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1. Molecular representations 

We have tried various molecular representations as an input to the deep kernel learning (DKL) 

model. Here, we provide an overview of the representations used in this work. 

1.1 Molecular descriptors 

We use the molecular descriptors from the previous study (Ahneman et al. Science (2018)). 

These include global descriptors: molecular weight, EHOMO, ELUMO, hardness, ovality, 

electronegativity, surface area, molecular volume, and dipole moment. In addition, local 

descriptors to capture the atom-centric properties is also used. The examples include 

electrostatic charge, NMR shift, vibrational frequency and intensity. This results into a total of 

120 descriptors for the reaction.  

1.2 Morgan fingerprints  

Molecular fingerprints are the most popularly used input representations in cheminformatics. 

They represent the molecule into a bit string format and are usually high-dimensional and 

sparse vectors. The basic idea behind computing the Morgan fingerprint involves few steps. It 

first assigns an identifier to each atom. Each atom’s identifiers are sequentially updated based 

on the identifiers of the neighboring atoms. With each level of iteration, certain substructural 

features are added to an array. This is followed by hashing that converts the array to a bit vector 

representing the presence or absence of the substructures (Fig. S1). 

 
Fig. S1. A representative example of Morgan fingerprints. 

 

1.3 Differential Reaction Fingerprints (DRFP)  



S4 
 

The DRFP takes the reaction SMILES as an input and provides a binary fingerprint based on 

the symmetric difference of two sets containing molecular substructures listed on left and right 

sides of the reaction arrow. The length of the fingerprint vector is independent of the number 

of reaction components. It is implemented using the pypi package (drfp). 

2. Message passing graph neural networks 

Graph neural networks (GNN) are a class of neural networks that can operate directly on non-

continuous input data like molecular graphs. In this work, we use a GNN inspired by the 

message passing neural network (MPNN) framework. The GNN captures the complex 

interactions between atoms and bonds by message-passing where each atom sends and receives 

messages based on the features of neighboring atoms and bonds. In this way, the local 

neighborhood information is aggregated in an iterative manner to obtain the global 

representation of the graph. The undirected graph with a set of node and edge features is usually 

taken as an input to GNN. Given the initial set of features, GNN has three main steps: (1) 

message-passing step, where a message is computed for each node using the node and edge 

features; (2) update step, where the node features are updated by aggregating the incoming 

messages from neighboring nodes; (3) readout step, where the node vectors are aggregated into 

a graph feature vector. 

3. Implementation 

In the following sections, we describe the implementation details of the DKL model with 

learned and nonlearned representations.  

3.1 DKL with Learned Representations 

The GNN component of the DKL model has a dimension of 64 for node representation vector 

and 512 for the graph/reaction representation vector. We considered three message passing 

steps and the number of set2set layers is also fixed to 3. No significant improvement in 

performance is observed with increasing the number of message passing steps. The reaction 
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representation obtained from GNN is passed to the feed-forward neural network (FFNN) with 

two fully-connected layers. It has a dimension of 256, followed by an output layer to obtain 

128-dimensional embedding vector. We apply a dropout rate of 0.1 to the fully connected 

layers of FFNN. The embedding is passed as an input to the GP and Matérn52 without 

automatic relevance determination (ARD) is chosen as the base kernel. The model is trained 

for 400 epochs with a batch size of 128. The Adam optimizer with a learning rate of 0.001 is 

used to update all the parameters of the DKL model. A learning rate schedular is used to decay 

the initial learning rate to 0.0001 and 0.00001 for the last 100 epochs. All the calculations are 

implemented using PyTorch and GPyTorch libraries. 

3.2 DKL with Nonlearned Representations 

The input representation has a size of 120, 2048, and 2048 respectively for molecular 

descriptors, DRFP, and Morgan fingerprints. The fully-connected layer has a dimension of 100 

with an output layer of size 50 for molecular descriptors. Similarly, it has a size of 512 followed 

by 256 for both DRFP and Morgan fingerprints. A dropout rate of 0.1 is applied to the NN 

layers. We use Matérn52 without ARD as the base kernel for GP. The model is trained for 400 

epochs using the Adam optimizer with a learning rate of 0.001. The PyTorch and GPyTorch 

libraries are used for implementing the method. The nonlearned representations are also used 

to train a standard Gaussian process model. The size of input representation is same as above 

for molecular descriptors, DRFP, and Morgan fingerprints.  

