
Reviewers' comments:  

Reviewer #1 (Remarks to the Author):  

Report on the manuscript "Ionic polaron in a Bose-Einstein condensate" by G. E. Astrakharchik et al.  

The authors present a theoretical study of a ionic impurity placed in a gas of bosonic atoms. They 

show evidence of a rich phase diagram: a standard polaronic regime for weak interactions, and a 

strongly correlated state with many bosons bound to the ion. The methods and presented results 

are very rich, and provide a strong ground for a potential realization in future cold atom 

experiments.  

My main concern is the relevance of this work for a practical implementation. The authors consider a 

model system in which an atom can form at most one bound state with the ion. The authors 

mention the fact that many deeply bound states actually occur in a real system. The presented study 

keeps its relevance if the timescale required to see the effects is shorter than the relaxation 

timescale towards these bound states. The authors discuss this point to some extent, but I would 

expect a more precise consideration.  

For the parameters used in the calculations (atom density n=10-14 cm-3, C4 of Rb atoms, 

temperature at the threshold of BEC), what is the decay rate gamma, and how does it compare with 

the typical impurity energy E*? I would expect more precise values for the reader to judge the 

relevance of this work.  

I also have other remarks of less importance:  

- in the paragraph dealing with three-body recombination, the formulas do not seem to be 

consistent, or the definition of polarizability is not the one I am used of. I was not able to find the 

timescale of 1 second mentionned by the authors.  

- The ion residue function g1 is not defined, and I could not understand this paragraph. The authors 

should maybe remind the definition of the quasi-particle residue, and explain in more detail how to 

extract it.  

Reviewer #2 (Remarks to the Author):  

The authors numerically studied an impurity problem which is described by the Hamiltonian (2). In 

this model, a charged ion with mass M is immersed into a weakly interacting bosonic medium with 

the particle mass m. The variational and DMC methods were used for performing their numerical 

study. In fact the model has several interesting regimes like showed in the Fig. 1. However, they only 

considered the weakly interacting regime and the case M=m. This case much restricts the subtle 

crossover or phase transition from polaronic physics to a single molecule bound state. Therefore 

their results so far does not show enough new physics for a warrant of the paper to publish in the 

journal Communications Physics. The questions are the following:  

1) Although the authors introduced a nice scattering potential v_{ai} given by Eq. (3), they failed to 

discuss the polaronic physics resulted in from different choices of the parameters a and c, as well as 

the atom-atom scattering. Their assumption of one bound state in their study lacks supporting 

reasons, see the discussion below Eq. (3). Why did not exist larger bound states? For example, why 

did not exist a bound state of one ion and 2-atoms?  



2) In their study of MBBS, for the N<N_c, the energy of the system is given by Eq. (5), For N>N_c, the 

energy should be increased when N increases if the interaction between the atoms in the medium is 

weakly repulsive. The Fig.2 (a) did not show such a increasement. The definition of E_b was not 

given, see Eq. (5).  

3) The polaron energy is given by Eq.(6). Is it a repulsive polaron? It is not clear how to get it. What 

particular effect from the charged ionic impurity can be seen in comparation with a neutral atomic 

impurity? The discussion on the unitary limit is not clear, which channel is at unitary?  

4) The wave function (4) should be used to understand the discussion of the correlation functions for 

Figur. 3. But we could not see a connection between the correlation functions and the wave function 

(4).  

The paper is not well written, even the abstract contains too abstract description of their study. They 

did not clearly explain what is really new to the well-understood neutral atom-atom impurity. I do 

not recommend this current submission for a publication in Comm. Phys.  

Reviewer #3 (Remarks to the Author):  

The paper by Astrakharchik et al. investigates a novel mesoscopic quantum state that arises when a 

ionic impurity is immersed into a Bose-Einstein condensate. The authors show the correlated nature 

of the state and discuss the differences to usual polaronic states of neutral impurities. The work is of 

very good scientific quality and describes a qualitatively novel phenomenon. The paper addresses 

the community of researchers in atomic physics and quantum gases and the style of writing requires 

and in-depth knowledge of the physics as a prerequisite.  

