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SUPPLEMENTARY NOTE 1: PROPAGATOR AND GREEN’S FUNCTION FORMALISM, REVIEW OF
LIGHT PROPAGATION IN RANDOM MEDIA AND LINK WITH RANDOM NEURAL NETWORKS

We first review the Green function formalism[1] [2–4], which shows the way light propagation in a complex medium
is mapped to a neural network (NN) model.

We follow [3], and adopt the Dirac notation formalism which is handy for classical vectorial waves. This notation
is detailed in the book by Economou [2]. The field scattered by a random medium is |E⟩ = K|Ein⟩, where |Ein⟩ is the
incident field and K = 1−Ges is a generalized propagator, [5] 1 is the identity operator, and the Green function G
is such that

(D + e)G = 1. (1)

In equation (1), D(r) = −∇×∇×, and e = eb + es is the operator given in terms of the position representation

⟨r|e|r′⟩ = k20ε(r)δ(r− r′) (2)

associated to the relative permittivity ε(r) = εb(r) + εs(r), where εb(r) = 1 is the permittivity of the homogenous
background medium and 1 + εs(r) is the relative permittivity of the scattering medium.

In the position representation, r the propagator reads

⟨r|K|r′⟩ = δ(r− r′)− k20ε(r
′)⟨r|G|r′⟩, (3)

and its matrix elements are

kmn = ⟨m|K|n⟩, (4)

where |n⟩ corresponds to input/output eigenmodes, or “channels”, as detailed in [3].

Transmission through disordered media as a random NN layer

Given the input field |Ein⟩, one can choose a basis representation, such that the input is represented by a vector Ein
n

with n = 1, ..., N . As the input SLM is set in the Fourier input plane, each n is a different plane wave corresponding
to each segment in the SLM. The SLM pixels are grouped in a number N of segments and, as also detailed below,
the SLM and the related Fourier-transforming optics act as an optical convolutional NN layer. As the total field in
the presence of the scatterer is |E⟩ = K|Ein⟩, one can represent the trasmission through the system by the matrix
elements kmn, such that letting En = ⟨n|E⟩

Em =

N∑
n=1

kmnE
in
n (5)

Equation (5) can be represented as in Supplementary Figure 1a: to the input mode with amplitude Ein
n is associated

the input node n, for the output node with amplitude Em we have the output node m and the link is weighted by the
coefficient kmn. A schematic representation of the overall network is in in Supplementary Figure 1b, with x denoting
the input vector with components xn = Ein

n and n = 1, 2, ..., N ; y is the output vectors, with components yn = En

and n = 1, 2, ..., N .

The effect of the perturbations by external stimuli

In the presence of the perturbation, the perturbed propagator is

K′ = 1−G′e′ (6)

with G′ the perturbed Green’s function such that

(D + eb + es + e′)G′ = 1, (7)

and e′ is the operator associated to the perturbed permittivity ∆ε(r), where ε(r) = εb(r) + εs(r) +∆ε(r) is the total
relative permittivity.
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Supplementary Figure 1. Representing light propagation in a random medium as a layer of a neural network with random
coefficients. (a) Dense layer representing Eq. 5 in Supplementary Note 1. The components of the electric field Ein

1,2,...,N are the
label sof the inputs. The elements of the trasmission matrix kmn are the weights. The components of the transmitted field Em

are the output labels. (b) Representation of the random layer.

The field in the presence of perturbation |E′⟩ can be then expressed in terms of the state without perturbation |E⟩
and the input state |Ein⟩ as operator multiplication

|E′⟩ = K′|E⟩ = K′K|Ein⟩. (8)

Correspondingly, the transmission matrix elements kPmn in the presence of the nonlinear perturbation is written as a
matrix multiplication

k(P)
mn =

N∑
q=1

k′mqkqn. (9)

To simplify the notation, we omit in the following the sum over repeated indices, and Eq. (9) reads

k(P)
mn = k′mqkqn. (10)

In addition, we introduce a tensorial notation by using a three index tensor kmnq, such that

kmn1 = kmn, (11)

, and

kmn2 = k(P )
mn (12)
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. This notation is useful when one has many layers, and each layer corresponds to a different value of the third index
q. In this notation, Eq. (9) reads

kmn2 = k′mqkqn1. (13)

