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Supplementary Note 1. Physical system 

𝑁 88Sr atoms are confined in a one-dimensional (1D) optical lattice (wavelength 𝜆L =

813 nm) formed inside a hollow-core photonic crystal fibre (HCPCF) along the axial direction 

(in the 𝑧-axis). The quantum axis is set by an external magnetic field B0 = (0.14 mT)�̂�𝑥. Here, 

�̂�𝑥 is the unit vector in the direction of the 𝑥-axis. The in-fibre atoms are coupled with the 

superradiant (SR) field 

𝐄SR(r, 𝑧; 𝑡) = (�̂�𝑥 2⁄ )𝐸SR(𝐫, 𝑧; 𝑡)𝑒−𝑖𝜔0𝑡 + (�̂�𝑥 2⁄ )𝐸SR
* (𝐫, 𝑧; 𝑡)𝑒𝑖𝜔0𝑡, (S1) 

via the 𝑆0
1 − 𝑃1

3 (𝑚 = 0) intercombination transition (frequency 𝜔0 = 2𝜋 × 435 THz, 

wavelength 𝜆0 = 2𝜋𝑐 𝜔0⁄  in vacuum, and spontaneous decay rate 𝛾0 = 2𝜋 × 7.5 kHz). 𝑐 is the 

speed of light in vacuum. 𝐫 = 𝑥�̂�𝑥 + 𝑦�̂�𝑦 is the radial coordinate and �̂�𝑦  is the unit vector in the 

direction of the 𝑦-axis. 𝐸SR(𝐫, 𝑧; 𝑡) denotes the complex amplitude of SR field. The linear-

polarization vector of the optical lattice lasers is chosen to fulfil the magic condition1 which 

cancels the light-shift difference between 𝑆0
1  and 𝑃1

3 (𝑚 = 0). The symbol (𝑢, 𝜇) is used to 

label the 𝜇-th atom in the 𝑢-th lattice site. 

The characteristic length of the in-fibre confined atomic cloud along the axial direction is 

𝑙𝑧. In the main text, we only focus on two specific values, i.e., 𝑙𝑧 = 0.87 mm for the unexpanded 

cloud and 𝑙𝑧 = 2.1 mm for the expanded cloud. The corresponding lattice-site numbers 𝑁L are 

then given by 𝑁L = 𝑙𝑧 (𝜆L 2⁄ )⁄ = 2.1 × 103 (unexpanded) and 𝑁L = 5.2 × 103 (expanded). 

Assuming a Gaussian atomic distribution over the optical-lattice region, the number of atoms in 

the 𝑢-th lattice site reaches 

𝑁𝑢 = [𝑁𝜆L (√𝜋𝑙𝑧)⁄ ] exp[− (�̃�𝑢 − �̃�c)2 (𝑙𝑧 2⁄ )2⁄ ], (S2) 

where �̃�𝑢 denotes the central position of the 𝑢-th lattice site in the axial direction and �̃�c is the 

central position of the atomic cloud along the axial direction. Summing 𝑁𝑢 over all lattice sites 

results in the total number of atoms, i.e., 𝑁 = ∑ 𝑁𝑢
𝑁L

𝑢=1 . In the 𝑢-th lattice site, 𝑁𝑢 atoms spread 

within a pancake-shaped potential with the characteristic axial (𝑧-axis) width 𝑙a = 54 nm and 

radial (𝑥 − 𝑦 plane) radius 𝑟a = 1.7 μm and follow the Gaussian distributions 

[1 (𝜋𝑟a
2)⁄ ] exp [− |𝐫(𝑢,𝜇)|

2
𝑟a

2⁄ ]   and   [2 (√𝜋𝑙a)⁄ ] exp [− |𝑧(𝑢,𝜇) − �̃�𝑢|
2

(𝑙a 2⁄ )2⁄ ], (S3) 

in the radial plane and the axial direction, respectively. Here 𝐫(𝑢,𝜇) + 𝑧(𝑢,𝜇)�̂�𝑧 corresponds to the 

spatial position of the (𝑢, 𝜇)-th atom. �̂�𝑧 is the unit vector in the direction of the 𝑧-axis. 
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For the atoms in the same lattice site, the interatomic distance may be shorter than 𝜆0, 

leading to the virtual-photon-mediated resonant dipole-dipole interaction2. In contrast, the 

interaction between two atoms in different lattice sites is weak and negligible because of 

(𝜆L 2⁄ ) > (𝜆0 2𝜋⁄ ). 

