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Supplementary Note 1 : Device fabrication and device structure
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Supplementary Figure 1 Schematics and zero magnetic field response. (a) The schematics
of the device and (b) optical image of the measured device. In the optical image, the graphene
flake, the graphite gates BG2 and BG1 are shown respectively by the areas enclosed by red, green
and brown lines. The top and middle BN is shown by the white and black dashed line enclosed
areas. The bottom BN covers the entire picture. The scale bar is 10µm. (c) and (d) shows the zero
magnetic field gate response of the BG1 and BG2 side, respectively, at 77 K. Mobility for both side
is found to be of the oreder of 105cm2V s−1.
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The device structure is shown in Supplementary Figure 1(a) and the optical image of the measured
device is shown in Supplementary Figure 1(b). The device consists of three hexagonal boron nitride (BN)
flakes. The top (∼ 15nm) and the middle (∼ 21nm) BN encapsulate the graphene flake, while the bottom
BN (∼ 30nm) isolates the two bottom graphite gates BG1 and BG2. The gate BG2 covers half of the
graphene flake, thus it can only control the density of the region above it. Similarly the gate BG1 controls
the density of the other half and can not effect the region above BG2 due to screening. The entire stack
of encapsulated graphene and bottom graphite gates were assembled using the well known hot pick-up and
transfer technique[1, 2, 3]. The edge contacts on the graphene flake were first defined by e-beam lithography
and then realized by reactive ion etching (RIE) and subsequent deposition of Cr(2nm), Pd(10nm) and
Au(70nm) by thermal evaporation.

Supplementary Note 2 : Conductance and shot noise measurement setup
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Supplementary Figure 2 Measurement setup. (a) Low frequency conductance measurement
setup. Low frequency AC current is injected at p side and the transmitted current It at n side is de-
termined by measuring the voltage Vm. (b) Shot noise measurement setup. For this measurement
Iin is a DC current and the noise is measured at the reflection side (p-side). The segment of the
measurement setup sitting in the dilution mixing chamber plate (MC plate) is shown by the blue
dashed line. The HEMT cryo-amplifier is at the dilution 4K plate as shown by the brown dashed
line. All the gate voltage, current injection and voltage measurement lines (line for measuring Vm
in Supplementary Figure 2(a)), which directly goes form room temperature to the MC pate, passes
through a RC low pass filter followed by silver powder filter.

The measurement setup consists of a low-frequency conductance and a shot noise measurement parts,
which are shown separately in Supplementary Figure 2(a) and 2(b), respectively. For both the measurements,
in the bipolar regime the current Iin is injected at p side. At the junction Iin is partitioned among the co-
propagating edge states. For junction transmittance measurement, low frequency Lock-in technique is used.
In this case Iin is low frequency ac excitation (13 Hz). To find transmittance (t) , the voltage drop Vm
created due to the transmitted current It going to the left cold ground, is measured by a lock-In amplifier.
Hence t is determined from Vm as Vm = It/|νn| e

2

h , where νn is the filling factor of n side.
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The partitioning of Iin along the pn junction generates shot noise, which is carried by outgoing edge
states on both n (transmitted) and p (reflected) side. We have measured the noise at the p-side as shown
in Supplementary Figure 2(b). The setup utilizes a well known resonant circuit based noise measurement
scheme [4], which consists of a LC resonant circuit, followed by a high electron mobility transistor (HEMT)
based cryo-amplifier (CA) sitting at the 4K plate of the dilution, and then a room temperature amplifier
(RTA) and spectrum analyzer. The L of the resonant circuit is an inductor coil of superconducting wire and
the parallel capacitor C is the total capacitance of the co-axial cable connecting from the sample to the CA.
The noise is always measured at the LC resonance frequency (∼ 765 kHz), which is verified by thermal noise
measurement as described later. The measured voltage noise SV (f) =< δVout(f) >

2 /(BW ∗ A2), where
δVout is the rms value of the output of the CA-RTA amplifier chain, BW is the measurement bandwidth
(for our case ∼ 30kHz) and A is the total gain of the amplifier chain. SV is then converted to current noise
SI = SV /R

2, where R is the quantum resistance of the p as given by R = |νp| e
2

h , where νp is the filling
factor of the p side.

