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Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

In this work, the authors proposed HiMol, which contains a hierarchical GNN (HMGNN) and multi-level 

self-supervised pre-training to learn representations from molecular graphs. Experiments shown that 

HiMol pre-trained on 250K data from ZINC15 outperformed self-supervised learning baselines on most 

MoleculeNet benchmarks. Additionally, ablation study was conducted to unveil the effectiveness of 

both the hierarchical architecture and self-supervised pre-training. The paper can be an interesting 

contribution to the area of molecular graph representation learning. However, I have the following 

concerns. 

This work introduces hierarchical GNN and multi-level pre-training to explicitly learn information of 

motifs in molecules. However, some previous works have also investigated molecular self-supervised 

learning in multi-levels, e.g., Zhang et al. (https://arxiv.org/abs/2110.00987), Wang et al. 

(https://pubs.acs.org/doi/full/10.1021/acs.jcim.2c00495), and Zhang & Hu et al. 

(https://arxiv.org/abs/2012.12533). I suggest the authors discuss the works in Introduction and 

emphasize the difference between HiMol and previous works in multi-level learning. 

In HMGNN, motif nodes are not directly connected. Is there a reason why motif connections are not 

included in the hierarchical molecular graph? 

In atom number and bond number predictions, the problem is considered as regression and trained 

via smooth L1 loss. Why not modeling the tasks as classifications? Did the authors by any chance try 

the classification settings? 

Figure 2 shows the fine-tuned HiMol representations in 4 datasets. It may better illustrate the 

effectiveness of HiMol by visualizing representations from unpretrained models side-by-side for 

comparison. 

In Equation 9, the authors mention learnable coefficients α for different loss terms. How is α learned 

during training? 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The paper presents a novel hierarchical graph neural network to encode molecular motif structures 

and extract node-motif-graph (atom-motif-molecule) representations, and a corresponding multi-level 

self-supervised pre-training framework with increased transferability. The idea is interesting, the 

figures are of good quality, and overall, the paper is well written. 

 

My main confusion is the Hierarchical Molecular Graph Neural network (HMGNN). 

1. In the methods section (page 13), the authors mention that nodes and edges from three levels 

(atomic, motif and graph) are merged into one big graph, and a Graph Isomorphism Network (GIN) is 

then used to predict features such as node-level representations. The illustration in Figure 1 shows a 

different structure. It seems that there are multiple GNNs to analyze the graph at three levels. 

2. Also, if you have merged all three levels, how do you differentiate the features of the different 

levels? 

3. I see edges between nodes and motifs, are there edges between motifs? If not, is there any reason 

to ignore motif interactions? 

4. Can you elaborate on the equation jump from 3 (page 13) to 4-8 (page 14). If you do not have a 

READOUT operation, how do you connect h in equation 3 to any of the elements in 4-8 for the loss 

function? 

5. Page 13, line 369 and Table 4. The node feature contains only atomic index and atomic degree. 

Why choose these two simple features? Why not include other atomic features, such as the Weave 



features using Deepchem. 

 

Other questions I have are 

6. Page 4, line 147. How did you handle different number of atoms and motifs in a molecule? Did you 

use batched graph or masking? 

7. Figure 1. It is desirable to standardize the formatting. For example, some words have spaces filled 

with underscores (e.g., node_level), while in the title they are dashes (node-level). 

8. Can you comment on the results in Tables 1 and 2 against MoleculeNet benchmarks? I see that the 

best performing results are not as good as the MoleculeNet benchmark. Is it because the features are 

from a self-supervised learning method or is it because of the choice of the test set? 

9. A general question about motif feature selection. I see that motifs often include functional groups 

that are critical to chemical properties. Why not include functional group features? On page 11, you 

mention that “When the constructed motif dictionary is large, the computation of motif prediction is 

expensive”. Can you comment on the size of the motif dictionary and how this would make the 

computation expensive? 



Reviewer #1: 
 
In this work, the authors proposed HiMol, which contains a hierarchical GNN 
(HMGNN) and multi-level self-supervised pre-training to learn representations from 
molecular graphs. Experiments shown that HiMol pre-trained on 250K data from 
ZINC15 outperformed self-supervised learning baselines on most MoleculeNet 
benchmarks. Additionally, ablation study was conducted to unveil the effectiveness 
of both the hierarchical architecture and self-supervised pre-training. The paper can 
be an interesting contribution to the area of molecular graph representation learning. 
However, I have the following concerns. 
 