Supplementary Note 2. Equations of motion for atoms 

The Hamiltonian describing the coherent atom-light interface and long-range dipolar 

interaction is written as2 

�̂� = ∑ ∑ ℏ𝜔0�̂�(𝑢,𝜇)
† �̂�(𝑢,𝜇)

(𝑢)
𝜇𝑢 + ℏ𝛾0 ∑ ∑ ∑ 𝐺𝑢,(𝜇1𝜇2)�̂�(𝑢,𝜇1)

† �̂�(𝑢,𝜇2)
(𝑢)
𝜇2≠𝜇1

(𝑢)
𝜇1𝑢   

+ ∑ ∑ [−
1

2
𝐷𝐸SR(𝐫(𝑢,𝜇), 𝑧(𝑢,𝜇); 𝑡)�̂�(𝑢,𝜇)

† 𝑒−𝑖𝜔0𝑡 + h. c. ]
(𝑢)
𝜇𝑢 ,                       (S4) 

where the operator associated with the (𝑢, 𝜇)-th atom is defined as �̂�(𝑢,𝜇) =

(| 𝑆0
1 ⟩⟨ 𝑃1(𝑚 = 0)3 |)

(𝑢,𝜇)
, the dipole moment is 𝐷 = (3𝜋ℏ𝜀0𝑐3𝛾0 𝜔0

3⁄ )1 2⁄ , and the symbol 

∑ …
(𝑢)
𝜇  denotes the summation over the atoms in the 𝑢-th lattice site. ℏ is the reduced Planck's 

constant and 𝜀0 is the vacuum permittivity. 𝐸SR(𝐫(𝑢,𝜇), 𝑧(𝑢,𝜇); 𝑡) is the SR-field amplitude at the 

(𝑢, 𝜇)-th atomic position. The parameter 

𝐺𝑢,(𝜇1𝜇2) =
3

4
[−(1 − cos2 𝜃𝑢,(𝜇1𝜇2))

cos 𝛽𝑢,(𝜇1𝜇2)

𝛽𝑢,(𝜇1𝜇2)
  

+(1 − 3 cos2 𝜃𝑢,(𝜇1𝜇2)) (
sin 𝛽𝑢,(𝜇1𝜇2)

𝛽𝑢,(𝜇1𝜇2)
2 +

cos 𝛽𝑢,(𝜇1𝜇2)

𝛽𝑢,(𝜇1𝜇2)
3 )],      (S5) 

characterizes the coherent virtual-photon-mediated dipolar interaction between two atoms (𝑢, 𝜇1) 

and (𝑢, 𝜇2) in the 𝜇-th lattice site. The normalized interatomic distance is given by 𝛽𝑢,(𝜇1𝜇2) =

2𝜋|𝐫(𝑢,𝜇1) − 𝐫(𝑢,𝜇2)| 𝜆0⁄  and the angle between the light-induced-dipole vector (along �̂�𝑥) and 

the (𝐫(𝑢,𝜇1) − 𝐫(𝑢,𝜇2)) vector is 𝜃𝑢,(𝜇1𝜇2). For 𝛽𝑢,(𝜇1𝜇2) < 1, the ~𝛽𝑢,(𝜇1𝜇2)
−3  term plays the 

predominant role, i.e., 𝐺𝑢,(𝜇1𝜇2) ∝ 𝛽𝑢,(𝜇1𝜇2)
−3 . The Heisenberg equation for an arbitrary atomic 

operator �̂� is then expressed as 

𝑑

𝑑𝑡
�̂� = ∑ ∑ (𝑖𝜔0[�̂�(𝑢,𝜇1)

† �̂�(𝑢,𝜇1), �̂�] + 𝑖𝛾0 ∑ 𝐺𝑢,(𝜇1𝜇2)[�̂�(𝑢,𝜇1)
† �̂�(𝑢,𝜇2), �̂�](𝑢)

𝜇2≠𝜇1
)

(𝑢)
𝜇1𝑢   

+ ∑ ∑ (−𝑖
𝐷

2ℏ
𝐸SR(𝐫(𝑢,𝜇), 𝑧(𝑢,𝜇); 𝑡)[�̂�(𝑢,𝜇)

† , �̂�]𝑒−𝑖𝜔0𝑡 + h. c. )
(𝑢)
𝜇𝑢                           

+𝛾0 ∑ ∑ ∑ 𝑅𝑢,(𝜇1𝜇2)(�̂�(𝑢,𝜇1)
† �̂��̂�(𝑢,𝜇2)

(𝑢)
𝜇2

(𝑢)
𝜇1𝑢                                                           
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−
1

2
�̂�(𝑢,𝜇1)

† �̂�(𝑢,𝜇2)�̂� −
1

2
�̂��̂�(𝑢,𝜇1)

† �̂�(𝑢,𝜇2)),                                                       (S6) 

where we have taken into account the dissipative dipolar interatomic coupling characterized by 

the parameter2 

𝑅𝑢,(𝜇1𝜇2) =
3

2
[(1 − cos2 𝜃𝑢,(𝜇1𝜇2))

sin 𝛽𝑢,(𝜇1𝜇2)

𝛽𝑢,(𝜇1𝜇2)
  

+(1 − 3 cos2 𝜃𝑢,(𝜇1𝜇2)) (
cos 𝛽𝑢,(𝜇1𝜇2)

𝛽𝑢,(𝜇1𝜇2)
2 −

sin 𝛽𝑢,(𝜇1𝜇2)

𝛽𝑢,(𝜇1𝜇2)
3 )],      (S7) 

For 𝐫(𝑢,𝜇1) = 𝐫(𝑢,𝜇2), we have 𝑅𝑢,(𝜇1𝜇2) = 1. 