- Figure 1 should represent a "phase diagram". Even though I think I understand the logic behind the 

representation, I find it not very intuitive. It is clear that for certain interaction strengths one can 

have several states at different energies (that's already the case for the neutral impurity). Wrapping 

the state arond the energy axis, however, does not make sense and I have no imagination what the 

authors intend to label the x and y axes with.  

- As compared to the experimental state-of-the-art, the proposal is a few years ahead and hence one 

should take the numerical values with a grain of salt since - to my knowledge- the atom-ion 

interaction parameters are not accurately known yet (in particular at short range). A more thorough 

discussion of the possible ranges would be desireable to understand whether the results are robust 

with respect to the potential variations of the scattering parameters which still have to be 

determined. I think Table I falls a bit short of convincing me that the results discussed here will 

observable in a large enough parameter space.  

- In Fig 5 the authors plot the g(1) function over 100 orders of magnitude and find universal scaling 

from from 20 orders of magnitude below unity. This result is maybe interesting from a theoretical 

perspective, however, the relevance to experiments is unclear. In detectable range, say between 1 

and 0.01 (that's already an optimistic case), the results are indistinguishable. Also, an error budget 

and error bars would be very much desireable on this plot.  

- The authors make reference to atom-ion Feshbach resonances in order to detect the proposed 

polaronic states. This is highly speculative since (1) these resonances have not yet been observed 

and (2) reaching the unitary regime with Feshbach resonances in Bose gases is usually accompanied 



by strong losses. It would be worthwhile to consider and discuss alternative approaches for 

detecting the novel many body state.  

I think the work is publishable after some revisions/additionas and, maybe, nature communications 

is a good platform 



The authors numerically studied an impurity problem which is described by the Hamiltonian 
(2). In this model, a charged  ion with mass M  is immersed into a weakly interacting bosonic 
medium with the particle mass m. The variational and DMC methods were  used for 
performing their numerical study. In fact the model has several interesting regimes like 
showed in the Fig. 1. However, they only considered the weakly interacting regime  and the 
case M=m.  This case much restricts  the subtle crossover or phase transition  from 
polaronic physics to a single molecule bound state.  Therefore their results so far does not 
show enough new physics for a  warrant of  the paper to  publish  in the journal 
Communications Physics. The questions are the following: 

1) Although the authors introduced a nice scattering potential v_{ai} given by Eq. (3), 
they failed to discuss the polaronic physics resulted in from different choices of the 
parameters a and c, as well as the atom-atom scattering. Their  assumption of one 
bound state in their  study lacks supporting reasons, see the discussion below Eq. (3). 
Why did not exist larger bound states? For example, why did not exist a bound state 
of one  ion and 2-atoms?  

2) In their study of MBBS, for the N<N_c, the energy of the system is given by Eq. (5), 
For N>N_c, the energy should be increased when N increases if the interaction 
between the atoms in the medium is weakly repulsive. The Fig.2 (a) did not show 
such a increasement. The definition of E_b was not given, see Eq. (5). 

3) The polaron energy is given by Eq.(6). Is it a repulsive polaron? It is not clear how to 
get it. What particular  effect from the charged ionic impurity can be seen in 
comparation with a neutral atomic impurity? The discussion on the unitary limit is 
not clear, which channel is at unitary?  

4) The wave function (4) should be used to understand the discussion of the correlation 
functions for Figur. 3. But we could not see a connection between the correlation 
functions and the wave function (4).  

 
The paper is not well written, even the abstract contains too abstract description of their 
study.  They did not clearly explain what  is really new to the well-understood neutral atom-
atom impurity.  I do not recommend this current  submission for a publication in Comm. 
Phys.  



Dear Editor, 
 
please find below a detailed response to all the comments raised by Reviewers. We hope that 
the article will be suitable for publication in its revised form. 
 
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
Report on the manuscript "Ionic polaron in a Bose-Einstein condensate" by G. E. Astrakharchik 
et al. 
 
The authors present a theoretical study of a ionic impurity placed in a gas of bosonic atoms. 
They show evidence of a rich phase diagram: a standard polaronic regime for weak interactions, 
and a strongly correlated state with many bosons bound to the ion. The methods and presented 
results are very rich, and provide a strong ground for a potential realization in future cold atom 
experiments. 
 