1. This work introduces hierarchical GNN and multi-level pre-training to explicitly 
learn information of motifs in molecules. However, some previous works have also 
investigated molecular self-supervised learning in multi-levels, e.g., Zhang et al. 
(https://arxiv.org/abs/2110.00987), Wang et al. 
(https://pubs.acs.org/doi/full/10.1021/acs.jcim.2c00495), and Zhang & Hu et al. 
(https://arxiv.org/abs/2012.12533). I suggest the authors discuss the works in 
Introduction and emphasize the difference between HiMol and previous works in 
multi-level learning. 
 
Many thanks for providing the related studies. We have carefully reviewed and considered 
the papers provided by the reviewer, the differences between these methods and our HiMol 
are summarized as follows. 
 
(1) For Zhang, Z., Liu, Q., Wang, H., Lu, C., Lee, C.-K.: Motif-based graph self-supervised 
learning for molecular property prediction. Advances in Neural Information Processing 
Systems 34, 15870–15882 (2021).  
(https://arxiv.org/abs/2110.00987) 
The authors proposed a self-supervised learning framework based on motif to learn molecular 
representation. However, the encoder only uses the local topology structure between atoms 
to get the hidden atom-level representations, which are pooled to obtain the molecular 
representation through READOUT. Our HiMol incorporates the motif structure and augments 
the graph-level node in the encoder, which are conductive to learning hierarchical molecular 
representations. On the other hand, Zhang et al. proposed motif prediction as pretext tasks, 
where the large motif dictionary makes the time computation expensive. We design multi-
level tasks to pre-train, which improve the transferable ability of model. 
 
(2) For Wang, Y., Magar, R., Liang, C., Barati Farimani, A.: Improving molecular contrastive 
learning via faulty negative mitigation and decomposed fragment contrast. Journal of 
Chemical Information and Modeling (2022).  
(https://pubs.acs.org/doi/full/10.1021/acs.jcim.2c00495) 
The paper proposed a contrastive learning framework for molecular learning, in which not 
only molecular pairs but also motif pairs are sampled for contrastive pre-training. Differently, 
our pre-training framework HiMol is a hybrid of self-supervised strategies including generative 



and predictive learning. The mixed self-supervised learning of multiple tasks increases the 
generalization performance of model pre-training. In addition, the motif structure in this work 
is only used in decoder as in the paper (1). 
 
(3) For Zhang, S., Hu, Z., Subramonian, A., Sun, Y.: Motif-driven contrastive learning of graph 
representations. arXiv preprint arXiv:2012.12533 (2020).  
(https://arxiv.org/abs/2012.12533) 
The paper modeled a clustering problem to learn molecular motifs, and the GNN-encoded 
atom representations are grouped into subgraphs for contrastive learning. The motif is 
learned through clustering without introducing chemical prior knowledge. The effectiveness 
of motif generation is more likely to be affected by training data. As for our HiMol, motif is 
constructed based on the rule of BRICS, so that the generated motifs are in line with chemical 
functional groups and more capable of reflecting chemical properties. 
 
In summary, though the aforementioned three works are motif-based molecular learning 
methods, our framework HiMol has some innovations. (1) We mine motif structure during 
encoding molecular representations, making motifs more directly involved in molecular 
learning in both pre-training and fine-tuning. (2) We design multi-level hybrid self-supervised 
learning to pre-train, which improve the transferable performance. Related content has been 
summarized and cited to enrich the content of Introduction (Page 2).  
 
2. In HMGNN, motif nodes are not directly connected. Is there a reason why motif 
connections are not included in the hierarchical molecular graph? 
 
Motif nodes are added to mine the topology structure of molecular functional groups 
composed of atoms and better conduct the interaction between atom-level and graph-level 
representations as intermedium. Theoretically, the reasons why motif connections are not 
considered are as follows. Firstly, the motif nodes are virtual, then adding edges between the 
motif virtual nodes may introduce noise. Secondly, edges between motifs are derived from 
the original bonds that already exist at the atom-level nodes, so adding repetitive edges is 
meaningless for augmented graph construction. 
 