Based on Supplementary eq. S6, one can derive the Heisenberg equations for the 

lowering �̂�(𝑢,𝜇) and population-difference �̂�(𝑢,𝜇) = �̂�(𝑢,𝜇)
† �̂�(𝑢,𝜇) − �̂�(𝑢,𝜇)�̂�(𝑢,𝜇)

†
 operators, i.e., 

𝑑

𝑑𝑡
�̂�(𝑢,𝜇1) = (−

𝛾0

2
− 𝑖𝜔0) �̂�(𝑢,𝜇1) + [−𝑖

𝐷

2ℏ
𝐸SR(𝐫(𝑢,𝜇1), 𝑧(𝑢,𝜇1); 𝑡)𝑒−𝑖𝜔0𝑡  

+𝛾0 ∑ (
𝑅𝑢,(𝜇1𝜇2)

2
+ 𝑖𝐺𝑢,(𝜇1𝜇2)) �̂�(𝑢,𝜇2)

(𝑢)
𝜇2≠𝜇1

] �̂�(𝑢,𝜇1),                         (S8a) 

         
𝑑

𝑑𝑡
�̂�(𝑢,𝜇1) = −𝛾0(�̂�(𝑢,𝜇1) + 1) − 2�̂�(𝑢,𝜇1)

† [−𝑖
𝐷

2ℏ
𝐸SR(𝐫(𝑢,𝜇1), 𝑧(𝑢,𝜇1); 𝑡)𝑒−𝑖𝜔0𝑡 

+𝛾0 ∑ (
𝑅𝑢,(𝜇1𝜇2)

2
+ 𝑖𝐺𝑢,(𝜇1𝜇2)) �̂�(𝑢,𝜇2)

(𝑢)
𝜇2≠𝜇1

]                                               

−2 [𝑖
𝐷

2ℏ
𝐸SR

* (𝐫(𝑢,𝜇1), 𝑧(𝑢,𝜇1); 𝑡)𝑒𝑖𝜔0𝑡                                                           

+𝛾0 ∑ (
𝑅𝑢,(𝜇1𝜇2)

2
− 𝑖𝐺𝑢,(𝜇1𝜇2)) �̂�(𝑢,𝜇2)

†(𝑢)
𝜇2≠𝜇1

] �̂�(𝑢,𝜇1),                         (S8b) 

Defining �̂̃�(𝑢,𝜇) = �̂�(𝑢,𝜇)𝑒𝑖𝜔0𝑡 and taking the quantum average, e.g., 〈�̂̃�(𝑢,𝜇)〉 and 〈�̂�(𝑢,𝜇)〉, we 

arrive at 

𝑑

𝑑𝑡
〈�̂̃�(𝑢,𝜇1)〉 = −

𝛾0

2
〈�̂̃�(𝑢,𝜇1)〉 − 𝑖

𝐷

2ℏ
𝐸SR(𝐫(𝑢,𝜇1), 𝑧(𝑢,𝜇1); 𝑡)〈�̂�(𝑢,𝜇1)〉  

+𝛾0 ∑ (
𝑅𝑢,(𝜇1𝜇2)

2
+ 𝑖𝐺𝑢,(𝜇1𝜇2)) 〈�̂̃�(𝑢,𝜇2)�̂�(𝑢,𝜇1)〉(𝑢)

𝜇2≠𝜇1
,                  (S9a) 

𝑑

𝑑𝑡
〈�̂�(𝑢,𝜇1)〉 = −𝛾0(〈�̂�(𝑢,𝜇1)〉 + 1) + 2𝑖

𝐷

2ℏ
[𝐸SR(𝐫(𝑢,𝜇1), 𝑧(𝑢,𝜇1); 𝑡)〈�̂̃�(𝑢,𝜇1)

† 〉  

−𝐸SR
* (𝐫(𝑢,𝜇1), 𝑧(𝑢,𝜇1); 𝑡)〈�̂̃�(𝑢,𝜇1)〉]                                                         

−2𝛾0 ∑ [(
𝑅𝑢,(𝜇1𝜇2)

2
+ 𝑖𝐺𝑢,(𝜇1𝜇2)) 〈�̂̃�(𝑢,𝜇1)

† �̂̃�(𝑢,𝜇2)〉(𝑢)
𝜇2≠𝜇1

                         

+ (
𝑅𝑢,(𝜇1𝜇2)

2
− 𝑖𝐺𝑢,(𝜇1𝜇2)) 〈�̂̃�(𝑢,𝜇2)

† �̂̃�(𝑢,𝜇1)〉].                                (S9b) 

We further apply the zero-order approximation, for example, 

〈�̂̃�(𝑢,𝜇1)(𝑡)�̂�(𝑢,𝜇2≠𝜇1)(𝑡)〉 ≈ 〈�̂̃�(𝑢,𝜇1)(𝑡)〉〈�̂�(𝑢,𝜇2≠𝜇1)(𝑡)〉, 
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to simplify the mathematical model. The validity of this approximation can be confirmed by 

comparing the computed SR behavior and the experimental results (see below and main text). 