By using (6), the element of the rotation matrix k′mq is written as

k′mq = δmq + wmq, (14)

with δmq the Kronecker symbol and the perturbation elements

wmq = −⟨m|G′e′|q⟩. (15)

The element of the perturbed matrix can then be written as

kmn2 = kmn1 + wmqkqn1 = kmn1 + wm1k1n1 + ...+ wmNkNn1. (16)

Eq. (16) is graphically represented in Supplementary Figure 2, and can be interpreted as follows: in the absence
of perturbation, light is channelled - with amplitude kmn - from the channel n to the channel m, see Supplementary
Figure 2a. In the presence of the perturbation, further contributions arise from other channels. For example, the light
channeled from n to 1 with amplitude k1n also contributes to the signal in the channel m with amplitude w1m, see
Supplementary Figure 2b.

This may be described by stating that any perturbation add further channels for light by scattering from one un-
perturbed channel to another or, in terms of NNs, this corresponds to a new layer whose weights wmn are proportional
to the strength of the perturbation. This is sketched in Supplementary Figure 3: in the presence of the perturbation,
the input signal x activates an hidden layer with state vector h(1) and elements hm1, such that

hm1 = kmn1xn; (17)

and the hidden layer activate the output layer as

ym = k′mqhq1 = k′mqkqn1xn = kmn2xn. (18)

SUPPLEMENTARY NOTE 2: LAYERS OF THE RANDOM OPTICAL MACHINE

We detail in the following the internal architecture of the random optical machine (ROM).

The layers

Following the main manuscript, the scheme of the “training configuration” is detailed in the Supplementary Figure 4.
The beam amplitudes at the SLM segments Ai are the inputs, and the cost function is obtained by the output of a
convolutional layer applied to the average intensities yi at the CCD segments. We detail in the following the different
layers.

• The SLM and the optical setup form an optical convolutional layer.

In a convolutional layer, a sliding window filter scans an input image to extract a number of output segments
smaller than the number of pixels. According to the number of pixels and adopted segments the input N ×M
maps is convoluted with a K×K filter. [6] The number of segments, and correspondingly the size of the pooling
filter is a hyperparameter of the network.

In our optical setup, The SLM is located in the Fourier plane, and spatially samples the Fourier transform of
the laser beam E(x, y), denoted as Ẽ(kx, ky), into a matrix of pixels 1024 × 768. The matrix is divided into
segments forming a smaller matrix with size 72× 72. The light intensity at the ij SLM segment is Aij . The set
of the Aij is the input to the direct network. In the following, we use a single index for the matrix elements to
simplify the notation An.

For each segment, the SLM action is mathematically described by a transfer function Hn(kx, ky), which is a
window with the size of the segment n and zero outside.
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Supplementary Figure 2. Schematics of the effect of the perturbation in the artificial neural network. (a) Unperturbed
transmission linking input channel n, and the output channel m. (b) In the presence of the perturbation, new links are created
and all the channel in addition to the channel n contribute to the output m, see Eq. (18) in Supplementary Note 1. (c) As
in (b) an equivalent representation of Eq. (18) in Supplementary Note 1. Note that the internal layer indeces (gold) refer to

the hidden state variable h(1). kmn are the weights corresponding to the components of the unperturbed transmission matrix.
wmn are the weights due to the nonlinear perturbation as in Eq.15 of the Supplementary Note 1.
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Supplementary Figure 3. Synthetic representation of the effect of any perturbation to the input and output vector, through
the formation of a hidden layer, with state vector h(1).

For a phase-modulation SLM, Hn includes a phase shift wn.

After the SLM the fields propagate to the sample and is again Fourier transformed by optical propagation and
the imaging system we use (lenses, microscope objective, see the setup in Fig. 2 of the main manuscript). The
overall optical setup hence realizes a convolution, with a set of weights wn and hyperparameters given by the
size and the number of the segments of the SLM (in our case this is chosen to be 72× 72).

In the corresponding mathematical model of the NN, the action of the SLM layer on the input vector An is
furnishing an output value (within an inessential multiplicative factor due to the attenuation of the beam in the
optical setup)

h(1)
m = Ane

ıwn (19)

• Transmission in the random medium as deep reservoir computing.

