SUPPLEMENTARY INFORMATION

Supplementary Note 1. Physical system
N 88Sr atoms are confined in a one-dimensional (1D) optical lattice (wavelength A; =
813 nm) formed inside a hollow-core photonic crystal fibre (HCPCF) along the axial direction
(in the z-axis). The quantum axis is set by an external magnetic field B, = (0.14 mT)¢€,. Here,
€, is the unit vector in the direction of the x-axis. The in-fibre atoms are coupled with the
superradiant (SR) field
Esr(r,z; t) = (&,/2)Esp(r, z; )e 70" + (&, /2) Esg (r, z; t)e ot (S1)
viathe 1S, — 3P,(m = 0) intercombination transition (frequency w, = 2 x 435 THz,
wavelength A, = 2mc/w, in vacuum, and spontaneous decay rate y, = 2 X 7.5 kHz). c is the
speed of light in vacuum. r = x&, + y&,, is the radial coordinate and €, is the unit vector in the
direction of the y-axis. Esg (1, z; t) denotes the complex amplitude of SR field. The linear-
polarization vector of the optical lattice lasers is chosen to fulfil the magic condition! which
cancels the light-shift difference between S, and *P;(m = 0). The symbol (u, ) is used to
label the u-th atom in the u-th lattice site.
The characteristic length of the in-fibre confined atomic cloud along the axial direction is
[,. In the main text, we only focus on two specific values, i.e., [, = 0.87 mm for the unexpanded
cloud and I, = 2.1 mm for the expanded cloud. The corresponding lattice-site numbers N; are
then given by N, = 1,/(A,/2) = 2.1 x 103 (unexpanded) and N; = 5.2 x 103 (expanded).
Assuming a Gaussian atomic distribution over the optical-lattice region, the number of atoms in
the u-th lattice site reaches
Ny = [NAL/(Vrl,)] expl= (2, — 2/ (1,/2)?], (S2)
where Z, denotes the central position of the u-th lattice site in the axial direction and Z. is the
central position of the atomic cloud along the axial direction. Summing N,, over all lattice sites
results in the total number of atoms, i.e., N = 21’1’;1 N,,. In the u-th lattice site, N,, atoms spread
within a pancake-shaped potential with the characteristic axial (z-axis) width [, = 54 nm and

radial (x — y plane) radius r, = 1.7 um and follow the Gaussian distributions

2 _ 2
[1/(7‘[1'32)] exp [_ |r(u,u)| /Taz] and [2/(\/Ela)] exp [_ |Z(u,u) - Zul /(la/z)z], (83)
in the radial plane and the axial direction, respectively. Here r, ) + z( )€, corresponds to the

spatial position of the (u, u)-th atom. €, is the unit vector in the direction of the z-axis.
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For the atoms in the same lattice site, the interatomic distance may be shorter than A,
leading to the virtual-photon-mediated resonant dipole-dipole interaction?. In contrast, the
interaction between two atoms in different lattice sites is weak and negligible because of

(A./2) > (Ao/2m).

Supplementary Note 2. Equations of motion for atoms
The Hamiltonian describing the coherent atom-light interface and long-range dipolar
interaction is written as?
(w (W) g (u)
H= Yu 2 hwoa(u O T vo Xulip, I oty Gu (ﬂlﬂz)o-(u ) OCups)
(u) PN
+Xu 2 [— 3 DEsp(Yupy Zeupys t)a(u‘me twol 4y, c.], (S4)

where the operator associated with the (u, u)-th atom is defined as 6, ;) =

(I 'So){ *P1(m = 0)]),, , . the dipole moment is D = (3heqc?yo/w3)*/?, and the symbol

Zf}‘) ... denotes the summation over the atoms in the u-th lattice site. # is the reduced Planck's
constant and ¢, is the vacuum permittivity. ESR(r(u,u),z(u,H); t) is the SR-field amplitude at the

(u, p)-th atomic position. The parameter

3 2 €08 Bu, (g )
w,(uitz) T [_(1 e Hu'(H1H2)) Bu,(uyn2)

G

+(1= 30057 Oy ) (st et (gg)

u,(pq 2) u,(pg12)

characterizes the coherent virtual-photon-mediated dipolar interaction between two atoms (u, u;)

and (u, u,) in the p-th lattice site. The normalized interatomic distance is given by By, (. u,) =
2n|r(wl) — F(u,u2)|//10 and the angle between the light-induced-dipole vector (along €,) and
the (Xup) = Tuuy)) VECIOT IS Oy (). FOT By (uyuyy < 1, the ~B 2, ., term plays the
predominant role, i.e., Gy, (u, u,) ﬁ;’?m“z). The Heisenberg equation for an arbitrary atomic
operator O is then expressed as
20 = 20 20 (10068, B O] + 170 B % s Guiun) | 6o Btwiany» 0] )
+ Zu 25 (=i 37 Bsr (P Zauyi )60, 0] 0 + hoc.)