The symbols 𝑠(𝑢,𝜇)(𝑡) and 𝑤(𝑢,𝜇)(𝑡) are used to respectively replace 〈�̂̃�(𝑢,𝜇)(𝑡)〉 and 〈�̂�(𝑢,𝜇)(𝑡)〉.  

Finally, we obtain the equations of motion for the atoms 

𝑑

𝑑𝑡
𝑠(𝑢,𝜇1) = −

𝛾0

2
𝑠(𝑢,𝜇1) − 𝑖 [

𝐷

2ℏ
𝐸SR(𝐫(𝑢,𝜇1), �̃�𝑢; 𝑡)  

+𝑖𝛾0 ∑ (
𝑅𝑢,(𝜇1𝜇2)

2
+ 𝑖𝐺𝑢,(𝜇1𝜇2)) 𝑠(𝑢,𝜇2)

(𝑢)
𝜇2≠𝜇1

] 𝑤(𝑢,𝜇1),                   (S10a) 

𝑑

𝑑𝑡
𝑤(𝑢,𝜇1) = −𝛾0(𝑤(𝑢,𝜇1) + 1) + 2𝑖 [

𝐷

2ℏ
𝐸SR(𝐫(𝑢,𝜇1), �̃�𝑢; 𝑡)  

+𝑖𝛾0 ∑ (
𝑅𝑢,(𝜇1𝜇2)

2
+ 𝑖𝐺𝑢,(𝜇1𝜇2)) 𝑠(𝑢,𝜇2)

(𝑢)
𝜇2≠𝜇1

] 𝑠(𝑢,𝜇1)
∗                                 

−2𝑖 [
𝐷

2ℏ
𝐸SR

* (𝐫(𝑢,𝜇1), �̃�𝑢; 𝑡)                                                                       

−𝑖𝛾0 ∑ (
𝑅𝑢,(𝜇1𝜇2)

2
− 𝑖𝐺𝑢,(𝜇1𝜇2)) 𝑠(𝑢,𝜇2)

∗(𝑢)
𝜇2≠𝜇1

] 𝑠(𝑢,𝜇1),                   (S10b) 

where we have approximated the amplitude 𝐸SR(𝐫(𝑢,𝜇), 𝑧(𝑢,𝜇); 𝑡) at the (𝑢, 𝜇)-th atomic position 

by the value 𝐸SR(𝐫(𝑢,𝜇), �̃�𝑢; 𝑡) at the central position of the 𝑢-th lattice site, i.e., we have assumed 

that 𝐸SR(𝐫(𝑢,𝜇), 𝑧(𝑢,𝜇); 𝑡) does not vary apparently within the length scale of 𝑙a. 

Supplementary Note 3. Equation of motion for SR field 

We now derive the equation of motion for the light field inside the fibre. Applying 

Maxwell's equations, one has 

(𝜕𝐫
2 − 𝑐−2𝜕𝑡

2 + 𝜕𝑧
2)𝐄SR(𝐫, 𝑧; 𝑡) = 𝜇0𝜕𝑡

2𝐏(𝐫, 𝑧; 𝑡). (S11) 

𝜇0 is the vacuum permeability. The medium polarizability is given by 

  𝐏(𝐫, 𝑧; 𝑡) = (�̂�𝑥 2⁄ )𝜒e(𝐫)𝜀0𝐸SR(𝐫, 𝑧; 𝑡)𝑒−𝑖𝜔0𝑡 

+�̂�𝑥𝐷 ∑ ∑ 〈�̂�(𝑢,𝜇)(𝑡)〉𝛿(𝐫 − 𝐫(𝑢,𝜇))𝛿(𝑧 − 𝑧(𝑢,𝜇))(𝑢)
𝜇𝑢 + c. c.,         (S12) 

where 𝜒e(𝐫) is the electric susceptibility of the fibre in the absence of lattice-confined atoms. 

Substituting above expression into Supplementary eq. S11, we are left with 

  [𝜕𝐫
2 − 𝑐−2𝑛2(𝐫)𝜕𝑡

2 + 𝜕𝑧
2]𝐸SR(𝐫, 𝑧; 𝑡)𝑒−𝑖𝜔0𝑡 

= 2𝜇0𝐷𝜕𝑡
2 ∑ ∑ 〈�̂̃�(𝑢,𝜇)(𝑡)〉𝑒−𝑖𝜔0𝑡𝛿(𝐫 − 𝐫(𝑢,𝜇))𝛿(𝑧 − 𝑧(𝑢,𝜇))(𝑢)

𝜇𝑢 .      (S13) 

Here 𝑛(𝐫) = √1 + 𝜒𝑒(𝐫) denotes the refractive-index profile of the fibre’s cross-section. 