Supplementary Note 3 : Quantum Hall response of p and n side
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Supplementary Figure 3 Quantum Hall response. (a)The conductance versus gate voltage
(VBG1 and VBG2) responses, of the p and n side showing quantized conductance plateaus, at
magnetic field 8T are shown by the red and black lines, respectively. (b) and (c) are experimental
setup to measure the quantum Hall (QH) responses of p and n side, respectively. In both the
cases the voltage drop (Vin) at the injection lead is used for measuring the QH responses. For a
fixed Iin (∼ 5nA), Vin = IinRp,n, where Rp(Rn) is the quantum resistance seen at injection lead at
p (n) side. Rp and Rn depends on the gate voltages VBG2 and VBG1, respectively.

The individual QH responses of p and n side at magnetic field 8T are shown in Supplementary Figure
3(a). As can be seen, all the symmetry broken QH plateaus corresponding to conductance Gp,n = |νp,n| e

2

h ,
are clearly distinguishable. Here νp,n corresponds symmetry broken filling factor ±1,±2,±3,±4... etc.
Supplementary Figure 3(a) and 3(b) show the configurations used to measure the individual responses of p
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and n side, respectively, while the other side of the pn junction was kept at insulating sate. In both the cases
the voltage drops (Vin) were measured at the injection probe as shown in the figures. The response of the
bipolar regime of the pn junction is shown in the manuscript (Fig. 1b).

Supplementary Note 4 : Junction transmittance for different spin models
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Supplementary Figure 4 transmittance versus filling factor. Comparison of experimentally
measured junction transmittance t (open circles with errorbars) as function of p and n side filling
factors νp and νn, with theoretically calculated values for full equilibration (black) and spin selective
equilibration with spin configurations of spin-polarized (red solid line) and valley-polarized (blue
dashed line) ground states. The errorbars represents the standard deviation of the transmittance
from the average values. In the insets, the spin structure of the co-propagating edge states has
been shown for spin-polarized (top) and valley-polarized (bottom) ground states.

In Supplementary Figure 4 we have plotted the experimentally determined junction transmittance (t)
(open circles with errorbars) as function of filling factor νn (top panel) and νp (bottom panel). To understand
the filling factor dependence of t we compare the experimental values with corresponding theoretically
calculated value considering full and spin selective equlibration of the edge states at the pn junction. In
our measurement configuration (Supplementary Figure 2(a)) a part of current injected Iin at the p side
transmits to the n side. In case of full equilbration Iin is equally distributed among the co-propagating edge
states coming from both side. Hence after equlibration the current carried by each of the edge states is
Iin/(|νp|+ |νn|). As n side has |νn| number of out going edge channels, the net transmitted current It, for
full equilibration is It = Iin(|νn|/(|νp|+ |νn|)). Hence transmittance t = |νn|/(|νp|+ |νn|). The calculated
values for full equilibration is plotted as solid black lines in Supplementary Figure 4. In case of spin selective
equilibration, first the injected current is divided between the up and down spin channels. If |νp↑| and |νp↓|
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are the number of up and down spin edge states at the p side then the current carried by the up and down spin
channels at the p-side is Iin↑ = (|νp↑|/|νp|)Iin and Iin↓ = (|νp↓|/|νp|)Iin, respectively. At the pn junction
considering the equilibration between the same type of spin, the transmitted current for up and down spin
channel is It↑ = (|νn↑|/(|νn↑| + |νp↑)|)Iin↑ and It↓ = (|νn↓|/(|νn↓| + |νp↓|))Iin↓, where |νn↑|(|νn↓|) are
the number of up (down) spin edge states at the n side. Hence the net transmitted current It = It↑ + It↓
can be written as It = (|νn↑|/(|νn↑| + |νp↑|))Iin↑ + (|νn↓|/(|νn↓| + |νp↓|))Iin↓. Therefore, after using the
expression for Iin↑ and Iin↓, the junction transmittance is given by t = (1/|νp|)[(|νp↑νn↑|)/(|νp↑|+ |νn↑|)+
(|νp↓νn↓|)/(|νp↓| + |νn↓|)]. The calculated values using this expression for two different spin structure are
shown by red solid lines (spin-polarized) and blue dashed line (valley-polarized) in Supplementary Figure 4.
As can be seen from the comparison, the filling factor dependence of t, can be well understood by the spin
selective equilibration model, more specifically for the spin-polarized ground state structure. In the insets of
Supplementary Figure 4 we have shown the spin structure of the co-propagating edge states at the junction
for spin-polarized (top) and valley-polarized (bottom) ground states.

