the motion translation measure (across 

subjects) is smaller than 0.3 mm for all datasets, and the mean of the motion rotation measure (across 

subjects) is smaller than 0.3º for all datasets. Third, the motion effect was minimized for the 

neuroimaging measures before the statistical analyses. As mentioned in the “Data and preprocessing” 

of the “Methods” section, fMRI data were preprocessed by regressing out six head motion 

parameters before the ROI-based functional connectivity estimation. Regarding functional networks 

estimated from ICA, motion-related noises were removed out by decomposing the data into different 

components including motion-related components. For the functional network connectivity from 



ICA, we also regressed out the motion effects from the time series of functional networks before 

computing the functional network connectivity. 

 Considering the comments, we have also revised the descriptions (relating to Table S1) to 

clarify. The updated texts are “There were no significant group differences (p-value < 0.01) in the 

head motion measures for each dataset, excepting the head motion transition measure in the ABIDEI 

(p-value = 0.0084), measured by two-sample t-tests.” We want to point out that although there was 

kind of motion difference (the mean values of the motion transitions are 0.2018 mm in ASD group 

and 0.1798 mm in HC group, respectively) in the ABIDEI dataset, the difference should have been 

decreased since we regressed out the head motion effect from the neuroimaging measures before the 

statistical analyses. 

In order to validate this point, we have evaluated group difference in neuroimaging measures by 

only using subjects with no differences in head motion measures (i.e. both motion transition and 

motion rotation). Table S8 includes the information of the selected subjects. Fig. 8(C) shows the 

FNC group difference estimated using the selected subjects that had no difference in the motion 

measures. It is observed that the group difference (Fig. 8(C)) presented a consistent pattern with that 

using all available subjects (Fig. 4). In summary, our experiments support that nuisance effects 

(including the motion) had been carefully removed out and did not affect the final statistical analyses 

results. We have revised our paper to include the relevant results.  

The revised “Results” section includes:  

“Brain changes show consistency using subjects with matched age and subjects with no 

motion difference 

     As more data help to generate reliable findings, we used all available data in the above 

mentioned statistical analyses. In our work, we also investigated group differences in FNC using two 

additional sample sets. The two sets had different age ranges of subjects, and each set only included 

age-matched three groups. In addition, we selected some subjects with no motion difference in fMRI 

data to test the group differences. Our results (shown in Fig. 8) suggest that regardless of the sample 

sets, the group differences using age-matched subjects or no-motion-difference subjects tended to 

show similar patterns with the results using all available subjects (shown in Fig. 4), supporting that 

the nuisance effects (such as age and motion) had been carefully removed out. Our results support 

that our findings are relatively robust.” 



   

 

Fig. 8 FNC group differences using subjects with matched age and subjects with no motion difference. (A) and (B) 

show group differences obtained using the sample set 1 and 2 (see Table S7, each of them includes age-matched 

subjects but they had different age ranges), respectively. (C) shows group differences obtained using subjects (see 

Table S8) with no motion differences. T-values obtained using two-sample t-tests on any pair of groups are 

displayed in order to compare with the results (Fig. 4) estimated using all subjects. 

 

The added texts in the “Exploring brain changes using subjects with matched age and subjects 

with no motion difference” section of “Methods” includes “In the work, there were some group 

differences in head motion while combining subjects from all datasets, although in general there 

were no significant group differences in motion for each dataset. Therefore, from the large-size 

sample, we selected some subjects with no motion differences and verified the group differences 



using the same analysis method. The details can be found in supplementary section S7.” 

The added texts in the “S7. Exploring brain changes using subjects with matched age and 

subjects with no motion difference: information of subjects” section of “Supplementary materials” 

includes “We also identified group difference by only using subjects with no group difference in 

head motion to validate the results. Table S8 includes the information of subjects that we selected 

and the related motion measures. There was no significant group difference in motion across HC, SZ, 

and ASD, tested by ANOVA.” 