~

W vy
Yo Zu 2 Z Ru (M1M2)( (u U1) 06 O(uuz)
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1 A% ~ A 1at ~
Y O(uuy)0uz) 0 - 5 Oa(u,ul) O-(u'#z))’ (S6)
where we have taken into account the dissipative dipolar interatomic coupling characterized by
the parameter?

Sin ﬁu,(lluiz)

=3 2
Ru i) =3 [(1 — €08 Qu.(uluz))

Bu,(u1p2)
cosf sin 8
+(1 = 3008 By ) gttt - rat)| - (s7)
u,(uq ) u,(pqp2)

FOr royu,) = Fauu,) We have R 1.

u,(U1it2) =
Based on Supplementary eq. S6, one can derive the Heisenberg equations for the

lowering 6, and population-difference wy,, ,) = 6(1,”)6(%”) - 6(%”)6(‘;_”) operators, i.e.,

d A _ Yo . A . D . —i t
2t Owpy) = (—; - lwo) Olupup) + [—l;ESR(“(u.ul):Z(u.m)' t)e o

w Rupuapy) | N PN
Vo Xpyrus ( 21 =+ lGu,(uluz)) U(u.uz)] W) (S8a)
d A~ _ A~ A'l' . D . —7 t
Wy = ~Yo(Pauy + 1) = 26, [—lgESR(r(u.ul)'Z(u.ul)' t)e v

(W) Rupuany) | ~
Yo X2y (—21 =+ lGu,(uluz)) U(u,uz)]
. D % i
=2 [l o Esr (T Zauuyi )€™

(u) Rur(ﬂ uz) . A'l' A
+Yo Zuziul ( 21 = — lGu,(Ihltz)) O-(u,,uz)] O(u,pq) (S8h)

Defining G, ) = 6qe et and taking the quantum average, e.9., (G, .)) and (W, ), We

arrive at
d ;= _ Yo ;2 . D E . ~
= Guu)) = = 5 ) = 5y Esr (Y gy Zawun)s £ Pup)
@ (RuGm) , L
70 By (P Gy 1)) Gy W) (S9a)

W) = Vo (W) +1) +2i [ESR(r(u.Ih)’Z(u;Ih); G,
~Esr (Y (upe0)» ZGua) )8 pen))]
~2Yo Z/('Z:)ilil [(W + iGu.(muz)) (3(Tu,u1)3(u,uz)>
+ (P2 — 16y ) ) By B (S9b)
We further apply the zero-order approximation, for example,

() OW 1) (©) = (G ONP 20 ),
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to simplify the mathematical model. The validity of this approximation can be confirmed by
comparing the computed SR behavior and the experimental results (see below and main text).
The symbols s, ,)(t) and w, ,)(t) are used to respectively replace (E(u,u)(t)) and (Wy, ) (1)).

Finally, we obtain the equations of motion for the atoms

d _ Yo .| D ~ .
2 Swu) T T Stupy) T [; Esr(Caupy)r Zus t)

, (w) Ruuipp) |
Vo Xpyeu, ( St lGu,(uluz)) S(u,uz)] Wy (S10a)

%W(u#l) = —Yo(Wuu +1) + 20 [ZD_h Esr (Y ()0 Zui t)

. W) Ruinp *
+1yo Zyziyl ( 21 =+ lGu,(uluz)) S(u,uz)] S(uus)

~2i |2 B (Fupy Zus t)

. (w) Ry ) *
—1Yo Zuziul( l;luz - lGu,(uluz))S(u,uz)] Suug) (S10Db)

where we have approximated the amplitude ESR(r(u,u),z(u,H) ; t) at the (u, u)-th atomic position
by the value ESR(r(u,u),z”u; t) at the central position of the u-th lattice site, i.e., we have assumed

that ESR(r(u,M),z(u,u) ; t) does not vary apparently within the length scale of L,,.