My main concern is the relevance of this work for a practical implementation. The authors 
consider a model system in which an atom can form at most one bound state with the ion. The 
authors mention the fact that many deeply bound states actually occur in a real system. The 
presented study keeps its relevance if the timescale required to see the effects is shorter than 
the relaxation timescale towards these bound states. The authors discuss this point to some 
extent, but I would expect a more precise consideration. 
 
Answer: The situation in the current setup is similar to the case of neutral Bose polarons, where 
finite lifetime is also a limiting factor. However, our estimates show that the losses should not 
inhibit the prospects for experimental studies. Recent work by Dieterle et al demonstrated that it 
is indeed feasible to observe the ion dynamics in a dense BEC for at least several milliseconds 
[19].​ ​Currently, the more challenging problem for an experimental study is reaching sufficiently 
low ion energies to enable efficient formation of the many-body state. Another important issue 
consists in designing more efficient Pauli traps and reducing ion micro motion. We also note that 
apart from three-body recombination, the existence of additional bound states matters only 
quantitatively for the ground state structure, as their spatial extent is smaller than other length 
scales. We have slightly expanded the discussion of experimental issues in the main text to 
account for these remarks. 
 
For the parameters used in the calculations (atom density n=10-14 cm-3, C4 of Rb atoms, 
temperature at the threshold of BEC), what is the decay rate gamma, and how does it compare 
with the typical impurity energy E*? I would expect more precise values for the reader to judge 
the relevance of this work. 
I also have other remarks of less importance: 



- in the paragraph dealing with three-body recombination, the formulas do not seem to be 
consistent, or the definition of polarizability is not the one I am used of. I was not able to find the 
timescale of 1 second mentioned by the authors. 
 
Answer: We thank the referee for noticing that this paragraph requires clarification. We have 
rewritten the formulas in more appropriate units consistent with the rest of the manuscript, along 
with a few realistic examples. As now mentioned in the text, for the dense BEC at 10^14 cm^-3 
the decay rate gamma exceeds 100kHz, but our numerics is performed at the gas parameter 
10^-6 which can be translated to the gas density of about 6.6*10^12 cm^-3 which gives gamma 
of roughly 600Hz, while E* for this system is 1646Hz. 
 
- The ion residue function g1 is not defined, and I could not understand this paragraph. The 
authors should maybe remind the definition of the quasi-particle residue, and explain in more 
detail how to extract it. 
 
Answer: We have added in the new version the definition of the residue function ​g​1​(​r​), i.e., 
one-body correlation function, and the residue ​Z​ as its limiting value for ​r​→∞. 
 
Reviewer #2 (Remarks to the Author): 
 
The authors numerically studied an impurity problem which is described by the Hamiltonian (2). 
In this model, a charged ion with mass M is immersed into a weakly interacting bosonic medium 
with the particle mass m. The variational and DMC methods were used for performing their 
numerical study. In fact the model has several interesting regimes like showed in the Fig. 1. 
However, they only considered the weakly interacting regime and the case M=m. This case 
much restricts the subtle crossover or phase transition from polaronic physics to a single 
molecule bound state. Therefore their results so far does not show enough new physics for a 
warrant of the paper to publish in the journal Communications Physics. The questions are the 
following: 
 
Answer:  We stuck to the particular case ​m​=​M ​as this is an experimentally realistic situation 
(see, e.g., [19]), but we have verified that the transition from the polaronic to the many-body 
bound state regime holds for different ion mass as well. Regarding the coupling strengths, from 
Fig. 2 one can observe that we consider a large difference in coupling strengths, hence one 
scans both the weak and strong coupling regime (lower part of the helix plotted in Fig.1).  
 
Note that, within our state-of-the-art method, we do not distinguish between weak or strong 
coupling as the technique does not rely on the Bogoliubov approximation. 
 
1) Although the authors introduced a nice scattering potential v_{ai} given by Eq. (3), they failed 
to discuss the polaronic physics resulted in from different choices of the parameters a and c, as 
well as the atom-atom scattering. Their assumption of one bound state in their study lacks 
supporting reasons, see the discussion below Eq. (3). Why did not exist larger bound states? 
For example, why did not exist a bound state of one ion and 2-atoms? 