 

Table S8. Information of the selected subjects with no motion differences across the HC, SZ, and ASD groups. 

 HC SZ ASD 

Subject number 838 212 513 

Motion transitions: mean (std) 0.2431 (0.1327) 0.2578 (0.1395) 0.2485 (0.1443)

Motion rotations: mean (std) 0.2522 (0.1317) 0.2464 (0.1497) 0.2624 (0.1482)

p-value of motion transitions, 

tested by ANOVA 
0.3616 

p-value of motion rotations, 

tested by ANOVA 
0.2761 

 

(2) Considering the comment suggested a sensitivity analysis, we have added permutation tests 

to evaluate group differences. Our results support that the group differences that we identified are 

robust.  

In the supplementary “S3. Investigating functional network connectivity revealed by ICA: group 

differences evaluated by a permutation test” section, we added the following texts. 

“To assess the validity of the group differences, we conducted a permutation test with 1000 

permutations to identify the group difference between different groups (e.g. HC vs. SZ), and then 

compared the results with the previous results obtained using the direct two-sample t-test. Taking HC 

vs. SZ for an example, we introduce how the permutation test was applied. In each of 1000 

permutations, we randomly rearranged the subjects (all HC and SZ subjects) into two dummy groups 

each of which had the same number of subjects with the original group, and then applied two-sample 

t-tests on the dummy groups to evaluate the group differences in FNCs. After that, for each FNC, we 

calculated the occurring frequency of the case where the p-value obtained from two-sample t-test 

using the dummy groups was smaller than the corresponding p-value obtained from two-sample 



t-test using the original groups, and then took the frequency as the final p-value for the FNC. Smaller 

frequency represents lower possibility of false positives of the identified group differences. The final 

p-values of FNCs were corrected by Bonferroni (BFN) correction. It is seen that the group 

differences identified using the permutation test (Fig. S3) were quite consistent to that estimated 

using the direct two-sample t-test (Fig. 4), supporting that the group differences were reliable.” 

 

 
Fig. S3 Group differences that were obtained from a permutation test after Bonferroni (BFN) correction. Here, we 

show the T-values (HC vs. SZ, HC vs. ASD, and SZ vs. ASD using original groups) of FNCs that passed BFN 

correction according to the final p-values of the permutation test.  

 

  In the “Results” section, we added “In order to examine if group differences are sensitive to 

the statistical analysis method, we also conducted a permutation test (with 1000 permutations) 

instead of the above mentioned direct two-sample t-test to investigate group differences. Please find 

the details in the supplementary section S3.” 

 

(3) Regarding using the age-matched subjects to investigate the group differences, we aimed to show 

that age effect has been well removed out before the statistical analyses, because that the group 

differences estimated using the age-matched subjects (Fig. 8(A)-(B), see below) tended to show 

similar patterns with the results using all available subjects (Fig. 4, see below). More interestingly, 

we selected two sample sets with varied age ranges (Table S7, see below), each sample set including 

age-matched subjects, to test group differences in our paper. Our results show that although the age 

ranges were different between the two sample sets, the group differences were quite consistent with 

each other (Fig. 8(A) and (B), see below), and were also similar to the results from using all subjects 

(Fig. 4, see below).   



 

Table S7. Two sample sets with slightly different age ranges. Each sample set included age-matched HC, SZ, and 

ASD subjects. 

 HC SZ ASD 

Sample set 1 

Subject number 442 222 130 

Age 

Range [21, 35] [21, 35] [21, 36] 

Mean 26.61 27.09 26.91 

Std 3.88 4.17 4.32 

p-value of age among the three 

groups, tested by ANOVA 
0.0797 

Sample set 2 

Subject number 461 248 104 

Age 

Range [23, 42] [23, 42] [23, 42] 

Mean 30.50 31.09 29.60 

Std 5.67 5.74 5.49 

p-value of age among the three 

groups, tested by ANOVA 
0.0731 

Note: Std denotes standard deviation. 