In reservoir computing (RC), a large part of the network is left untrained and random, and training occurs only
at the input and the readout. Various paradigms have been developed and applied, also in the field of photonics.
RC has the strategic advantage of avoiding training entire huge networks, and can be implemented with random
media.

In very recent years, the paradigm of “deep reservoir computing”, is emerging. Examples include the so-
called deep state networks, and related investigations. [7, 8] Notably, this deep architecture may also have linear
layers in the presence of unidirectional flow. [9]

As discussed above the transmission through the random medium is described by a random matrix. Any
perturbation adds a further internal layer in the reservoir.

In our case, we have two parameters; one is the pump of the IR laser beam and the other is the amount of
chemotherapy. We do not train the deep internal layers of the reservoir, but switch them on/off by controlling
the external stimuli.

We also remark that the fact that the flow of information is unidirectional qualifies this as a “deep convolutional
layer.” Indeed some channels are lost because of the scattering through the random medium. In other words,
inverting information flow, does not produce the same input, as the channels retained output (those included in
the numerical aperture of the collecting optics) does not contain all the input light.

• CCD camera as an electronic convolutional NN pooling layer.

The optical field is imaged in the CCD camera, which returns a matrix with size 1280×1024. The CCD camera
makes the modulus square of the field, hence performs a nonlinear operation. Then we use a pooling layer,
which is a special class of convolutional NNs, and map the CCD image into 72×72. Each element of the reduced
matrix is an average of the number of the CCD matrix pixels entering the CCD segment. The output of this
layer is a vector g with length equal to the number of the CCD segments.
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Supplementary Figure 4. Schematics of the Random Optical Machine (ROM) in the training configurations. The various
parameters are optimized to retrieve as output a specific biophysical quantity (e.g., the metabolism), validated by conventional
optical techniques. The optical layers are formed by the laser beam (input) and the spatial light modulator (optical convolutional
layer). The 3D Tumor Model (3DTM) is the biophysical random computing reservoir. The Charge-Coupled Device (CCD)
camera acts as an electronic pooling layer and the Extreme Learning Machine (ELM) readout converts the signal in relevant
measurements, as the response time and the metabolism. The corresponding mathematical expressions of the ROM states are
also indicated. The network can be continuously retrained to follow the dynamics of the 3DTM on slow time scales. In the
bottom panels, external perturbations on the 3DTM, such as infrared (IR) laser pumping and chemotherapy, introduce further
random layers and change the computing reservoir.

• Readout layer and the extreme learning machine.
The readout layer is made by software and has output a combination of the intensity at the CCD segments gi.

y =
∑
m

βmgm(x) (20)

The coefficients of the combination βm fix the number of the output layers as in the “extreme learning machine”.
In the extreme learning machine, the number of output is trained to achieve a given functionality. [10] In the
case we need a single input at the segment m, we fix βn = 0 for n ̸= m. For optimizing two or more spots, we
set the two corresponding βs as different from zero.

• Cost function.
For a single spot target, we maximize f = y21 , for two spots we maximize f = (β1y1 + β1y2)

2, and so on.

Validation of the trained ROM by comparison with conventional optical techniques

Once the network is trained, the transmitted light is maximized and this directly provides information on metabolism
and other physical properties.

We use the network to retrieve information about the thermal response and the effect of chemotherapy. As de-
tailed in the main manuscript, the thermal response is specifically relevant for applications in tumour treatments by
hyperthermia, and to determine the thermo-responsivity of cells. The chemotherapy response is critical for assess-
ing the minimal drug amount, which is effective on 3DTM metabolism. Supplementary Figure 5 shows the inverse
configuration for the ROM, with details on the parameter organization.
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Supplementary Figure 5. Schematics of the artificial neural network in the validation configuration. The input of the network
is the perturbation, as the amount of chemotherapy or the power for laser heating. The network furnishes information on the
way this input affect the metabolism; for example, to assess the role of the chemotherapy on the tumor growth. The internal
part of the network is the tumor model, the Spatial Light Modulator phase profile (SLM weights), and the laser. This is
followed by the detection, formed by the Charge-Coupled Device (CCD), the pooling of the CCD image into section, and the
readout, which perfomrs a weighted sum of the output channels. The inset describes the role of the various parameters of
the network,the placeholders are input and output, the weights are the SLM and laser parameters. The hyperparameters are
optimized to improve the response of the systems.