In the absence of atoms, one obtains a time-independent equation from (S13), 
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[𝜕𝐫
2 + 𝑛2(𝐫)𝜔0

2 𝑐2⁄ + 𝜕𝑧
2]𝐸(𝐫, 𝑧) = 0, (S14) 

for a general in-fibre light amplitude 𝐸(𝐫, 𝑧). Following the separation of variables procedure, 

Supplementary eq. S14 leads to the 𝑚-th transverse eigenmode 𝜓𝑚(𝐫) with the corresponding 

effective refractive index 𝑛𝑚
eff, i.e., 

[𝜕𝐫
2 + 𝑛2(𝐫)𝜔0

2 𝑐2⁄ ]𝜓𝑚(𝐫)𝑒𝑖𝑛𝑚
eff𝜔0𝑧 𝑐⁄ = (𝑛𝑚

eff𝜔0 𝑐⁄ )
2

𝜓𝑚(𝐫)𝑒𝑖𝑛𝑚
eff𝜔0𝑧 𝑐⁄ ,        (S15a) 

𝜕𝑧
2𝜓𝑚(𝐫)𝑒𝑖𝑛𝑚

eff𝜔0𝑧 𝑐⁄ = −(𝑛𝑚
eff𝜔0 𝑐⁄ )

2
𝜓𝑚(𝐫)𝑒𝑖𝑛𝑚

eff𝜔0𝑧 𝑐⁄ .                                (S15b) 

The normalization condition is given by ∬ 𝜓𝑚
∗ (𝐫)𝜓𝑚′(𝐫)𝑑2𝐫 = 𝛿𝑚,𝑚′. 𝜓0(𝐫) corresponds to the 

Gaussian-like fundamental HE11 mode. Based on 𝜓𝑚(𝐫), the SR amplitude 𝐸SR(𝐫, 𝑧; 𝑡) may be 

rewritten in a superposition form 

𝐸SR(𝐫, 𝑧; 𝑡) = ∑ 𝑓𝑚(𝑧, 𝑡)𝜓𝑚(𝐫)𝑒𝑖𝑛𝑚
eff𝜔0𝑧 𝑐⁄

𝑚 . (S16) 

|𝑓𝑚(𝑧, 𝑡)|2 correspond to the mode weights. Substituting Supplementary eq. S16 into 

Supplementary eq. S13 and using the slowly varying envelope approximation, |𝜕𝑡𝑓𝑚(𝑧, 𝑡)| ≪

𝜔0|𝑓𝑚(𝑧, 𝑡)| and |𝜕𝑧𝑓𝑚(𝑧, 𝑡)| ≪ (𝑛𝑚
eff𝜔0 𝑐⁄ )|𝑓𝑚(𝑧, 𝑡)|, we arrive at 

∑ (𝑛𝑚
eff + 1)[(𝜕𝑧 + 𝑐−1𝜕𝑡)𝑓𝑚(𝑧, 𝑡)]𝜓𝑚(𝐫)𝑒𝑖𝑛𝑚

eff𝜔0𝑧 𝑐⁄
𝑚   

= 𝑖
2𝐷𝜔0

𝜀0𝑐
∑ ∑ 〈�̂̃�(𝑢,𝜇)(𝑡)〉𝛿(𝐫 − 𝐫(𝑢,𝜇))𝛿(𝑧 − 𝑧(𝑢,𝜇))(𝑢)

𝜇𝑢 ,              (S17) 

which further leads to 

           (𝜕𝑧 + 𝑐−1𝜕𝑡)𝑓𝑚(𝑧, 𝑡)  

= 𝑖
2𝐷𝜔0

𝜀0𝑐(𝑛𝑚
eff+1)

∑ ∑ 〈�̂̃�(𝑢,𝜇)(𝑡)〉𝜓𝑚
∗ (𝐫(𝑢,𝜇))𝑒−𝑖𝑛𝑚

eff𝜔0𝑧(𝑢,𝜇) 𝑐⁄ 𝛿(𝑧 − 𝑧(𝑢,𝜇))(𝑢)
𝜇𝑢 .     (S18) 

We integrate Supplementary eq. S18 around the central position �̃�𝑢 of the 𝑢-th lattice site within 

the range of �̃�𝑢 − 𝜆L 4⁄ < 𝑧 < �̃�𝑢 + 𝜆L 4⁄ , 

∫ (𝜕𝑧 + 𝑐−1𝜕𝑡)𝑓𝑚(𝑧, 𝑡)𝑑𝑧
𝑧𝑢+𝜆L 4⁄

𝑧𝑢−𝜆L 4⁄
= 𝑓𝑚(�̃�𝑢 + 𝜆L 4⁄ , 𝑡) − 𝑓𝑚(�̃�𝑢 − 𝜆L 4⁄ , 𝑡)  

+𝑐−1𝜕𝑡 ∫ 𝑓𝑚(𝑧, 𝑡)𝑑𝑧
𝑧𝑢+𝜆L 4⁄

𝑧𝑢−𝜆L 4⁄
.                          (S19) 

and obtain 

  𝑓𝑚(�̃�𝑢 + 𝜆L 4⁄ , 𝑡) = 𝑓𝑚(�̃�𝑢 − 𝜆L 4⁄ , 𝑡) 

+𝑖
2𝐷𝜔0

𝜀0𝑐(𝑛𝑚
eff+1)

∑ 𝑠(𝑢,𝜇)(𝑡)𝜓𝑚
∗ (𝐫(𝑢,𝜇))𝑒−𝑖𝑛𝑚

eff𝜔0𝑧(𝑢,𝜇) 𝑐⁄(𝑢)
𝜇 .    (S20) 