We have also investigated the model performance by summing the fingerprints of 

different reaction components instead of concatenation (Fig. S2). Each of the reaction 

component is first converted into 1024-bit fingerprint of radius 2. It is then passed through a 

linear layer to obtain an embedding of size 512. The reaction embedding is obtained by 

summing the embeddings of individual reaction components. It is then processed by a two-
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layer feed-forward NN with a dimension of 256, followed by an output layer to obtain 128-

dimensional embedding vector. This embedding is then passed as an input to the GP.  

 
Fig. S2. A general representation of the DKL model architecture with nonlearned input 

representation.  

The model performance is shown in Table S1.  

Table S1. The Average Model Performance of DKL Method with Summation of Morgan 

Fingerprints of Reaction Components 

Data split RMSE MAE R2 

80:20 4.561±0.060 3.026±0.029 0.972±0.001 

70:30 5.015±0.068 3.261±0.031 0.966±0.001 

50:50 5.761±0.099 3.749±0.046 0.955±0.001 

30:70 7.427±0.114 4.793±0.053 0.926±0.002 

20:80 8.919±0.137 5.749±0.071 0.893±0.003 

10:90 11.317±0.111 7.495±0.062 0.828±0.003 

5:95 14.356±0.145 9.827±0.102 0.723±0.005 

 

4. Performance metrics for the 80:20 data split 

The model performance in terms of RMSE, MAE, and R2, averaged over 10 independent runs 

is reported in Table S2.  

Table S2. The Average Model Performance for the 80:20 Data Split for Various Methods  

Representation Method RMSE MAE R2 

Graph GNN 4.890±0.189 3.415±0.163 0.967±0.002 

Graph DKL 4.795±0.191 3.260±0.151 0.969±0.003 

Molecular 

descriptor 
GP 8.580±0.062 6.379±0.057 0.903±0.001 



S7 
 

Molecular 

descriptor 
DKL 4.866±0.066 3.352±0.038 0.969±0.001 

Morgan FP GP 6.388±0.055 4.716±0.046 0.945±0.001 

Morgan FP DKL 4.857±0.077 3.318±0.034 0.968±0.001 

DRFP GP 6.456±0.054 4.746±0.038 0.944±0.001 

DRFP DKL 5.151±0.143 3.531±0.078 0.964±0.002 

 

We have performed paired t-test to analyze if the difference in mean between MorganFP_DKL 

and other models is statistically significant. The hypothesis is as follows: 

Null hypothesis H0: mean difference=0  

Alternate hypothesis H1: mean difference≠0 

The p-value with a significance level (α) of 0.05 is used to evaluate if the difference in means 

is significant. It can be noted from Table S3 that the MorganFP-DKL model is significantly 

different from rest of the models, with GNN-DKL as an exception.  

Table S3. p-values as Obtained from Paired t-Test  

Sr. no. Models p-value 

1 GNN and MorganFP-DKL 0.004 

2 GNN-DKL and MorganFP-DKL 0.027 

3 DRFP-GP and MorganFP-DKL 0.000 

4 DRFP-DKL and MorganFP-DKL 0.001 

5 MorganFP-GP and MorganFP-DKL 0.000 

 

5. Out-of-sample prediction 

We also evaluated the model performance on four out-of-sample splits based on the presence 

or absence of certain additives. The Morgan fingerprints are used with GP and DKL. In 

addition, the result with GNN-DKL is also presented (Table S4). The calculations are repeated 

5 times for different random seeds and an average RMSE is reported in Table S4. 

Table S4. Model Performance in terms of RMSE on Out-of-Sample Splits 

 test1 test2 test3 test4 

MorganFP-GP 9.771±0.000 11.054±0.000 15.240±0.000 18.761±0.000 

MorganFP-DKL 9.629±0.164 11.492±0.193 16.123±0.144 19.300±0.211 

GNN-DKL 9.935±0.768 11.310±0.989 16.755±1.282 19.097±1.057 
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6. Effect of fingerprint length 

Morgan fingerprints for each reactant is computed as a 256-bit vector with radius 2. The 

reaction representation is a concatenation of fingerprints for individual reaction components, 

giving a 1024-dimensional bit vector. Also, we use DRFP with 1024 bits for comparison. The 

results are shown in Table S5. 