 

 



 

Fig. 8 FNC group differences using subjects with matched age and subjects with no motion difference. (A) and (B) 

show group differences obtained using the sample set 1 and 2 (see Table S7, each of them includes age-matched 

subjects but they had different age ranges), respectively. (C) shows group differences obtained using subjects (see 

Table S8) with no motion differences. T-values obtained using two-sample t-tests on any pair of groups are 

displayed in order to compare with the results (Fig. 4) estimated using all subjects. 

 



 

Fig. 4 Results from functional network connectivity (FNC) analysis. Upper subfigures: T-value maps showing the 

group differences in FNCs, obtained by two-sample t-tests for HC vs. SZ, HC vs. ASD, and SZ vs. ASD. Taking 

HC vs. SZ for example, positive T-values represented that HCs showed higher connectivity strengths than SZs. 

Lower subfigures: T-value maps of FNCs after  Bonferroni (BFN) corrections.  

 

(4) We have also revised the descriptions to explain more about the classification. Since we 

were interested in whether the identified brain changes can represent promising biomarkers to 

distinguish the two disorders well, we tested the classification ability using those biomarkers. To 

avoid bias, we conducted two-class (SZ and ASD) classification by taking different datasets for 

training and the remaining datasets for testing based on the FNC measures. Since there were four 

datasets relating to the SZ group and two datasets relating to the ASD group, totally we performed 12 

classification experiments using different data assignments. Feature extraction and model training 

were implemented only using the training data, and then the testing data were classified and 

compared with their true class labels. Regarding feature selection, we first implemented the 

statistical analyses on the training data, and then took the FNCs with disorder-unique changes (i.e. 

SZ-unique decrease and ASD-unique decrease) and the ASD-weaker changes within the 

disorder-common changes (i.e. ASD-weaker decrease within the common decrease and ASD-weaker 



increase within the common increase) as the features. Linear support vector machine with a Bayesian 

optimization technology (A Snoek, A Larochelle et al. 2012) to optimize the parameter was applied 

for the model building. Finally, the classification results were evaluated using accuracy, sensitivity, 

and specificity. Table 2 shows the classification results from 12 classification experiments that took 

different datasets as training and testing data for a comprehensive evaluation. Our results support that 

FNC measures performed well in classifying SZ and ASD patients.  

 

Comment 2: Figure 2 provided seems to have several errors, including greater than and less than 

signs pointing in the wrong direction. 

Response: 

The signs in Fig. 2 are correct. Considering your comments, we have revised the caption in Fig. 

2 and some descriptions in the main text to clarify the analyses. In addition, we have improved Fig. 2 

accordingly (see below). 



 

Fig. 2 Statistical analysis outline for identifying and summarizing the common and unique brain abnormalities of 

SZ and ASD. The statistical analysis procedure is consistent across all neuroimaging measures mentioned in Fig. 1. 

Regarding each measure, analysis of variance (ANOVA) and two-tailed two-sample t-tests were first performed, 

resulting in group differences for HC vs. SZ, HC vs. ASD, and SZ vs. ASD. For the measures passing ANOVA, 

different types of changes were then summarized, including the disorder-common decrease compared to HC (the 

voxels with T-values > 0 in both HC vs. SZ and HC vs. ASD), the disorder-common increase compared to HC (the 

voxels with T-values < 0 in both HC vs. SZ and HC vs. ASD), the SZ-unique decrease (the voxels with both 

T-values < 0 in HC vs. ASD and T-values > 0 in HC vs. SZ), and the ASD-unique decrease (the voxles with both 

T-values < 0 in HC vs. SZ and T-values > 0 in HC vs. ASD). For each of the four types of changes, the percentage 

was calculated as the number of neuroimaging measures relating to the change divided by the number of measures 

passing ANOVA. Among the measures with the disorder-common decrease (or increase), the percentage of 

ASD-weaker decrease (or increase) than SZ, that showed T-values < 0 in SZ vs. ASD in the disorder-common 



decrease (or showed T-values > 0 in SZ vs. ASD in the disorder-common increase), were further summarized. 