Supplementary Note 3. Equation of motion for SR field
We now derive the equation of motion for the light field inside the fibre. Applying

Maxwell's equations, one has
(02 — c20% + 02)Egr(r, z; t) = po0ZP(r, z; t). (S11)
Uo is the vacuum permeability. The medium polarizability is given by
P(r,z;t) = (&/2)xe(N)eoEsg (T, z; t)e 0t
+8,D Y0 25600y O (r = T )8 (2 — 20 ) + e (S12)
where y.(r) is the electric susceptibility of the fibre in the absence of lattice-confined atoms.
Substituting above expression into Supplementary eq. S11, we are left with
[02 — c2n%(r)0?2 + 02]Er(r, z; t)e ~t@ot
= 2UoDF T X0 HE 0 (0))e 790 8 (1 = 1)) 8(2 = 2y ). (S13)
Here n(r) = /1 + x.(r) denotes the refractive-index profile of the fibre’s cross-section.

In the absence of atoms, one obtains a time-independent equation from (S13),
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[02 + n2(r)w3/c? + 02]E(r,z) = 0, (S14)
for a general in-fibre light amplitude E (r, z). Following the separation of variables procedure,
Supplementary eq. S14 leads to the m-th transverse eigenmode ,,, (r) with the corresponding

effective refractive index ncff, i.e.,
[az + le(r)wg/c ]lpm(r)emmwoz/c — (neffwo/c)zwm(r)emmwoz/c (S15a)

921, (r)einiwoz/c = —(n&fwy/c) lpm(r)e""%flf“’oz/c. (S15b)
The normalization condition is given by [f ¥y, (F)Y,,, (£)d?r = 8,y - Yo (r) corresponds to the
Gaussian-like fundamental HE11 mode. Based on i, (), the SR amplitude Esg (1, z; t) may be
rewritten in a superposition form
Esp(r,z;t) = X0 fin (2, O, (1) M woz/c. (S16)
|fin(z, t)]? correspond to the mode weights. Substituting Supplementary eq. S16 into
Supplementary eq. S13 and using the slowly varying envelope approximation, |9, f,,(z, t)| <

@l fim (2, 0] and 19, fin (2, )| < (nffwo/c)|fim (2, )], we arrive at
Zm(neff‘F 1) (a + C_lat)fm(z t)]lpm(r)emmwOZ/c
- izze)o_wcozu uu (E(u,#)(t))é‘(r - r(u#))5(z N Z(u#))’ (517)

which further leads to
(0, + ¢ 1) fin(z, 1)

ZDCL)O

; % _ s eff
= Zu Z(u)(o-(u,u) (t))l/)m(r(u,,u))e Him woz(u‘ﬂ)/c(g(z - Z(U,ll))' (818)

L c(neff+1)
We integrate Supplementary eq. S18 around the central position Z,, of the u-th lattice site within

therangeof Z, — A /4 <z < Z, + A,./4,

[0, + 00 fn(2,)dz = fon (B + 20/ %, 0) — fon(Z — /4,1)

Zu
710, [ f(z, D) dz. (S19)
and obtain

fm(zu +/1L/4:t) = fm(zu —AL/4, t)

. 2Dwq ) . im0z 0/
oy i S (O (T Je Mm% /e. - (S20)

In deriving Supplementary eq. S20 we have substituted s, ,)(t) for (G, ) (£)) and omitted the

term ¢ =10, fZ“+;L//44 fm(z,t)dz in Supplementary eq. S19 since its effect is negligible in the
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slowly varying envelope approximation. Further, the e~ @0Z(uw/ term in Supplementary eq.
$20 may be approximated as e =" @oZu/¢ dye to the fact wyl,/c « 1. Defining £, (t) =
fn(Z, — AL /4, t)eimmwo(Zu=2/0/c one has

furim(De miwo@/D/e = F  (p)einiwo(i/4)/e

2Dwy
te oc(nglf+1

et i St OV (Fuw) (821)
where we have used the relation Z, ,; — Z, = A, /2. From Supplementary eq. S21 one may solve
the time-evolved SR amplitude Esg (r, Z, — A, /4; ) = Y fum (O, (r) at the spot of

[r+ (2, — AL/4)&,].