We conducted experiments to add connections between motif pairs with shared atoms or 
bonds. The type of motif-motif edges distinguishes the four types of molecular bonds as well 
as the node-motif and motif-graph edges. The results are shown in the table, where 
HiMol_Motif is the version with motif connections, and the number of encoder layers of HiMol 
and HiMol_Motif is 5. Overall, HiMol_Motif and HiMol have similar performance, which 
implies that motif connections have no significant effect on the molecular learning. 
 
Dataset BACE BBBP Tox21 ToxCast SIDER CLINTOX 
HiMol 84.3 73.2 76.2 66.3 61.3 80.8 
HiMol_Motif 84.5 71.4 76.6 64.8 62.3 79.7 

 
Dataset ESOL FreeSolv Lipophilicity QM7 QM8 QM9 



Metrics RMSE RMSE RMSE MAE MAE MAE 
HiMol 0.833 2.283 0.708 91.501 0.0199 3.243 
HiMol_Motif 0.813 2.417 0.691 100.44 0.0191 3.447 

 

3. In atom number and bond number predictions, the problem is considered as 
regression and trained via smooth L1 loss. Why not modeling the tasks as 
classifications? Did the authors by any chance try the classification settings? 
 

We supplemented the graph-level pretext tasks of predicting atom number and bond number 
as classification tasks. Firstly, the number of atoms and bonds of all molecules in pre-training 
dataset ZINC are counted, and then the categories of their numbers are set as the dimension 
of the last layer of MLPs for prediction. The MLP is two layers with RELU activation function. 
The loss function is the Cross-Entropy loss. 
 
The results are shown in the table below, where HiMol_Cla is the version with classification 
settings and the backbone is 5-layer GIN. The classification setting HiMol_Cla has worse 
performance than our regression setting HiMol in most cases. In addition, the categories of 
atom number and the bond number are different in other datasets. It is necessary to calculate 
and alter the dimension of the neural networks when changing pre-training datasets, leading 
to low generalization. 
 

Dataset BACE BBBP Tox21 ToxCast SIDER CLINTOX 
HiMol 84.3 73.2 76.2 66.3 61.3 80.8 
HiMol_Cla 77.7 69.0 75.3 66.4 59.9 72.8 

 
Dataset ESOL FreeSolv Lipophilicity QM7 QM8 QM9 
Metrics RMSE RMSE RMSE MAE MAE MAE 
HiMol 0.833 2.283 0.708 91.501 0.0199 3.243 
HiMol_Cla 0.890 2.305 0.752 309.646 0.0208 3.458 

 

4. Figure 2 shows the fine-tuned HiMol representations in 4 datasets. It may better 
illustrate the effectiveness of HiMol by visualizing representations from 
unpretrained models side-by-side for comparison. 
 

According to the suggestions of reviewers, we supplement the visualization of molecular 
representations without pre-training. It can be observed from the figure below, the 
representation of atoms without pre-training is more chaotic. The visualization results after 
pre-training in the manuscript (Fig.2) show that the molecular representations learn more 
chemical properties. This illustrates the effectiveness of our pre-training framework. We 
updated the manuscript by supplementing the above results and analysis of experiments into 
Appendix C.2. 
 



  

 

 
5. In Equation 9, the authors mention learnable coefficients α for different loss 
terms. How is α learned during training? 
 
We define a variable ߙ ൌ ሾߙଵ,ߙଶ,ߙଷ,ߙସ,ߙହሿ ∈ ℝହ  with gradient calculation 
(requires_grad=True). After obtaining the loss of each prediction task 
௟௜௡௞ܮ) , ௔௧௢௠_௧௬௣௘ܮ , ௕௢௡ௗ_௧௬௣௘ܮ , ௔௧௢௠_௡௨௠ܮ ,  to add all the loss to obtain ߙ ௕௢௡ௗ_௡௨௠), we useܮ
the overall loss ܮ through equation 9: ܮ ൌ ௟௜௡௞ܮଵߙ ൅ ௔௧௢௠_௧௬௣௘ܮଶߙ ൅ ௕௢௡ௗ_௧௬௣௘ܮଷߙ ൅ ௔௧௢௠_௡௨௠ܮସߙ ൅ ହ௅್೚೙೏_೙ೠ೘ߙ  
When the overall loss ܮ  is backpropagated, the gradient of ߙ  is calculated and ߙ  is 
updated. Therefore, ߙ is learned during the model training. 
 