 

The revised texts in the “Methods” section are: “Next, based on the results from two-sample 

t-tests, we summarized the disorder-common and disorder-unique changes. In terms of the voxels 

passing ANOVA in each network, the voxels with T-values > 0 in both HC vs. SZ and HC vs. ASD 

reflected the disorder-common decreases compared to HC, and the voxels with T-values < 0 in both 

HC vs. SZ and HC vs. ASD reflected the disorder-common increases compared to HC. The 

disorder-unique changes included SZ-unique decrease (i.e. ASD-unique increase) and ASD-unique 

decrease (i.e. SZ-unique increase). The SZ-unique decrease involved voxels with both T-values > 0 

in HC vs. SZ and T-values < 0 in HC vs. ASD. That means for these voxels, network Z-score showed 

decrease in SZ compared to HC, but showed increase in ASD compared to HC. Similarly, the 

ASD-unique decrease corresponded to the voxles with both T-values < 0 in HC vs. SZ and T-values > 

0 in HC vs. ASD. After that, we computed the voxel percentage for each of the four types of changes 

within all voxels showing group differences in ANOVA. Furthermore, among the voxles showing 

disorder-common decrease, we summarized the percentage of the voxels that had weaker decreases 

in ASD than SZ (i.e. T-values < 0 in SZ vs. ASD), and we called the type of change as ASD-weaker 

decrease within the common decrease. Similarly, we obtained the associated results for ASD-weaker 

increase within the common increase. The procedure is outlined in Fig. 2.” 
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REVIEWERS' COMMENTS: 

Reviewer #2 (Remarks to the Author): 

I have reviewed this paper twice previously and find that the authors continue to respond to my 

comments and improve the clarity of their paper – thank you. 

I have a few (very) minor suggestions that I hope will add further clarity. In the results, the 

subheadings clearly delineate when the analyses are switching comparisons (following Fig 2). 

However, adding some extra clarity as to what group is being compared to what will avoid the reader 

having to flick through pages to check Fig 2 or to wait until the discussion for the summary. For 

example, for the subheading “Common changes in brain functional networks (line 180)” is not 

immediately obvious that this is assessing what is common across SZ and ASD compared to HC. 

Similarly, the sentence (line 189), “Notably, for the voxels with common decrease changes, 85.3% 

voxels showed weaker (smaller) changes in ASD than SZ; for the voxels with common increase 

changes, 94.4% voxels had weaker (smaller) changes in ASD than SZ, supporting that in general ASD 

presented weaker changes than SZ for the shared abnormalities” is confusing. Does this mean that SZ 

is more different than ASD compared to HC? This seems to be the message from the discussion, but it 

would be helpful to be clearer early. Again, for the sentence (line 201), “Regions with ASD-unique 

decreases were primarily located at the superior frontal gyrus (IC 96, CC), hippocampus (IC 83, CC), 

and middle cingulate cortex (IC 37, SM).“ Is this the analysis where SZ are increased compared to HC 

(as described in Fig 2)? Or are these just ASD-unique decreases alone? 

Please be specific about what symptom scores are being compared (starting line 318). At present, the 

symptoms being compared in SZ are missing from this section. 

In the introduction (line 108), Haigh et al. (2019) used diffusion MRI (not structural) and the fMRI 

findings were from the Haigh et al. (2016) paper. 

There are still lots of typos. For example (line 853), “There were no significant group differences (p-

value < 0.01) in head motion(s) for each dataset, except(ing) the head motion transition measure in 

the ABIDE( )I (p-value = 0.0084), measured by two-sample t-tests. If combing (combining?)…”
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addition to using fMRI and sMRI data, Haigh et al. used diffusion data to study the two 
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and HC.” We meant others used fMRI and sMRI data but Haigh used diffusion data. 

Considering the comment, we have removed “In addition to using fMRI and sMRI data” 
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