As inputs, one has the temperature and the chemotherapy (detailed below), the output here correspond to single
focus-spot, which is enough to retrieve information about the thermal response. More complex output functions
may be conceived, for example, to discriminate heterogeneity in the 3DTM evolution and response, which will be
considered in future work.

By comparison with conventional optical imaging (COI), we show in the main manuscript that the ROM retrieves
the thermal response time and the metabolisms in a way that outperforms COI.

We report in the following more details on the measurement of the thermal response and of the metabolism.

SUPPLEMENTARY NOTE 3: ROM DETECTION OF LASER-INDUCED HYPERTHERMIA:
EXTENDED RESULTS

Additional results when the tumour spheroid is perturbed with the infrared pump laser to induce hyperthermia are
reported in Supplementary Figure 6. Infrared laser-induced temperature variations in brain tissue are very relevant
for many applications, as imaging and cancer studies. According to the literature,(refs. 29-31 of the main manuscript)
a temperature variation of the order of 10◦ C induces irreversible changes. We hence limit our IR pump laser power
inside the cell (i.e., after reflection of the pump lasers by the sample container and input optics) to the order of 0.1 W,
for time intervals of the order of 1000 s, which corresponds to a total irradiation energy of maximum 100 J , which
transferred to a 1 cm3 of water containing the glioblastoma spheroid induces a temperature variation of the order
of 10◦ C. The evolution of the output single-point target as the cancer spheroid changes morphology over time is
shown in Supplementary Figure 6a. Since no recurrent training is present, the bio-photonic machine cannot anymore
synthesize the function, and the whole output intensity distribution decorrelates. The machine functionality can be
maintained if the recurrent training is active during the morphodynamics. The output distribution detected with this
recurrent approach is reported in Supplementary Figure 6b for pump powers (before entering the sample container)
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P = 0.6 W, respectively. As a result of the adaptive machine process, the intensity in the target is maintained
almost constant during the pumping stage. To quantify variations in the output function under pumping for the case
with fixed (Supplementary Figure 6a) and continuously-adjusted weights (Supplementary Figure 6c), we compute the
statistical overlap between the unperturbed intensity distribution and the evolving ones:

overlap(t) =

∑
t

∑
y I0(t)It(y)∑

t

(√∑
y I0(y)

2
)(√∑

y It(y)
2
) , (21)

where It(y) is the output intensity y−distribution detected at time t. As shown in Supplementary Figure 7d,
the transmitted light spatially decorrelates when hyperthermia is induced by the infrared pump beam. However,
this decorrelation is partially compensated by the recurrent learning process, which fixes the output function in the
proximity of the target area. The overlap decay strongly depends on the intensity of the IR beam. From the minimum
of the decorrelation function, we can estimate the typical response time as a function of the pump power (see Fig. 4,
main manuscript). We find that the induced morphological change in the cancer spheroid occurs as fast as the power
of infrared beam increases. Further experiments are performed also varying the exposure time at fixed powers.

SUPPLEMENTARY NOTE 4: ROM TRACKING OF TUMOUR GROWTH: EXTENDED RESULTS

When living tumour cells are employed as a reservoir of the optical NN, the machine output strongly depends on time
through the natural growth of the cancer spheroid. We track the system evolution repeating experiments at different
waiting times from the moment in which the tumour spheroid is removed from its growth environment. For the living
machine output (recurrent training on) reported in Supplementary Figure 7a. The waiting time is approximately
110 min, and the evolution is tracked for 105 min. We observe that the efficiency of the operation improves, that
is, the intensity in the single-point target increases with time. Specifically, we define the time-dependent operation
enhancement

η(t) =
Itarget(t)

⟨I0⟩
(22)

where ⟨I0⟩ is the spatially-averaged transmitted intensity before the training. As reported in Supplementary Fig-
ure 6b, the enhancement probability distribution function (PDF) changes during the evolution in Supplementary
Figure 7a, with the mean value η̄ sharply passing to a larger value. The same behavior is observed for living cells
under the cytotoxic action of the chemotherapeutic drug, as reported in Supplementary Figure 7c for CIS 80 µg/ml
pharmacological treatment and waiting time 180 min. In this case, the apoptotic effect of the cisplatin results in
an output signal with reduced intensity. We can extract quantitative information on the internal tumour dynamics
considering the evolution of η, which reflects the interplay between changes occurring in the reservoir and recurrent
learning of the machine. The enhancement predicted at large N for our approach is (Ref. 22, main manuscript):