Supplementary Note 5 : Histogram for different plateaus

As mentioned in the main text, to achieve statistics we have taken multiple noise data (∼ 50) on each filling
factor plateau, at different gate voltage (VBG1, VBG2) values and from each of these noise data Fano factor
have been extracted out. Then we plot the Extracted Fano values for a particular plateau as histogram. In
Supplementary Figure 6 and 7, we have shown the histogram of Fano, for different filling factor plateaus.
In most of the cases the histogram peaks around a mean value, with a spread depending on the plateaus.
The Gaussian fits used to find the mean value of Fano and its standard deviation (error), are shown as red
solid line in each plot. The R-square value is to show the preciseness of the Gaussian fit in explaining the
variation of Fano.

Supplementary Note 6 : Gain calibration of the amplifier chain

The gain of the HEMT cryo-amplifier changes with temperature cycle. Thus it is essential to check the
amplifier gain each time before doing the actual shot noise measurement. In this work, to determine the
the total gain of the CA-RTA amplifier chain during measurement, we have utilized the thermal noise of the
νp = −2 filling factor plateau as shown in Supplementary Figure 8(a). The setup for this is shown in the inset
of Supplementary Figure 8(b). As shown, the BG1 gated side was maintained in insulating state (VBG1 =
−0.1V ), while the BG2 gated side was maintained at middle of νp = −2 (VBG2 = −0.56V ) filling factor
plateau. Since there is no excitation current any voltage fluctuation detected by the measurement circuit is
the thermal noise of the quantum resistance for νp = −2 filling factor together with background noise and
noise from the cold amplifier. For any resistance R, the thermal noise at temperature T is given by SV =
4KBTR =< δVout >

2 /(BW ∗A2), whereKB is the Boltzmann constant and with increasing temperature
of the mixing chamber only thermal noise will increase and from the slope one can find the total gain.
Supplementary Figure 8(a) shows the frequency response of the thermal noise for different temperatures.
Here δV 2

out plotted as function of frequency, shows a peak around ∼ 765kHz (resonant frequency of the
LC circuit) for all temperatures. Supplementary Figure 8(b) shows < δVout(T ) >

2 /BW measured at
the resonance frequency, , increases linearly with T , as expected. The data is then fitted to determine the
slope, from which the effective gain (A) of the amplifier chain is determined as A =

√
slope/(4KBR).
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Supplementary Figure 5 Noise data. Single representative noise data for different filling factor
(νp,νn) plateaus, in the bipolar regime. As can be seen from the figures that the SI increases
linearly as a function of Iin as expected for shot noise. The gate voltage values at which the data
have been taken are shown in the figures.
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Supplementary Figure 6 Part A: Histogram of Fano for different combination of filling fac-
tors in the bipolar regime.
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Supplementary Figure 8 Gain calibration. (a) Square of voltage fluctuation (δV 2
out) due to ther-

mal noise as a function of measurement frequency, at filling factor νp = −2 quantum Hall plateau
for different temperature. The plots shows a peak around ∼ 765kHz, which is the resonance
frequency of the LC circuit. (b) The measured < δVout(T ) >

2 /BW or SV ∗ A2 at the resonance
frequency as function of temperature. Red line is the linear fit to find the slope in order to determine
the total gain (∼ 972). The inset shows the thermal noise measurement configuration.