Esp(r,Zy,—1 — A1./4; t) (u = 1 denotes the first lattice site) is determined by the input
pump-field amplitude E, (r,t) which is linearly polarized in the x-direction. In experiment,
E,(r,t) is a m-pulse with a duration 7, = 500 ns. Applying the slowly varying envelope
approximation, the SR amplitude at the central position of the u-th lattice site may be
approximated as Egg (I, Z,; £) = Y fin 2 ihm () M @oZu/c with

2 = Fum ROV 4 f oy ()Mol /e, (522)
ESR(r, Zy=n; +1 — AL/%; t) corresponds to the SR field output from the fibre. For simplicity, in

the following we use the symbol Egg (1, t) to denote the amplitude of the output SR.

Supplementary Note 4. Multiple transverse modes

The HCPCF used in experiment supports multimode propagation. For the convenience here

we apply the scalar wave approximation to the linearly polarized mode classification, LP, ,. [ and

u are the indices corresponding to the azimuthal and radial field variation, respectively. Thus, the
HE11 mode is labelled as LPo:. The fibre guides via Inhibited Coupling mechanism?®. Consequently,
its modes are leaky and suffer of confinement loss. Confinement loss coefficient quantifies the
fraction of power lost by the mode due to the leakage in the fibre cladding per unit of length.
Supplementary Figure 1 lists the numerically simulated (using a full-vector finite element method?)
mode intensity profiles of the first nine lowest-loss guided modes of the HCPCF along with their

respective effective refractive indices n&fl ; ¢ and confinement loss coefficients a,,-q1, . The

results show that the LPo1 mode has the lowest confinement loss of ~0.01 dB m~* at 813 nm while

the LPo2 mode suffers the highest loss of 4 dB m~1. The fundamental LPo1 mode has a beam radius
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w, = 11.8 um, showing a good matching with the pump field, i.e., E, (r, t) o 1o (r)e et (A, =

wp, — wy is the detuning and wy, is the pump-field frequency).

p
To keep our computation load to a reasonable level for solving our equations of motion,
we limit the number of transverse modes to a maximum of 9, i.e., to the ones shown in
Supplementary Fig. 1. It is noteworthy that when choosing the most dominant modes in the SR
dynamics, both the loss of the fibre modes and their coupling strength with the atomic cloud
have been taken into account: (i) Indeed, for the fibre modes with the comparable confinement
losses, the modes, whose intensity distributions show a maximum at the centre of the fibre cross
section (i.e., L, ,), have the stronger coupling strength with the atomic cloud than those whose
intensity distributions have a zero at the centre of the fibre core (i.e., LP, , with [ > 0); and (ii)
The confinement loss increases with high orders [ and u. Consequently, the atoms hardly interact
with the modes, whose intensity distributions peak at the central point of the fibre core but have

the peak diameters smaller than 27, or do not have central peaks at all.

Supplementary Note 5. Numerical simulation

The time evolution of the whole system can be numerically simulated based on

Supplementary eq. S10a, S10b and S21 via the fourth-order Runge-Kutta technique. The spatial
positions of N atoms are randomly generated according to [(NA,)/(V/l,)]e~#u=70*/(2/2* and

the Gaussian distributions of (71;2)~1 exp [— |r(ulm|2/raz] in the radial plane and
[2/(Vrl,)] exp [— |Zeun) — z”u|2/(la/2)2] in the axial direction (see Supplementary Fig. 2a and

2b). For the u-th lattice site, the average on-site atomic density is
pu = Ny/(@r2l,) = p(2/vm) expl— (2, — 2.)?/(1,/2)?], (S23)
where we have defined the atomic density p = N,/ (rr21,) averaged over the whole lattice
region with the averaged on-site atomic number N, = N/Nj.
Our numerical simulation well reproduces the ringing behaviour observed in experiment.

The raw heterodyne signal V_,(t) described in Fig. 5a of the main text is given by V., (t) «