In deriving Supplementary eq. S20 we have substituted 𝑠(𝑢,𝜇)(𝑡) for 〈�̂̃�(𝑢,𝜇)(𝑡)〉 and omitted the 

term 𝑐−1𝜕𝑡 ∫ 𝑓𝑚(𝑧, 𝑡)𝑑𝑧
𝑧𝑢+𝜆L 4⁄

𝑧𝑢−𝜆L 4⁄
 in Supplementary eq. S19 since its effect is negligible in the 
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slowly varying envelope approximation. Further, the 𝑒−𝑖𝑛𝑚
eff𝜔0𝑧(𝑢,𝜇) 𝑐⁄  term in Supplementary eq. 

S20 may be approximated as 𝑒−𝑖𝑛𝑚
eff𝜔0𝑧𝑢 𝑐⁄  due to the fact 𝜔0𝑙a 𝑐⁄ ≪ 1. Defining 𝑓𝑢,𝑚(𝑡) =

𝑓𝑚(�̃�𝑢 − 𝜆L 4⁄ , 𝑡)𝑒𝑖𝑛𝑚
eff𝜔0(𝑧𝑢−𝜆L 4⁄ ) 𝑐⁄ , one has 

  𝑓𝑢+1,𝑚(𝑡)𝑒−𝑖𝑛𝑚
eff𝜔0(𝜆L 4⁄ ) 𝑐⁄ = 𝑓𝑢,𝑚(𝑡)𝑒𝑖𝑛𝑚

eff𝜔0(𝜆L 4⁄ ) 𝑐⁄   

+𝑖
2𝐷𝜔0

𝜀0𝑐(𝑛𝑚
eff+1)

∑ 𝑠(𝑢,𝜇)(𝑡)𝜓𝑚
∗ (𝐫(𝑢,𝜇))(𝑢)

𝜇 ,                (S21) 

where we have used the relation �̃�𝑢+1 − �̃�𝑢 = 𝜆L 2⁄ . From Supplementary eq. S21 one may solve 

the time-evolved SR amplitude 𝐸SR(𝐫, �̃�𝑢 − 𝜆L 4⁄ ; 𝑡) = ∑ 𝑓𝑢,𝑚(𝑡)𝜓𝑚(𝐫)𝑚  at the spot of 

[𝐫 + (�̃�𝑢 − 𝜆L 4⁄ )�̂�𝑧].  

𝐸SR(𝐫, �̃�𝑢=1 − 𝜆L 4⁄ ; 𝑡) (𝑢 = 1 denotes the first lattice site) is determined by the input 

pump-field amplitude 𝐸p(𝐫, 𝑡) which is linearly polarized in the 𝑥-direction. In experiment, 

𝐸p(𝐫, 𝑡) is a 𝜋-pulse with a duration 𝜏p = 500 ns. Applying the slowly varying envelope 

approximation, the SR amplitude at the central position of the 𝑢-th lattice site may be 

approximated as 𝐸SR(𝐫, �̃�𝑢; 𝑡) = ∑ 𝑓𝑢,𝑚
(1 2⁄ )

𝜓𝑚(𝐫)𝑒𝑖𝑛𝑚
eff𝜔0𝑧𝑢 𝑐⁄

𝑚  with 

2𝑓𝑢,𝑚
(1 2⁄ )

= 𝑓𝑢,𝑚(𝑡)𝑒𝑖𝑛𝑚
eff𝜔0(𝜆L 4⁄ ) 𝑐⁄ + 𝑓𝑢+1,𝑚(𝑡)𝑒−𝑖𝑛𝑚

eff𝜔0(𝜆L 4⁄ ) 𝑐⁄ . (S22) 

𝐸SR(𝐫, �̃�𝑢=𝑁L+1 − 𝜆L 4⁄ ; 𝑡) corresponds to the SR field output from the fibre. For simplicity, in 

the following we use the symbol 𝐸SR(𝐫, 𝑡) to denote the amplitude of the output SR. 

Supplementary Note 4. Multiple transverse modes 

The HCPCF used in experiment supports multimode propagation. For the convenience here 

we apply the scalar wave approximation to the linearly polarized mode classification, LP𝑙,𝜇. 𝑙 and 

𝜇 are the indices corresponding to the azimuthal and radial field variation, respectively. Thus, the 

HE11 mode is labelled as LP01. The fibre guides via Inhibited Coupling mechanism3. Consequently, 

its modes are leaky and suffer of confinement loss. Confinement loss coefficient quantifies the 

fraction of power lost by the mode due to the leakage in the fibre cladding per unit of length. 