The effective gain of the amplifier chain was found to be around ∼ 972, which was utilized for all the noise
analysis, shown in this work.

Supplementary Note 7 : Contact noise measurement

The Supplementary Figure 9(a) shows the set up to measure contact noise, where the left side of the pn
junction is kept at insulating state, so that there is no noise due to the pn junction. There are two possible
sources of contact noise: 1) Unwanted noise (shown by δI in Supplementary Figure 9(a)) generated from
the current injection probe due to finite contact resistance and 2) unwanted noise (shown by the black dashed
line in Supplementary Figure 9(a)) due to the reflection of current from the right cold ground again due to
finite contact resistance. Supplementary Figure 9(c) shows some of the contact noise data for different p side
filling factors. As can be seen from the figures that maximum value of contact noise is one order smaller in
magnitude compared to the noise generated at the pn junction. In Supplementary Figure 9(b) table, the Fano
values extracted from the contact noise data (FC) are shown. However, in the noise measurement of the pn
junction, some part of the generated contact noise transmits to n side and the transmitted contact noise to p
side is (1− t)2FC . In our final analysis we have subtracted Fsub = (1− t)2FC from the noise data presented
in the manuscript. In the Supplementary Figure 9(b) table we have also quoted the values of Fsub for νn = 2
and νn = 4.

9



-30 -20 -10 0 10 20 30
Iin (nA)

0.0

0.5

1.0

1.5

2.0

2.5

S I (1
0-2

7  A
2  H

z 
-1
)

νp= -1

-30 -20 -10 0 10 20 30
Iin (nA)

0.0

0.5

1.0

1.5

2.0

2.5

S I (1
0-2

7  A
2  H

z 
-1
)

νp= -2

-30 -20 -10 0 10 20 30
Iin (nA)

0.0

0.5

1.0

1.5

2.0

2.5

S I (1
0-2

7  A
2  H

z 
-1
)

νp= -6

CA

cg

insulating p

cg

Iin

(dc)
BG1 BG2

δΙ

(a) (b)

(c)

-1

0.01

0.5

0.003

0.5

0.003

-2

0.02

0.5

0.004

0.59

0.003

-3

0.07

0.41

0.024

0.49

0.018

-4

0.07

0.35

0.029

0.41

0.024

-5

0.09

0.28

0.045

0.34

0.038

-6

0.03

0.25

0.017

0.29

0.015

νp

FC

νn
= 2

t

Fsub

νn
= 4

t

Fsub

Supplementary Figure 9 Contact noise. (a) Experimental setup to measure contact noise.
Noise introduced by the current injection probe (δI) and partitioning noise due to imperfect nature
of the right ground are the two possible source of contact noise. During contact noise measure-
ment the BG1 side is maintained in insulating state. (b) Fano factor (FC) determined from the
contact noise data taken at different p side filling factors, while the other side of the pn junction
is maintained at insulating state. When the other side of the junction is not in insulating state,
the contact noise contribution is further reduced to Fsub = (1 − t)2FC , which has been shown for
filling factor νn = 2 and νn = 4 (c) Representative contact noise data for different values of νp.
The maximum value of the contact noise is one order smaller than the noise generated by the pn
junction.