Reviewer #2: 
 
The paper presents a novel hierarchical graph neural network to encode molecular 
motif structures and extract node-motif-graph (atom-motif-molecule) 
representations, and a corresponding multi-level self-supervised pre-training 
framework with increased transferability. The idea is interesting, the figures are of 
good quality, and overall, the paper is well written. 
 
My main confusion is the Hierarchical Molecular Graph Neural network (HMGNN). 
1. In the methods section (page 13), the authors mention that nodes and edges from 
three levels (atomic, motif and graph) are merged into one big graph, and a Graph 
Isomorphism Network (GIN) is then used to predict features such as node-level 
representations. The illustration in Figure 1 shows a different structure. It seems that 
there are multiple GNNs to analyze the graph at three levels. 
 
The augmented molecular graph merging three-level nodes (atom, motif and graph) is input 
into an L-layer GNN to encode the hidden representations of the three-level nodes 
simultaneously.  
 
To further clarify our method, we revised the framework of HMGNN. Mainly, we figure the 
augmented molecular graph, in which the white nodes represent atoms, the colored ones 
denote decomposed motifs, and the gray node is the molecule. In addition, cross-level edges 
(node-motif and motif-graph) are added. The augmented graph is input into the L-layer GNN 
to extract the node-level, motif-level, and graph-level hidden representations jointly. 

 
 
2. Also, if you have merged all three levels, how do you differentiate the features of 
the different levels? 
 

We demonstrate how to differentiate node features of different levels in terms of input 
features, the encoding and decoding process for hidden representations. 
 
For input features, we use atomic index and atomic degree to initialize node features. Graph-
level and motif-level are indexed 119 and 120 after all the atomic indices. Their degrees are 
set to 0, which is distinct from the fact that the atomic degree is greater than zero. 
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For the encoding process for hidden representations, nodes aggregate the neighborhood 
information to obtain the hidden representations. Different levels of nodes aggregate 
different sources of information. For example, atom nodes aggregate information from 
neighborhood atoms and the motif node, motif nodes aggregate from the graph node and its 
contained atom nodes, and the graph node aggregates all motif node features. 
 
For the decoding process for hidden representations, we use the num_part built when we 
process the input molecular graph to divide nodes of different levels. The num_part is a list of 
the number of atom-level, motif-level and graph-level nodes in each molecule, i.e., ሾ|ܸ|, | ௠ܸ|, 1ሿ . According to the num_part, we split all node hidden representations ܪ ∈ℝ(|௏|ା|௏೘|ାଵ)×ௗ  to obtain atom-level representations ܪ௔ ∈ ℝ|௏|×ௗ  and graph-level 
representation ܪ௚ ∈ ℝௗ for two-level prediction tasks of the decoder. 
 
3. I see edges between nodes and motifs, are there edges between motifs? If not, is 
there any reason to ignore motif interactions? 
 
Motif nodes are added to mine the topology structure of molecular functional groups 
composed of atoms and better conduct the interaction between atom-level and graph-level 
representations as intermedium. Theoretically, the reasons why motif connections are not 
considered are as follows. Firstly, the motif nodes are virtual, then adding edges between the 
motif virtual nodes may introduce noise. Secondly, edges between motifs are derived from 
the original bonds that already exist at the atom-level nodes, so adding repetitive edges is 
meaningless for augmented graph construction. 
 
We conducted experiments to add connections between motif pairs with shared atoms or 
bonds. The type of motif-motif edges distinguishes the four types of molecular bonds as well 
as the node-motif and motif-graph edges. The results are shown in the table, where 
HiMol_Motif is the version with motif connections, and the number of encoder layers of HiMol 
and HiMol_Motif is 5. Overall, HiMol_Motif and HiMol have similar performance, which 
implies that motif connections have no significant effect on the molecular learning. 
 

Dataset BACE BBBP Tox21 ToxCast SIDER CLINTOX 
HiMol 84.3 73.2 76.2 66.3 61.3 80.8 
HiMol_Motif 84.5 71.4 76.6 64.8 62.3 79.7 

 
Dataset ESOL FreeSolv Lipophilicity QM7 QM8 QM9 
Metrics RMSE RMSE RMSE MAE MAE MAE 
HiMol 0.833 2.283 0.708 91.501 0.0199 3.243 
HiMol_Motif 0.813 2.417 0.691 100.44 0.0191 3.447 

 
4. Can you elaborate on the equation jump from 3 (page 13) to 4-8 (page 14). If you 
do not have a READOUT operation, how do you connect h in equation 3 to any of the 
elements in 4-8 for the loss function? 
 



