
Supplementary Information: Tunnel spectroscopy of localised electronic states in
hexagonal boron nitride
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Supplementary Figure 1. Temperature dependence of electron
tunnelling through state A when T = 2, 4, 6, 20, 40, 60, and
90 K. Solid curves in panels a, b show measured I(Vb) and
corresponding G(Vb) characteristics. Dashed curves in b show
G(Vb) calculated using Eq. S4 for γ = 6 meV. Inset in b shows
the lineshape of the peak in conductance measured when T =
2 K (black) and calculated using a Gaussian (magenta) and
Lorentzian (brown) function for the density of states of the
localised state.

SUPPLEMENTARY NOTES

Supplementary Note 1: Electrostatic Model

The electrostatic model used to determine the elec-
trostatic configuration of Device 2, with a tunnel barrier

width, d, bottom gate electrode thickness dbg and top gate

thickness dtg, is given by

eVb =µb − µt − edFb

eV b
g =µb + edbgFg

eV t
g =µb − edtgFt − edFb. (S1)

where Vb, V b
g and V t

g are the bias, bottom gate and top
gate voltages and µb and µt are the chemical potentials in
the bottom and top electrodes measured with respect to
the Dirac point in the respective layers. We calculate the
electric fields within the bottom gate, Fg, top gate, Ft,
and tunnel barrier regions, Fb, by solving these equations
simultaneously using Gauss’s law to determine the charge
on the graphene layers. In Device 2 the bottom gate is
a SiO2 dielectric with a thin hBN capping layer with
an overall dielectric constant which we set to be εg =
3.9, the tunnel barrier and top gating electrode are hBN
barriers which we set to have a dielectric constant of εb =
3.25. We note that this model takes into account the
quantum capacitance of the graphene layers. A similar
set of equations can be obtained for Device 1. Further
details of this model and its derivation can be found in
Ref. [S1].

Supplementary Note 2: Landauer Büttiker
Conductance

Here, we expand upon our analysis of tunnelling
through a localised state using the Landauer Büttiker
approach [S2–S4]. The current between the b and t elec-
trodes and the localised state is given by

Ib,t = −eγb,t(fb,t −No)/~ (S2)

where γb,t/~ is the electronic tunnelling rate from a lo-
calised state into the b and t electrodes respectively,
fb,t = 1/(1 + exp((E − µb,t)/kBT )) are the correspond-
ing Fermi functions with temperature, T , and No is the
occupancy of the defect state. Under steady state condi-
tion, the current between the graphene layers due to the
impurity is Ii = Ib = −It and thus

No =
γbfb + γtft
γb + γt

. (S3)

Assuming a finite energy broadening of the state γ =
γb + γt, the total current through the impurity state is
therefore given by

Ii = − e
~

∫ ∞
−∞

dE Γ(E − Ei)
γbγt
γb + γt

(fb − ft). (S4)
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where Γ is a singly peaked function with a full width
half maximum (FWHM) of γ and Ei = E0

i + eFbzi. We
set the parameters to correspond to state A, i.e. E0

i =
E0

A = 0.1 eV and zi = zA = 0.5d, which give an accurate
simulation of the X-shaped dependence of conductance
in the measured colour map, compare Figs. 2a and b of
the main text.

In Supplementary Figure 1 a we show I(Vb) plots mea-
sured for T = 2 to 90 K with Vg = 1.7 V so that Ei = µb

when Vb = 0 i.e. where the conductance loci cross in
Fig.2a. In Supplementary Figure 1 b we show the mea-
sured differential conductance G(Vb) curves (all solid)
corresponding to the current voltage characteristics in a.
As T increases the step-shaped increase in current broad-
ens and the associated peak in the conductance weakens.