Supplementary Note 8 : Filling factor dependence of Fano

The dependence of experimentally measured F with increasing νn and νp are shown in figure Supple-
mentary Figure 10 and Supplementary Figure 11, respectively. We have compared the experimental data
with spin-selective equilibration model for both spin-polarized and valley-polarized spin sequence of the
co-propagating edge states as described in Supplementary Figure 4. For the spin-polarized case, the solid
red and black lines show the theoretical Fano values for coherent and incoherent (quasi-elastic) scattering,
respectively. The blue and sky color dashed lines show the same for the valley-polarized case. The two dif-
ferent spin sequence gives very similar values as can be seen from the figures. The errorbars are color-coded
according to the R-square value of the Gaussian fits of the histograms.
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Supplementary Figure 10 Fano versus νn. The experimental Fano (Fexp) as function of n-side
filling factor νn for fixed p-side filling factor νp, is shown by open circles with errorbars. For spin-
selective equilibration with spin structure of spin-polarized ground state, the Fano for coherent
(Fspin−coherent) and incoherent (Fspin−incoherent)cases are shown in red and black solid lines. Sim-
ilarly blue and sky colored dashed lines shows Fano values (Fvalley−coherent and Fvalley−incoherent,
respectively) for the case of valley-polarized ground state. The color of the error bar shows the
preciseness of the corresponding Gaussian fitting of Fano histogram, in terms of R-square.
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Supplementary Figure 11 Fano versus νp. The experimental Fano (Fexp) as function of p-side
filling factor νp for fixed n-side filling factor νn, is shown by open circles with errorbars. For spin-
selective equilibration with spin structure of spin-polarized ground state, the Fano for coherent
(Fspin−coherent) and incoherent (Fspin−incoherent)cases are shown in red and black solid lines. Sim-
ilarly blue and sky colored dashed lines shows Fano values (Fvalley−coherent and Fvalley−incoherent,
respectively) for the case of valley-polarized ground state. The color of the error bar shows the
preciseness of the corresponding Gaussian fitting of Fano histogram, in terms of R-square.
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Supplementary Note 9 : Derivation of F using theoretical model

Scattering Matrix approach for coherent scattering : Following scattering matrix approach given in
ref. [5] and [6], we derive general expression of F for coherent scattering considering pn junction as ficti-
tious contact as described in details ref. [5] and [4]. This fictitious contact model is shown in Supplementary
Figure 12. In Supplementary Figure 12(a) the current distribution of actual device is shown, where current
injected at contact 1 is partitioned at the junction and the transmitted and reflected current respectively goes
to contact 2 and 3. The equivalent scattering model is shown for filling factors (νp, νn) = (−2, 3), in Sup-
plementary Figure 12(b). Here it is assumed that the scattering probability (ε) from any edge state to all
the other co-propagating edge state is same. Since the experimental data was taken on the reflection side
we need to evaluate the current noise spectral density at contact 3. As given in ref. [6], at zero temperature
limit for a multi-terminal device the correlation term of current fluctuation Sαβ(=< δIαδIβ >) between
two contacts α and β is given by:

Sαβ = 2
e2

h

∑
γλ,γ 6=λ

∫
dETr(s†αγsαλs

†
βλsβγ)fγ(1− fλ) (1)

where smn are scattering matrices, with elements smk,ni, which indicates the probability of an electron
injected at ith edge state from contact n, to scatter into the kth edge state going into contact m and fλ and
fγ are the zero temperature Fermi distribution function of contact λ and γ, respectively. The noise spectral
density at contact α is given by the autocorelation term:

Sαα = 2
e2

h

∑
γλ,γ 6=λ

∫
dETr(s†αγsαλs

†
αλsαγ)fγ(1− fλ). (2)

Thus for our case the noise carried by the reflected edges from pn junction is given by S33 ( see Supple-
mentary Figure 12), for which the trace of the matrices s†3γs3λs

†
3λs3γ needs to be determined first. However,

at zero temperature limit most of the γ,λ combination term inside the integration of Eqn. 2 goes to zero
due to the term fγ(1 − fλ) and following the scattering matrix approach in ref. [5, 6, 7] the only surviving
term is s†31s32s