η̄ =
TP

2titer
(23)

where titer is the algorithm iteration time (titer = 0.22 s in our experiment) and TP is the so-called persistence time,
here indicating the typical time scale on which variations of the disordered 3D cell structure occur. For living spheroids,
it signals how the internal motion gradually slow down (blue dots in Supplementary Figure 7d) due to the reduced
mobility and size growth of the tumour out of its optimal controlled environment. When the chemotherapeutic drug
is introduced, the measured persistence time signals a fast cellular death (red dots in Supplementary Figure 7d) that
becomes less efficient on time. More importantly, after several hours from the treatment, the internal action of the
drug is still detectable.

SUPPLEMENTARY NOTE 5: TRAINING ALGORITHM, DISCUSSION

We describe in the methods of the main manuscript the adopted training algorithm. Alternative strategies may be
envisaged. A class of algorithms that is well suited for the present optical implementation, where we train the input
layer, is those of genetic algorithms, which have also been exploited for optical pattern recognition. The basic idea
when applied to our setting is to create a population of initial phase masks and rank them according to the measured
cost function on the output plane. At each iteration, these phase masks are optimized through breeding and mutation
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Supplementary Figure 6. Photonic neural network output for tumor spheroids under hyperthermia. Evolution of the machine
output under tumour pumping with power P ; panels a,b,c show the intensity profile in arbitrary units on the CCD camera
pixel in the y-direction versus time : (a) P = 0.3 W and (b) P = 0.6 W for (a) static input weights and (b,c) recurrent training.
(d) Correlation overlap of the whole evolving output intensity distribution for different pump powers. The minimum in the
correlation overlap [Eq. (21) of Supplementary Note 4] indicates the response time (see Fig. 4d of the main manuscript).

operations. Specifically, offspring is created by random combinations with random weights; they are ranked and added
within the existing population through a generational method until a satisfactory solution is achieved. This kind of
algorithm has been proven to be particularly advantageous in low signal-to-noise environments[11]. However, they
require an extremely large number of calls to the output plane and, considering that our purpose is not to optimize
the efficiency, we prefer a more general approach. Concerning other algorithms that operate sequentially, our training
routine has the major advantage of reaching within the lowest possible number of iterations the saturation level in
terms of enhancement of the intensity of the output target. More importantly, for a large number of input nodes N,
the achievable enhancement depends only on the involved time scales, a fundamental property we exploit to probe
the morphodynamics of tumors freely evolving and under chemotherapy. For a fixed spheroid (Fig. 2b of the main
manuscript), same realizations of our training routine give an error in terms of enhancement of the single-point target
within approximately 10%. Residual amplitude modulation constitutes one of the main sources of noise since it
produces unbalanced scattering paths that cannot be completely compensated outside the target region. On the other
hand, an amplitude-only modulation system can be implemented selecting a specific polarization or using a digital
micromirror device. However, for amplitude modulation, the performance in terms of enhancement is expected to be
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Supplementary Figure 7. Evolution of the random optical machine (ROM) output with the living tumor. (a) Output intensity
(arb. units) detected as the cancer spheroid grows in time and (b) corresponding evolution of probability distribution function
of the enhancement η (output efficiency). Initial stage: blue bars; final stage: red bars. (c) Detected target evolution under
chemotherapy. (d) Persistence time as a function of the waiting time for untreated (blue dots) and cisplatin-treated (red dots)
samples. Error bars are the statistical standard deviation over replicated experiments.

lower[12], a fact that in our case would reduce the sensitivity to the cellular dynamics.