The dashed curves in Supplementary Figure 1 b show
our calculated dependence of conductance on T around
Vb = 0, normalised to the peak conductance value of the
measured data at T = 2 K. In this calculation, we define
Γ(E) to be a Gaussian function:

Γ(E) =
1√
2πσ

exp

(
− E

2

2σ2

)
(S5)

where σ = γ/2
√

2 ln 2, and γ = 6 meV. We find very
good correspondence between the calculation and the
measured data, in particular the dependence on tem-
perature of the lineshape, linewidth, and conductance
peak height. To highlight the lineshape of the peak we
show in the the inset of Supplementary Figure 1b a plot
of G(Vb) measured when T = 2 K (black) and calcu-
lated when Γ(E) is a Gaussian function (magenta) and
when Γ(E) is a Lorentzian function (brown) when γ = 6
meV. Although both functions give a good fit to the data
for small Vb, at larger Vb the measured conductance is
quickly suppressed, consistent with the Gaussian line-
shape (magenta) and diverges from the calculation when
a Lorentzian is used. This lineshape is consistent with
inhomogenous broadening of the level which could occur
from spectral diffusion due to fluctuations in the electro-
static environment of the localised state [S5–S8].

We also make a quantitative analysis of the peak in
the conductance. When T = 0 equation S4 becomes

Ii = − e
~

∫ µt

µb

dE Γ(E − Ei)
γbγt
γb + γt

. (S6)

and therefore for small Vb

Gp =
e2

h
β (S7)

where

β =
√
π ln 2S (S8)

and

S = 4
γbγt

(γb + γt)2
(S9)

is the transmission probability of the channel. If γb = γt
and Γ(E) is a Lorenztian function, then Gp = e2/h, cor-
responding the quantum of conductance. For state A,
when T = 2 K, Gp = βe2/h = 29 µS, β = 0.75 and
S = 0.5. Fermi’s golden rule gives γb,t = 2πDb,t|τb,t|2
where Db,t = 2Eb,tA/π~2v2F is the density of states in
the two electrodes, A is of the order of the area of the
graphene lattice unit cell and τb,t = 〈f |H|i〉 is the tun-
nelling matrix element determined by the spatial overlap
of the initial localised state and the final, extended, state
in the graphene drain electrode. For Vg = 1.7 V our elec-
trostatic model gives µb ∼ 0.11 eV and µt ∼ 0.09 eV.
Thus we deduce that γb > γt and Eq. S7 suggests that
the tunnel rates are γb ∼ 0.8γ and γt ∼ 0.2γ. This dif-
ference cannot be explained fully by the difference in the
density of states since Dt/Db 6= γt/γb; this implies that
the localised state is more strongly coupled to the bot-
tom layer than the top i.e. τb > τt. We can estimate the
tunnelling matrix element using Fermi’s golden rule to
obtain |τb| = ~vF

√
γb/4Aµb ∼ 0.2 eV consistent with in-

terlayer coupling in tight binding approximation of vdW
heterostructures. Our analysis therefore indicates that
tunnelling through the localised state is consistent with
single electron tunnelling with different coupling ampli-
tudes of the state with the top and bottom graphene
electrodes.

Supplementary Note 3: Sequential Tunnelling

We model inelastic sequential tunnelling using the fol-
lowing equation

IAB = −ξ
∫
dELA(E − EA)ΓB(E − EB)

× γbγAB

γb + γAB
ft(E)(1− fb(E)), (S10)

where LA(E) = 1/(1 + exp(−E/σ)) is a step function

with linewidth σ = γ/2
√

2 ln 2, and γ = 6 meV, i.e.
corresponding to state A, ΓB is the Gaussian density of
states of localised state B and γAB is the tunnel rate be-
tween states A and B. The electron in the top graphene
layer tunnels into state B with conservation of energy.
Since state B is close to (or within) the top graphene
layer we assume the tunnel rate between the top graphene
layer and state B is much higher than γb and γAB. We
set γAB = γt which is a good approximation when state
B is close to the top graphene layer. The step function
then used to model the inelastic tunnelling process dis-
cussed in the main text, where the electron tunnels be-
tween states B and A by losing energy, i.e. the current
can flow if EA < EB. The electron then tunnels into the
bottom graphene layer. We include IAB in our expres-
sion for the conductance and set the parameter, ξ = 5,
to obtain a good fit of the amplitude of the sequential
tunnelling feature to the measured conductance.
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