†
32s31. The corresponding integration term with f1(1 − f2) is equal to eVsd. As example

we have shown the s†31s32s
†
32s31 matrix and derived S33 from Eqn. 2 for (-1,1), (-2,2) and (-1,3) filling

factors in Supplementary Figure 13, 14 and 15, respectively. Similarly derived expression of different filling
factors is summarized in Supplementary Table 1, where it can be seen that S33 follows a general expression
S33 = 2eIinT (1−T ), where T is the average transmittance. Therefore for coherent scattering process Fano
factor is given by: F = (1− T ).

filling factors S33 It Fano
(-1,1) 2 e

2

h eVsdε(1− ε) = 2eIinε(1− ε) εIin (1− ε)
(-1,2) 2 e

2

h eVsd2ε(1− 2ε) = 2eIin2ε(1− 2ε) 2εIin (1− 2ε)

(-1,3) 2 e
2

h eVsd3ε(1− 3ε) = 2eIin3ε(1− 3ε) 3εIin (1− 3ε)

(-2,1) 2 e
2

h eVsd2ε(1− ε) = 2eIinε(1− ε) εIin (1− ε)
(-2,2) 2 e

2

h eVsd4ε(1− 2ε) = 2eIin2ε(1− 2ε) 2εIin (1− 2ε)

(-2,3) 2 e
2

h eVsd6ε(1− 3ε) = 2eIin3ε(1− 3ε) 3εIin (1− 3ε)

Supplementary Table 1 : Fano for coherent scattering
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Supplementary Figure 12 Fictitious contact model. (a) The current distribution of the real
device. Current is injected at contact 1 and after partitioning, reflected and transmitted current
goes to contact 3 and 2 respectively. (b) Equivalent model with pn junction as the fictitious contact
for coherent scattering. At the fictitious contact the scattering probability (ε) of a charge carrier
from one edge state to any any other is equal. (c) Equivalent model for incoherent scattering.

1 3
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†
32s31 =

[
i
√
1− ε 0
0 0

] [
0
√
ε

0 0

] [
0 0√
ε 0

] [
−i
√
1− ε 0
0 0

]
=

[
ε(1− ε) 0

0 0

]

S33 = 2
e2

h
eVsdε(1− ε) = 2eIinε(1− ε)

Supplementary Figure 13 Scattering matrices and auto-correlation term S33 for νp = −1 and
νn = 1 :
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Supplementary Figure 14 Scattering matrices and auto-correlation term S33 for νp = −2 and
νn = 2 :
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Supplementary Figure 15 Scattering matrices and auto-correlation term S33 for νp = −1 and
νn = 3 :
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Supplementary Figure 16 (a) Fictitious contact model for spin selective equilibration for filling
factor (−3, 3). The up and down spin edge channels are shown by red and black arrow lines,
respectively. (b) Model only for the up spin edge channel and (c) is the same for down spin edge
channel (d) Parallel voltage probe model for quasi-elastic scattering (e) Fano for inelastic scattering
as function of filling factor.

Now we consider the case of spin selective equilibration of the edge states. In Supplementary Figure
16(a), we have shown the fictitious contact model for filling factor (−3, 3) with broken spin degeneracy.
As there is no scattering between opposite spin edge states the matrix elements smk,ni corresponding to
inter-spin scattering probability are zero. This essentially separates out the noise contribution for each spin
channel as depicted in Supplementary Figure 16(b) and 16(c), where the model for filling factor (−3, 3)
can be considered as a super-position of filling factor (−2, 1) for up spin (Supplementary Figure 16(b))
and (−1, 2) for down spin (Supplementary Figure 16(c)). As a result the auto correlation term for the spin
selective case can be written as:

Sαα = 2
e2

h

∑
γλ,γ 6=λ

∫
dETr(s†αγsαλs

†
αλsαγ)

↑fγ(1−fλ)+2
e2

h

∑
γλ,γ 6=λ

∫
dETr(s†αγsαλs

†
αλsαγ)

↓fγ(1−fλ).