In equation 3, ℎ  represents the update rule of each node of all levels. We utilize atom 
representations ܪ௔ ∈ ℝ|௏|×ௗ  and graph representation ܪ௚ ∈ ℝௗ  to conduct atom-level 
and molecule-level prediction tasks in the decoder respectively.  
In equation 4, ݕො௜௝ = ߶௟௜௡௞(ܿݐܽܿ݊݋[ℎ௜ ,ℎ௝]) , where ݅, ݆ ∈ ܸ , and ߶௟௜௡௞  denotes ሼ(݀,2݀)ݎܽ݁݊݅ܮ → ݑ݈ܴ݁ → ,݀)ݎܽ݁݊݅ܮ 1)ሽ. 
In equation 5, ݕො௩,௞ = ߶௔௧௢௠_௧௬௣௘(ℎ௩) , where ݒ ∈ ܸ , and ߶௔௧௢௠_௧௬௣௘  denotes ൛ݎܽ݁݊݅ܮ(݀,݀) → ݑ݈ܴ݁ → ,݀)ݎܽ݁݊݅ܮ ௔ܰ௧௢௠_௧௬௣௘)ൟ, ௔ܰ௧௢௠_௧௬௣௘ = 118. 
In equation 6, ݕො௘,௞ = ߶௕௢௡ௗ_௧௬௣௘(ܿݐܽܿ݊݋[ℎ௜ , ℎ௝]), where ݁ = ݆݅, ݅, ݆ ∈ ܸ , and ߶௕௢௡ௗ_௧௬௣௘  
denotes ൛(݀,2݀)ݎܽ݁݊݅ܮ → ݑ݈ܴ݁ → ,݀)ݎܽ݁݊݅ܮ ௕ܰ௢௡ௗ_௧௬௣௘)ൟ, ௕ܰ௢௡ௗ_௧௬௣௘ = 4. 
In equation 7, ݕො௔ = ߶௔௧௢௠_௡௨௠(ܪ௚) , where ߶௔௧௢௠_௡௨௠  denotes ሼ(4/݀,݀)ݎܽ݁݊݅ܮ ݏݑ݈݌ݐ݂݋ܵ→ →  .ሽ(4,1/݀)ݎܽ݁݊݅ܮ
In equation 8, ݕො௕ = ߶௕௢௡ௗ_௡௨௠(ܪ௚) , where ߶௕௢௡ௗ_௡௨௠  denotes ሼ(4/݀,݀)ݎܽ݁݊݅ܮ ݏݑ݈݌ݐ݂݋ܵ→ →  .ሽ(4,1/݀)ݎܽ݁݊݅ܮ
We supplemented these formations of five MLPs in Appendix B. 
 
5. Page 13, line 369 and Table 4. The node feature contains only atomic index and 
atomic degree. Why choose these two simple features? Why not include other 
atomic features, such as the Weave features using Deepchem. 
 
We only chose two atomic attributes for initial features, where atomic type is the most basic 
atomic characteristic, and atomic degree is the most basic topological feature. Thanks to the 
reviewer's suggestion, we trained with HiMol with the Weave features as the initial feature. 
From the results in table, our model HiMol with two features has superior performance on 
most datasets. Interestingly, the classification result of HiMol_Weave has significant 
improvements on the ClinTox dataset, even exceeding the best comparison algorithms in the 
manuscript. It can be explained that the extra features of Weave features are important for 
the molecules of ClinTox. 
 

Dataset BACE BBBP Tox21 ToxCast SIDER CLINTOX 
HiMol 84.3 73.2 76.2 66.3 61.3 80.8 
HiMol_Weave 83.5 69.7 76.2 65.4 60.9 92.1 

 
 

Dataset ESOL FreeSolv Lipophilicity QM7 QM8 QM9 
Metrics RMSE RMSE RMSE MAE MAE MAE 
HiMol 0.833 2.283 0.708 91.501 0.0199 3.243 
HiMol_ weave 0.890 2.351 0.644 91.084 0.0194 3.312 

 
 
Other questions I have are 
6. Page 4, line 147. How did you handle different number of atoms and motifs in a 
molecule? Did you use batched graph or masking? 
 