Table S5. Model Performance with Morgan Fingerprints and DRFP of Length 1024 

DKL with Morgan fingerprints 

Data split R2 RMSE MAE 

80:20 0.965±0.001 5.069±0.106 3.433±0.052 

70:30 0.963±0.001 5.233±0.069 3.512±0.035 

50:50 0.952±0.001 6.000±0.074 4.063±0.039 

30:70 0.922±0.001 7.634±0.075 5.102±0.047 

20:80 0.892±0.002 8.994±0.082 6.057±0.044 

10:90 0.838±0.003 10.984±0.084 7.622±0.068 

5:95 0.762±0.006 13.304±0.157 9.484±0.105 

DKL with DRFP 

Data split R2 RMSE MAE 

80:20 0.968±0.001 4.902±0.101 3.370±0.047 

70:30 0.960±0.001 5.426±0.046 3.639±0.027 

50:50 0.949±0.001 6.177±0.063 4.133±0.038 

30:70 0.917±0.001 7.853±0.075 5.251±0.050 

20:80 0.886±0.002 9.214±0.092 6.200±0.054 

10:90 0.831±0.003 11.229±0.102 7.851±0.080 

5:95 0.749±0.004 13.667±0.118 9.766±0.094 

 

7. Effect of training set size 

The different train-test splits considered to investigate the effect of data size on model 

performance are: 70:30, 50:50, 30:70, 20:80, 10:90, 5:95. The model performance in terms of 

RMSE, MAE, and R2, averaged over 10 independent runs is reported in Table S6.  

Table S6. The Average Model Performance for Various Data Splits 

GNN 

Data split R2 RMSE MAE 

70:30 0.965±0.002 5.112±0.140 3.595±0.091 

50:50 0.952±0.003 5.973±0.155 4.174±0.082 

30:70 0.920±0.004 7.654±0.288 5.298±0.125 

20:80 0.888±0.008 9.077±0.349 6.235±0.201 

10:90 0.805±0.020 11.960±0.600 8.424±0.420 
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5:95 0.719±0.021 14.450±0.503 10.719±0.441 

DKL with molecular graph 

Data split R2 RMSE MAE 

70:30 0.967±0.002 4.987±0.109 3.406±0.078 

50:50 0.951±0.004 5.995±0.241 3.995±0.108 

30:70 0.925±0.010 7.282±0.491 4.847±0.230 

20:80 0.900±0.010 8.500±0.518 5.646±0.271 

10:90 0.831±0.015 11.211±0.478 7.534±0.289 

5:95 0.718±0.030 14.454±0.763 10.152±0.585 

GP with Molecular descriptors  

Data split R2 RMSE MAE 

70:30 0.893±0.002 9.001±0.074 6.713±0.047 

50:50 0.870±0.002 9.845±0.064 7.406±0.034 

30:70 0.829±0.001 11.328±0.031 8.557±0.027 

20:80 0.793±0.002 12.447±0.064 9.464±0.052 

10:90 0.716±0.004 14.542±0.105 11.234±0.069 

5:95 0.572±0.061 17.548±1.038 13.918±0.992 

DKL with Molecular descriptors 

Data split R2 RMSE MAE 

70:30 0.964±0.001 5.211±0.081 3.589±0.041 

50:50 0.947±0.002 6.264±0.110 4.207±0.058 

30:70 0.913±0.002 8.050±0.105 5.331±0.047 

20:80 0.884±0.003 9.303±0.118 6.240±0.077 

10:90 0.810±0.004 11.903±0.136 8.179±0.105 

5:95 0.697±0.006 15.007±0.147 10.681±0.082 

GP with Morgan fingerprints  

Data split R2 RMSE MAE 

70:30 0.935±0.001 6.920±0.043 5.033±0.036 

50:50 0.917±0.001 7.849±0.059 5.726±0.041 

30:70 0.879±0.001 9.508±0.059 7.007±0.029 

20:80 0.846±0.002 10.712±0.048 8.003±0.039 

10:90 0.786±0.003 12.650±0.091 9.708±0.070 

5:95 0.708±0.005 14.756±0.123 11.504±0.116 

DKL with Morgan fingerprints  

Data split R2 RMSE MAE 

70:30 0.962±0.001 5.272±0.083 3.572±0.053 

50:50 0.951±0.001 6.012±0.066 4.068±0.040 

30:70 0.923±0.002 7.568±0.083 5.060±0.042 

20:80 0.894±0.002 8.900±0.081 5.997±0.040 

10:90 0.836±0.003 11.071±0.096 7.681±0.074 

5:95 0.760±0.006 13.381±0.180 9.520±0.122 

GP with DRFP  

Data split R2 RMSE MAE 

70:30 0.933±0.001 7.025±0.048 5.120±0.030 

50:50 0.915±0.001 7.956±0.057 5.828±0.039 

30:70 0.877±0.001 9.576±0.044 7.113±0.033 

20:80 0.846±0.001 10.730±0.038 8.060±0.038 

10:90 0.786±0.003 12.631±0.078 9.704±0.076 
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5:95 0.707±0.004 14.787±0.090 11.502±0.086 