(3)
where the up and down arrow index corresponds to matrix element of only up spin and down spin channels,
respectively. It can be seen immediately from eqn. 3 that for the filling factor (−3, 3) the auto correlation
term takes the form:

S33 = 2
e2

h
eVsd2ε(1− ε) + 2

e2

h
eVsd2ε(1− 2ε) = 2eIin↑ε(1− ε) + 2eIin↓2ε(1− 2ε) (4)
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The equation 4 can be further generalized for other filling factor combinations as:

S33 = SI = 2eIin↑t↑F↑ + 2eIin↓t↓F↓ = 2eIt↑F↑ + 2eIt↓F↓ (5)

where t↑ and t↓ are the transmittance and F↑ and F↓ are the Fano factors associated with up spin and down
spin channel. Now following the discussion for spin selective equilibration in Supplementary Note 4, putting
Iin↑ = (|νp↑/νp|)Iin and Iin↓ = (|νp↓/νp|)Iin in eqn. 5, the expression for shot noise becomes:

SI = 2eIin(1/|νp|)[t↑|νp↑|F↑ + t↓|νp↓|F↓] (6)

The Fano factor is conventionally defined as F = SI/2eIt = SI/2etIin. Thus considering the expression
of t for spin selective equlibration the effective Fano takes the general form:

F =
t↑|νp↑|F↑ + t↓|νp↓|F↓
t↑|νp↑|+ t↓|νp↓|

(7)

As we have derived earlier for coherent scattering F↑ = 1− t↑ and F↓ = 1− t↓, hence:

F =
|νp↑|t↑(1− t↑) + |νp↓|t↓(1− t↓)

t↑|νp↑|+ t↓|νp↓|
(8)

We have used eqn. 8 to calculate the Fano factor for coherent scattering considering full equilibration
among the same type of spin channels at the pn junction i.e for t↑ = |νn↑|/(|νn↑| + |νp↑|) and t↓ =
|νn↓|/(|νn↓|+ |νp↓|).

Fano for incoherent scattering: For the incoherent scattering, first we will discuss the quasi-elastic process
as described in ref. [4, 8, 9] based on random matrix theory, and F = |νpνn|/(|νp| + |νn|)2 = t(1 − t),
where t = |νn|/(|νp| + |νn|) considering full equilibration. In the fictitious contact model, the effect of
incoherent scattering (quasielastic or inelastic process) are introduced by adding a 4th volatge probe [4, 5]
along which the scattering happens as shown in Supplementary Figure 12(c). In case of spin selective
equilibration two parallel voltage probes can be introduced for the up spin and down spin channels as shown
in Supplementary Figure 16(d), for quasielastic scattering. Since the voltage fluctuation of these two probes
are independent of each other, the Fano expression of eqn. 7 for coherent scattering can be extended to the
quasielastic case considering similar matrix element arguments used for the coherent case. Thus for spin
selective equilibration with quasi elastic scattering the Fano for up and down spin channels are given by
F↑ = t↑(1− t↑) and F↓ = t↓(1− t↓), respectively. Therefore, the Fano can be expressed as

F =
|νp↑|t2↑(1− t↑) + |νp↓|t2↓(1− t↓)

t↑|νp↑|+ t↓|νp↓|
(9)

We have compared our experimental data with the Fano values calculated using eqn. 9 for quasielastic based
incoherent scattering.

For inelastic based incoherent scattering, the charge carriers can exchange energy. As a result, the
energy distribution of the carriers can be characterized by an effective temperature Teff [8], which is
determined by the balance of the energy supplied from the reservoirs and electron thermal energy flowing
out, and the the Fano is given by F ′ = (1/π)

√
3F , where F is the Fano for the quasielastic case. This

also means that the parallel voltage probe model considered for the quasi-elastic case becomes invalid if
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inelastic process are present. For this reason in Supplementary Figure 16(e) we have shown the calculated
Fano values for inelastic process as a function of filling factor, considering full equilibration of all the edge
channels. Note that these values are very similar to the quasielastic case. For simplicity we have only
compared the experimental data with the spin selective coherent scattering and quasielastic scattering in the
main manuscript and in the Supplementary information.
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