We import Data and Batch from torch_geometric.data to construct batched graph without 
masking. Firstly, each molecule is constructed as an object of the Data class, including the 
atom attributes, the edge index, the edge attribute, and num_part. Then all Data objects of 
molecules within a batch are placed in a list and then constructed into a Batch object. The 
batch object constructs a big graph (disconnected) containing all molecular graphs within the 
batch. Specifically, the Batch class uniformly reindexes all nodes of each molecular graph, that 
is, the index of the node is updated sequentially in the order of the molecular graphs. The 
reindex is formalized as ݅݀௣௡௘௪ = ∑ |ܸ|௞ + ݅݀௣௢௟ௗ௞ழ௣ , where ݅݀௣ denotes the index of nodes 
of the graph ݌ in the batch, and |ܸ|௞  is the number of nodes of the graph ݇. The Batch 
class can process molecules with different number of nodes for a batched graph without 
masking. The torch_geometric.data.Data1 and torch_geometric.data.Batch2 can refer to the 
official code. 
 
1.https://pytorch-
geometric.readthedocs.io/en/latest/_modules/torch_geometric/data/data.html 
2.https://pytorch-
geometric.readthedocs.io/en/latest/_modules/torch_geometric/data/batch.html 
 
7. Figure 1. It is desirable to standardize the formatting. For example, some words 
have spaces filled with underscores (e.g., node_level), while in the title they are 
dashes (node-level). 
 

Special thanks to the reviewer for finding the errors of the formatting. We have carefully 
checked inconsistent formatting issues in this manuscript. In detail, we updated the 
Node_level, Motif_level and Graph_level to Node-level, Motif-level and Graph-level in Figure 
1 (Page 3). 
 
8. Can you comment on the results in Tables 1 and 2 against MoleculeNet 
benchmarks? I see that the best performing results are not as good as the 
MoleculeNet benchmark. Is it because the features are from a self-supervised 
learning method or is it because of the choice of the test set? 
 
The way of splitting test set has a great influence on the performance. Most of the 
downstream datasets in MoleculeNet benchmark[1] utilize the random splitting. However, our 
experiments split the data via scaffold splitting, in line with the recent state-of-the-arts. The 
scaffold splitting increases the challenge of the downstream tasks. 
  
We supplemented the experimental results of random splitting in the table below, in which 
we set three different random seeds. ↑  implicates the higher the value, the better the 
performance, while ↓ means the lower the value, the better the performance. It can be 
observed from the results, (1) Our results are better than MoleculeNet benchmarks overall; 
(2) The result of random splitting will fluctuate greatly with the change of seed, especially on 
small-scale data sets (like ClinTox, SIDER, ESOL and FreeSolv). The detailed settings of random 



seeds is not shown in the MoleculeNet benchmark[1]. Therefore, the random splitting is 
unstable, so that it is difficult to ensure the fairness of comparison. 
 
As for BACE and BBBP, MoleculeNet benchmark also used the scaffold splitting. Our 
performance on BACE is slightly worse than the best performance of conventional methods 
(RF:86.7) and better than the best graph-based methods (Weave: 80.6). It was demonstrated 
in the MoleculeNet benchmark [1] that the graph-based methods have sparse training data on 
the small-scale datasets, resulting in the learned representations that are less robust for 
specific tasks than the conventional methods. Our results on BBBP are better than all methods 
of MoleculeNet benchmarks. 
 

 HiMol 
Seed=0 

HiMol 
Seed=42 

HiMol 
Seed=100 

Best 
performances -
conventional 
methods of 
MoleculeNet 
benchmark 

Best 
performances - 
graph-based 
methods of 
MoleculeNet 
benchmark 

ClinTox(↑) 83.9 75.8 83.3 82.7 83.2 
SIDER(↑) 64.6 61.9 68.5 68.4 63.8 
Tox21(↑) 85.1 84.5 85.8 82.2 82.9 
ToxCast(↑) 75.1 75.1 74.0 70.2 74.2 
ESOL(↓) 0.774 0.607 0.595 0.99 0.58 
FreeSolv(↓) 2.261 1.472 0.981 1.74 1.15 
Lipophilicity(↓) 0.576 0.658 0.578 0.799 0.655 
Qm8(↓) 0.0125 0.0127 0.0122 0.0150 0.0143 
Qm9(↓) 2.790 2.293 2.756 4.35 2.35 