DKL with DRFP  

Data split R2 RMSE MAE 

70:30 0.958±0.001 5.5531±0.103 3.732±0.060 

50:50 0.950±0.001 6.089±0.042 4.086±0.029 

30:70 0.919±0.001 7.794±0.073 5.204±0.041 

20:80 0.889±0.002 9.122±0.079 6.145±0.044 

10:90 0.829±0.003 11.308±0.079 7.871±0.059 

5:95 0.751±0.005 13.611±0.147 9.696±0.115 

 

8. Feature analysis 

In order to get an insight into the features learned by the DKL model, we extracted the output 

of the last layer of fully connected NN. The size of the feature embedding is 256. We trained 

the DKL model on 80% of the data, and 20% is used for this analysis. The embedding of the 

20% samples as obtained from the trained DKL model is then processed using Uniform 

Manifold Approximation and Projection (UMAP). The 256-dimensional embedding is reduced 

to two components. Next, a k-means clustering is performed on these two components. The 

Morgan fingerprint for the reaction has a dimension of 2048. We first reduce the dimension to 

two using the UMAP, followed by k-means clustering. The optimal number of clusters are 

determined using the elbow method. It calculates the Within-Cluster-Sum of Squared Errors 

(WSS) for various clusters and selects the k for which the change in WSS error starts to decline. 

The elbow plot is shown in Fig. S3. The elbow point is noted with k=4 clusters. Additionally, 

we also performed silhouette analysis which determines the separation distance between the 

clusters. A silhouette score closer to +1 indicates that the samples are far from the neighboring 

clusters. A score closer to 0 indicates that the samples are closer to the decision boundary of 

two neighboring clusters. Whereas, a negative score indicates that the sample might belong to 

the wrong cluster. We obtained average silhouette score of 0.53, 0.53, and 0.49 respectively 

for 4, 5, and 6 number of clusters. Given the similar values of the silhouette score and the elbow 

plot, we choose the optimal number of clusters to be 4. A similar trend is observed on cluster 

analysis using Morgan fingerprints.  
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Fig. S3. Elbow plot to determine the optimal number of clusters. 

 

Four distinct clusters are noticed in each case, details of which are presented in Table S8. It 

can be noted that for the Morgan fingerprint the clusters are formed based on ligand and base. 

The clusters 1, 2, and 4 have single base (B2, B2, B2) whereas cluster 3 has a combination of 

two bases (B2 and B3). On the other hand, the clusters formed from the DKL features have all 

three bases present in all four clusters. We also investigated the median yield of each cluster. 

The median yield of the 20% data used for this analysis is 30.1. The median yield of each of 

the clusters is shown in Table S7. While the median yield of each cluster for Morgan 

fingerprints is closer to the overall median yield, we can see two distinct high and low yield 

clusters for DKL features. These are highlighted in blue.  

Table S7. Structure of Ligands and Bases Used in this Study 

    

L1 L2 L3 L4 

   

 

B1 B2 B3  
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Table S8. Identity of Ligand and Bases Present in Each Cluster Along with Median Yield 

(see Table S7 for identity of ligand and base) 

 Feature cluster1 cluster2 cluster3 cluster4 

Median 

yield 

Morgan 

fingerprint 
38.4 21.0 29.0 27.1 

DKL 

Embedding 
21.9 3.4 60.6 19.0 

 

Identity of 

ligand and 

base 

Morgan 

fingerprint 
B1 

L1, L2, L3, L4 

B2 

L2, L3, L4 

B2, B3 

L1, L2 

B3 

L3, L4 

DKL 

Embedding 
B1, B2, B3 

L4 

B1, B2, B3 

L1, L2, L3, L4 

B1, B2, B3 

L1, L2, L3, L4 

B1, B2, B3 

L1, L2, L3, L4 

 

The distribution of yield of each cluster for DKL features and Morgan fingerprints is shown in 

Figs. S4 and S5 respectively. 

 

  

  

Fig. S4. Distribution of yields in different clusters as obtained from the Morgan fingerprints. 

The colors correspond to the clusters shown in Fig. 5b. 
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Fig. S5. Distribution of yields in different clusters as obtained from the embeddings of the 

DKL model. The colors correspond to the clusters shown in Fig. 5a. 

 