Supplementary Figure 1 lists the numerically simulated (using a full-vector finite element method3) 

mode intensity profiles of the first nine lowest-loss guided modes of the HCPCF along with their 

respective effective refractive indices 𝑛𝑚=0,1,…,8
eff  and confinement loss coefficients 𝛼𝑚=0,1,…,8. The 

results show that the LP01 mode has the lowest confinement loss of ~0.01 dB m−1 at 813 nm while 

the LP02 mode suffers the highest loss of 4 dB m−1. The fundamental LP01 mode has a beam radius 
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𝑤0 = 11.8 m, showing a good matching with the pump field, i.e., 𝐸p(𝐫, 𝑡) ∝ 𝜓0(𝐫)𝑒−𝑖Δp𝑡 (Δp =

𝜔p − 𝜔0 is the detuning and 𝜔p is the pump-field frequency). 

To keep our computation load to a reasonable level for solving our equations of motion, 

we limit the number of transverse modes to a maximum of 9, i.e., to the ones shown in 

Supplementary Fig. 1. It is noteworthy that when choosing the most dominant modes in the SR 

dynamics, both the loss of the fibre modes and their coupling strength with the atomic cloud 

have been taken into account: (i) Indeed, for the fibre modes with the comparable confinement 

losses, the modes, whose intensity distributions show a maximum at the centre of the fibre cross 

section (i.e., LP0,𝜇), have the stronger coupling strength with the atomic cloud than those whose 

intensity distributions have a zero at the centre of the fibre core (i.e., LP𝑙,𝜇 with 𝑙 > 0); and (ii) 

The confinement loss increases with high orders 𝑙 and 𝜇. Consequently, the atoms hardly interact 

with the modes, whose intensity distributions peak at the central point of the fibre core but have 

the peak diameters smaller than 2𝑟a or do not have central peaks at all.  

Supplementary Note 5. Numerical simulation 

The time evolution of the whole system can be numerically simulated based on 

Supplementary eq. S10a, S10b and S21 via the fourth-order Runge-Kutta technique. The spatial 

positions of 𝑁 atoms are randomly generated according to [(𝑁𝜆L) (√𝜋𝑙𝑧)⁄ ]𝑒−(𝑧𝑢−𝑧c)2 (𝑙𝑧 2⁄ )2⁄  and 

the Gaussian distributions of (𝜋𝑟a
2)−1 exp [− |𝒓(𝑢,𝜇)|

2
𝑟a

2⁄ ] in the radial plane and 

[2 (√𝜋𝑙a)⁄ ] exp [− |𝑧(𝑢,𝜇) − �̃�𝑢|
2

(𝑙a 2⁄ )2⁄ ] in the axial direction (see Supplementary Fig. 2a and 

2b). For the 𝑢-th lattice site, the average on-site atomic density is 

𝜌𝑢 = 𝑁𝑢 (𝜋𝑟a
2𝑙a)⁄ = 𝜌(2 √𝜋⁄ ) exp[− (�̃�𝑢 − �̃�c)2 (𝑙𝑧 2⁄ )2⁄ ], (S23) 

where we have defined the atomic density 𝜌 = 𝑁a (𝜋𝑟a
2𝑙a)⁄  averaged over the whole lattice 

region with the averaged on-site atomic number 𝑁a = 𝑁 𝑁L⁄ . 

Our numerical simulation well reproduces the ringing behaviour observed in experiment. 

The raw heterodyne signal �̃�cal(𝑡) described in Fig. 5a of the main text is given by �̃�cal(𝑡) ∝

Re [𝑒−𝑖Ω0𝑡 ∬ 𝐸LO(𝐫)𝐸SR

′
(𝐫, 𝑡)𝑑2𝐫], where Re[… ] is the real part and Ω0 = 𝜔0 − 𝜔LO. 𝐸LO(𝐫) 

and 𝜔LO are the amplitude and frequency of the local optical oscillator. The amplitude 𝐸SR

′
(𝐫, 𝑡) 

corresponds to the SR field propagating in the single-mode fibre (shown in Fig. 1c of the main 



SUPPLEMENTARY INFORMATION 

 8 / 11 

text) and is given by 𝐸SR

′
(𝐫, 𝑡) = [∬ 𝜙0

∗(𝐫)𝐸SR(𝐫, 𝑡)𝑑2𝐫]𝜙0(𝐫). Here 𝜙0(𝐫) =

√2 (𝜋�̃�0
2)⁄ 𝑒−|𝐫|2 �̃�0

2⁄  is the Gaussian-like ground mode of the single-mode fibre with the beam 

radius of �̃�0 = 0.4𝑤0. The band-pass filter removes the unwanted rapid varying component in 

�̃�cal(𝑡), leading to the amplitude 𝑉cal(𝑡). Figure 5a of the main text shows the numerical result 

𝑉cal(𝑡) that corresponds to the experimental result 𝑉RF(𝑡) shown in Fig. 2a of the main text. It is 

seen that the theoretical result is consistent with the experimental measurement, proving the 

validity of the approximation 〈�̂̃�(𝑢,𝜇1)(𝑡)�̂�(𝑢,𝜇2≠𝜇1)(𝑡)〉 ≈ 〈�̂̃�(𝑢,𝜇1)(𝑡)〉〈�̂�(𝑢,𝜇2≠𝜇1)(𝑡)〉, i.e., the 

effect of quantum correlation on the SR behavior is negligible. Supplementary Movie 1 also 

displays an example time evolution of SR for the unexpanded atomic cloud with 𝑁 = 9.4 × 104. 