Re [e 1t ([ E (r)ES/R (r, t)dzr], where Re[...] is the real part and Q, = wy — wLo. Ero(r)

and wy, are the amplitude and frequency of the local optical oscillator. The amplitude ES/R (r,t)

corresponds to the SR field propagating in the single-mode fibre (shown in Fig. 1c of the main
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text) and is given by ES/R (r,t) = [[f pg(r)Esr(r, t)d?r]do(r). Here ¢y (r) =
J2/(@w2) e~I"1*/%5 s the Gaussian-like ground mode of the single-mode fibre with the beam
radius of W, = 0.4w,. The band-pass filter removes the unwanted rapid varying component in
V.., (¢), leading to the amplitude V,,,(t). Figure 5a of the main text shows the numerical result
V.1 (t) that corresponds to the experimental result Vi (t) shown in Fig. 2a of the main text. It is
seen that the theoretical result is consistent with the experimental measurement, proving the
validity of the approximation (G, .y ()W, ) ) = (G ON P, 20 (), i, the
effect of quantum correlation on the SR behavior is negligible. Supplementary Movie 1 also
displays an example time evolution of SR for the unexpanded atomic cloud with N = 9.4 x 10*.
The patterns of SR intensity (o< |Esg (1, t)|?) at several selected times are displayed in Fig. 5b of
the main text. The dependence of the decay rate y,,, of the first SR burst on the atom number N
can be also derived from our simulation as shown in Fig. 5c.

One may further extract the frequency shift Aqg = wgg — w, Of the SR central frequency

wgp relative to the atomic transition w, from the SR spectrum S(w) o

2
f:o[ff Esr(r,t)d?r]ei@-«otdt| . The resulting S(w) is depicted in Fig. 6a of the main text,
p

where the spectrum peak is red shifted from the atomic resonance w, by ~2m x 152 kHz.
However, this frequency shift also includes the offset frequency ~2m x 54 kHz of the envelope
varying. Consequently, the SR (carrier) frequency shift Agg is equal to —2 x 98 kHz, which
reasonably agrees with the experimental results in Fig. 3d of the main text. The numerically-
derived dependence of Agz on the atomic density p is shown in Fig. 6b of the main text.

From the simulation results, one can further compute the superradiance efficiency. The
total power of the pump field is given by P, (t) o ff|Ep (r, t)|2dr while the total power of the SR
field output from the fibre is Pgr (t) o< [[|Esr(r, t)|?dr. Figure 6¢ of the main text shows the
time-dependent P, (t) and Psg (¢) for the unexpanded atomic cloud (I, = 0.87 mm) with N =
9.4 x 10*. Within the m-pulse period, P,(t) is higher than Pgg () and the difference Py, =

fOT P (Pp (t) — PSR(t)) dt corresponds to the energy absorbed by the atomic cloud. In contrast,

P, = f; Pgr (t)dt denotes the SR-field energy emitted by the excited atoms. We should point

out that SR may start before 7,,. The SR efficiency k defined in the main text is then given by
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Kk = P.., /Py, Figure 6d of the main text plots the dependence of k on the atomic number N for
the unexpanded cloud (i.e., [, = 0.87 mm), corresponding to Fig. 4b of the main text. We see
that x goes up as N is increased and is saturated eventually. Curve fitting leads to k =
x (MN)/(1 + nN) with the coupling coefficient y = 0.87 and the single-atom cooperativity
parameter n = 3.6 X 107>, We find that x presented in Fig. 6d of the main text is lower than that
of Fig. 4b in the main text. This is mainly attributed to the difference between the calculated
transverse fibre eigenmodes 1,,,—, . (r) and those propagating in the real fibre. In addition, the
insufficient number of the fibre modes, whose intensity profiles do not peak at the centre of the
fibre core, joining in the atom-light interaction may also reduce the numerically-simulated
efficiency k.

We also calculate the fundamental-mode radiation efficiency k,, where the estimated
coupling efficiencies for different HC-PCF eigenmodes to the single-mode fibre are: 0.60 for
[ (r)|?, 0.33 for |y (r)|?, 0.05 for |ys(r)|2, and 0.00 for others. Figure 6d of the main text

also depicts the numerical results of x, corresponding to Fig. 4b of the main text.
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Supplementary Figure 1 | Transverse Fibre modes. Intensity distribution of different

eff

m=0,1,...8 and confinement loss

coefficients ap—q 1. g derived by using the full-vector finite element method®. The intensity profiles

of ¥, (r), Ys(r) and Yg(r) own the central peaks while that of others minimize at the central point

of fibre cross section.
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Supplementary Figure 2 | N = 9.4 x 10* atoms inside lattice region. (a) Number N,, of atoms in
different lattice sites. The characteristic width of the atomic cloud is [, = 0.87 mm. (b) Histograms
of atomic distributions along x- and y-directions. The characteristic radial radius of the atomic cloud

isSr, = 1.7 um.
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