 
[1] Wu, Z., Ramsundar, B., Feinberg, E.N., Gomes, J., Geniesse, C., Pappu, A.S., Leswing, K., 
Pande, V.: Moleculenet: a benchmark for molecular machine learning. Chemical science 9(2), 
513–530 (2018) 
 
9. A general question about motif feature selection. I see that motifs often include 
functional groups that are critical to chemical properties. Why not include functional 
group features? On page 11, you mention that “When the constructed motif 
dictionary is large, the computation of motif prediction is expensive”. Can you 
comment on the size of the motif dictionary and how this would make the 
computation expensive? 
 
To demonstrate the high computation of motif prediction, we compare MGSSL[2] with our 
method HiMol that have the same data processing approach and the same GNN backbone. 
The time complexity of motif prediction is ܱ(݂݅ݐ݋݉_ܭ| ௠ܸ|),  and that of our MSP decoder 
prediction is ܱ(| ௔ܸ|݉݋ݐܽ_ܭ + ݀݊݋ܾ_ܭ|ܧ| + | ௔ܸ|^2 + 1 + 1) , where ݉݋ݐܽ_ܭ  and ݀݊݋ܾ_ܭ , are respectively the number of atom and bond types, | ௔ܸ|, | ௠ܸ|  and |ܧ|  are 
respectively the average number atoms, motifs and bonds in a molecule, and ݂݅ݐ݋݉_ܭ is the 



size of motif vocabulary. We calculate these values on the dataset ZINC for pre-training, which 
are shown in the table below. Since the value of ݂݅ݐ݋݉_ܭ is much larger than other values, 
the time complexity of motif prediction will be expensive. According to different methods of 
motif construction, if the larger the size of motif dictionary is, the higher the complexity of the 
algorithm. 
| ݂݅ݐ݋݉_ܭ ݀݊݋ܾ_ܭ ݉݋ݐܽ_ܭ  ௔ܸ| |ܧ| | ௠ܸ| 

118 4 ~10^4 ~23 ~25 ~6 
 
We also compare the running time of our method HiMol with that of MGSSL[2], where we set 
the same batch_size and run them on the same Linux server with Nvidia GeForce GTX 1080 Ti 
GPU and Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz. The table below shows the running time 
of each epoch. 
 

HiMol (ours) MGSSL 
5,796s 22,280s 

 
[2] Zhang, Z., Liu, Q., Wang, H., Lu, C., Lee, C.-K.: Motif-based graph self-supervised learning 
for molecular property prediction. Advances in Neural Information Processing Systems 34, 
15870–15882 (2021) 
 



REVIEWERS' COMMENTS: 

 

Reviewer #2 (Remarks to the Author): 

 

After reading through the revised manuscript, I am pleased to say that the authors have successfully 

addressed the issues and concerns raised in the previous review. The revised manuscript is well-

written and clearly presents the research and its findings. I recommend publishing the revised 

manuscript. 

 

########################################################### 

I am taking over for Reviewer #1 in reviewing the revised manuscript. Overall, the authors have 

successfully addressed all of Reviewer #1's comments and questions. The revised manuscript is well-

written, and the figures and content are of high quality. The details are as follows: 

 

For the first comment of Reviewer #1, the authors have effectively addressed, incorporating additional 

relevant literature into the introduction and demonstrating the innovative nature of the HiMol 

framework. 

 

Regarding Reviewer #1's second comment, the authors have provided a rationale for not including 

motif connections and conducted additional experiments comparing results with and without such 

connections, which showed no significant difference. I find the response to be satisfactory. 

 

In response to Reviewer #1's third comment, the authors have explained why they did not model the 

tasks as classifications and conducted additional experiments demonstrating that doing so resulted in 

worse performance. I agree with the authors' explanation and also think regression task is more 

appropriate. 

 

Reviewer #1's fourth comment has been addressed through the inclusion of a new comparison, which 

demonstrates the need for the proposed pre-training framework. 

 

For the fifth comment of Reviewer #1, the authors have provided a good explanation of how alpha is 

learned during training. 
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