SUPPLEMENTARY NOTE 6: SIGNAL-TO-NOISE RATIO BEFORE AND AFTER THE TRAINING

To demonstrate that training the network is an effective way to extract biophysical information from noise, we
report here further measurement concerning the signal-to-noise ratio (SNR). Once optical transmission through the
cancer spheroid is properly trained, the network output gives an optical signal that is extremely sensitive to internal
variations of the multicellular structure. Supplementary Figure 8a (purple line) shows the intensity fluctuations in
time when the laser is optimized to a single focus point. The measure quantifies the noise on the ROM output.
Only minor intensity fluctuations of the target focus are present, these arising from noise sources in the experimental
setup, including the thermal fluctuations of the sample. In the absence of the training, the intensity map is shown
in Supplementary Figure 8, which does not change sensibly when we add the pump laser. On the contrary, the
intensity map in the trained case changes radically when we turn on the pump (Supplementary Figure 8). The signal
in Supplementary Figure 8 also allows excluding different effects such as cell dehydration, mechanical fluctuations of
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Supplementary Figure 8. Analysis of signal-to-noise ratio for the random optical machine (ROM), with and without training.
a) evolution of the intensity fluctuations for: a single trained spot without infra red (IR) pump (purple), without training and
with IR pump ON (blue). a single trained spot with IR pump ON (red). The vertical dashed lines indicate the turning on
and off of the laser (b-d) Output spatial intensity (in the y-direction in the camera, measured in arb. units) for the three cases
reported in panel a: b) a single trained spot without IR pump, c) without training and with IR pump ON. d) a single trained
spot with IR pump ON. Dashed lines correspond to the turning on and off of the laser. Pump power: 1 W.

the biological assembly, laser fluctuations, etc. As shown in Supplementary Figure 8b), the trained output intensity
in the absence of the pump IR laser and recurrent feedback is highly stable over a time scale of several minutes. On
the contrary, as IR pumping is turned on, we find signal variations that are strongly correlated to the pump laser
(Supplementary Figure 8d) The associated internal changes in the tumor spheroid morphology cannot be efficiently
revealed collecting the transmitted light from a fixed untrained input wave. This statement is demonstrated by the
experiments under IR pumping using untrained outputs (Supplementary Figure 8c) and compare the signal to noise
ratio (SNR) characterizing both methods. As reported in Supplementary Figure 8a for P = 1 W, while the target
signal presents a strong variation (red line), the variation of the output signal averaged over the output spatial modes
for a fixed untrained input wave (blue line) is close to the measured noise level (magenta line). For the data set shown
in Supplementary Figure 8, we find SNR = 3.5 and SNR = 19.1 respectively for the untrained and trained case. For
the considered case we find an order of magnitude increase in the SNR ratio.

SUPPLEMENTARY NOTE 7: ABSENCE OF LASER-INDUCED DEHYDRATION AND RELATED
EFFECTS

Optical imaging as in Fig. 5 of the main manuscript (Confocal Microscope, Nikon A1 MP) does not evidence any
effect as dehydration or heating, as they would result in a change of nuclei size or distances. This occurs in all the
experiments we report. The sample is in water solution. Hence no dehydration is expected. We remark that we
do confocal microscopy in the presence of high power IR irradiation of the samples, which is the same condition
in which we also use in the ROM. But optical imaging does not evidence any change. Previous studies [13] report
that a sudden increase of temperature caused by laser irradiation can induce swelling and volume increase of isolated
nuclei in Phosphate Buffer Solution but not of nuclei inside cells. We confirm these findings by aspect ratio and area
measurements reported in Fig. 5 of the main manuscript. We also report in Supplementary Figure 9 further image
analysis showing that correlation analysis of confocal images of spheroids (in Fig. 5, main manuscript) before and
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Supplementary Figure 9. Absence of dehydration and volume change due to infrared (IR) laser irradiation. Colocalization
Analysis performed with Image CorrelationJ Plugin [14] using untreated spheroid as Source Image and the same spheroid after
IR treatment as Target image. a. The Image CorrelationJ plugin generates a correlation map to visualize the local correlation
at each local cell position (mi, nj). After the regression equation estimation (Panel b), for each local pixel area, the difference
between the source and the target images is estimated according to: d = s(mi, nj) − [at(mi, nj) + b] where d is the distance
between the source image and the corresponding estimated value from the regression equation, s(mi, nj) and t(mi, nj) are the
local values of the source and target images at position (mi, nj) respectively, and a and b are the constants of the regression
equation [14]. b. Correlation between source and target image. Each dot represents a pixel area in each image, the line in the
graph is the linear regression line. The correlation coefficient R is 0.95 and indicates high correlation between images.

during the IR treatment (after 30 s the turning on the pump) reveal no differences.
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