The patterns of SR intensity (∝ |𝐸SR(𝐫, 𝑡)|2) at several selected times are displayed in Fig. 5b of 

the main text. The dependence of the decay rate 𝛾bw  of the first SR burst on the atom number 𝑁 

can be also derived from our simulation as shown in Fig. 5c. 

One may further extract the frequency shift ΔSR = 𝜔SR − 𝜔0 of the SR central frequency 

𝜔SR  relative to the atomic transition 𝜔0 from the SR spectrum 𝑆(𝜔) ∝

|∫ [∬ 𝐸SR(𝐫, 𝑡)𝑑2𝐫]𝑒𝑖(𝜔−𝜔0)𝑡𝑑𝑡
∞

𝜏p
|

2

. The resulting 𝑆(𝜔) is depicted in Fig. 6a of the main text, 

where the spectrum peak is red shifted from the atomic resonance 𝜔0 by ~2𝜋 × 152 kHz. 

However, this frequency shift also includes the offset frequency ~2𝜋 × 54 kHz of the envelope 

varying. Consequently, the SR (carrier) frequency shift ΔSR is equal to −2𝜋 × 98 kHz, which 

reasonably agrees with the experimental results in Fig. 3d of the main text. The numerically-

derived dependence of ΔSR on the atomic density 𝜌 is shown in Fig. 6b of the main text. 

From the simulation results, one can further compute the superradiance efficiency. The 

total power of the pump field is given by 𝑃p(𝑡) ∝ ∬|Ep(r, 𝑡)|
2
𝑑r while the total power of the SR 

field output from the fibre is 𝑃SR(𝑡) ∝ ∬|ESR(r, 𝑡)|2𝑑r. Figure 6c of the main text shows the 

time-dependent 𝑃p(𝑡) and 𝑃SR(𝑡) for the unexpanded atomic cloud (𝑙𝑧 = 0.87 mm) with 𝑁 =

9.4 × 104. Within the 𝜋-pulse period, 𝑃p(𝑡) is higher than 𝑃SR(𝑡) and the difference 𝑃ab =

∫ (𝑃p(𝑡) − 𝑃SR(𝑡)) 𝑑𝑡
𝜏p

0
 corresponds to the energy absorbed by the atomic cloud. In contrast, 

𝑃em = ∫ 𝑃SR(𝑡)𝑑𝑡
∞

𝜏p
 denotes the SR-field energy emitted by the excited atoms. We should point 

out that SR may start before 𝜏p. The SR efficiency 𝜅 defined in the main text is then given by 
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𝜅 = 𝑃em 𝑃ab⁄ . Figure 6d of the main text plots the dependence of 𝜅 on the atomic number 𝑁 for 

the unexpanded cloud (i.e., 𝑙𝑧 = 0.87 mm), corresponding to Fig. 4b of the main text. We see 

that 𝜅 goes up as 𝑁 is increased and is saturated eventually. Curve fitting leads to 𝜅 =

𝜒 (𝜂𝑁) (1 + 𝜂𝑁)⁄  with the coupling coefficient 𝜒 = 0.87 and the single-atom cooperativity 

parameter 𝜂 = 3.6 × 10−5. We find that 𝜅 presented in Fig. 6d of the main text is lower than that 

of Fig. 4b in the main text. This is mainly attributed to the difference between the calculated 

transverse fibre eigenmodes 𝜓𝑚=0,…,8(r) and those propagating in the real fibre. In addition, the 

insufficient number of the fibre modes, whose intensity profiles do not peak at the centre of the 

fibre core, joining in the atom-light interaction may also reduce the numerically-simulated 

efficiency 𝜅. 

We also calculate the fundamental-mode radiation efficiency 𝜅0, where the estimated 

coupling efficiencies for different HC-PCF eigenmodes to the single-mode fibre are: 0.60 for 

|𝜓0(r)|2, 0.33 for |𝜓5(r)|2, 0.05 for |𝜓5(r)|2, and 0.00 for others. Figure 6d of the main text 

also depicts the numerical results of 𝜅0 corresponding to Fig. 4b of the main text. 
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Supplementary Figure 1 | Transverse Fibre modes. Intensity distribution of different 

𝜓𝑚=0,1,…,8(𝐫) fibre modes and their effective refractive indices 𝑛𝑚=0,1,…,8
eff  and confinement loss 

coefficients 𝛼𝑚=0,1,…,8 derived by using the full-vector finite element method3. The intensity profiles 

of 𝜓0(𝐫), 𝜓5(𝐫) and 𝜓8(𝐫) own the central peaks while that of others minimize at the central point 

of fibre cross section. 
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Supplementary Figure 2 | 𝑁 = 9.4 × 104  atoms inside lattice region. (a) Number 𝑁𝑢 of atoms in 

different lattice sites. The characteristic width of the atomic cloud is 𝑙𝑧 = 0.87 mm. (b) Histograms 

of atomic distributions along 𝑥- and 𝑦-directions. The characteristic radial radius of the atomic cloud 

is 𝑟a = 1.7 μm. 

 