 
Answer: We have verified that for different choices of the parameters ​b ​(​a ​is the scattering 

length in the manuscript)​ ​and ​c​ we obtain a qualitatively similar behavior. That is, the main 
claim of our paper on the existence of the many-body bound state remains valid.  
 
The choice of one bound state seems natural to us, as the most interesting physics usually 
happens when a new bound state appears. With the present choice of the interaction potential 
we are able to reproduce such a situation. An additional justification comes from the field of 
dilute alkali atoms where in many cases it is enough to consider the ​s​-wave scattering length 
associated with the less bound energy state and ignore presence of deeply bound states. 
Adding more deeply bound two-body states does not affect the physics qualitatively, as the 
ground state is still a many-body bound state composed of a large number of atoms bound to 
the charge. 
 
We would like to clarify that while the two-body problem supports only a single bound state, still 
the bound state of one ion and 2 atoms, i.e. a trimer state, does exist. That is, the energy with 
one ion and ​N​=2 atoms is lower compared to the energy with one ion and ​N​=1 atom, see  
Fig. 2a. Furthermore, bound states with one ion and 3 atoms (tetramer), 4 atoms (pentamer), 
etc​ as well exist. We find that the maximal number of atoms which can be bound to a single ion 
for considered conditions is ​N​c​ ~ 140.  
 
Finally, we note that we have studied a wide range of interactions from weak to the unitary case, 
not only the weakly interacting regime. Furthermore, the interaction energy scale and the 
resulting binding energy of the many-body bound state are much larger than the chemical 
potential of the BEC even in the case of the regularized potential studied here. 
 
2) In their study of MBBS, for the N<N_c, the energy of the system is given by Eq. (5), For 
N>N_c, the energy should be increased when N increases if the interaction between the atoms 
in the medium is weakly repulsive. The Fig.2 (a) did not show such a increasement. The 
definition of E_b was not given, see Eq. (5). 
 
Answer: The expected increase in the energy is associated with the increase in the density of 
the weakly interacting gas, ​E ~ Ng n​/2. ​ ​The expected increase in the energy is shown by the 
red, blue and green dashed lines close to the zero energy axis. 



 
As it can be appreciated from the figure, such an increase is smaller compared to the binding 
energy ​E​

b​. The dependence of the Monte Carlo energy on the number of particles for ​N​>​N​
c​~140 

is consistent with the expected slow increase. Partially, this effect is masked by the error-bars. 
On the other hand, the evolution of the snapshots of the particle coordinates  suggests that the 
physics is correctly understood. 

 
 
 
 
3) The polaron energy is given by Eq.(6). Is it a repulsive polaron? It is not clear how to get it. 
What particular effect from the charged ionic impurity can be seen in comparation with a neutral 
atomic impurity? The discussion on the unitary limit is not clear, which channel is at unitary? 
 
Answer: Equation (6) is an approximate variational formula from Ref. [53] (we moved the 
respective citation to make it more clear), which describes both the repulsive and attractive 
cases. For the polaronic branch (Fig. 2b) the formula (6) captures the energy dependence 
relatively well, so in this regime the physics is similar to the neutral impurity case, as written in 
the discussion below Eq. (6). The unitarity limit is defined with the sentence “​The unitary regime is 
reached when the atom-ion scattering length significantly exceeds the mean interparticle distance.​” in the 



next paragraph. We have modified the following sentence to clarify that the continuous quantity 
we refer to is the ground state energy. 
 
4) The wave function (4) should be used to understand the discussion of the correlation 
functions for Figur. 3. But we could not see a connection between the correlation functions and 
the wave function (4). 
 
Answer: The wave function (4) is chosen in a generic Bijl-Jastrow form and it depends on the 
positions of all particles and the impurity. The correlation functions are obtained by integrating 
out all degrees of freedom except one. Generally, there is no simple connection between the 
correlation functions and the many-body wave function. This is the case for the two-body 
correlation function shown in Fig. 4.  
 
Instead, for the residue function shown in Fig. 5, we are able to extract the shape of the leading 
decay from the wave function, according to Eq. (7). This is possible because of the fast 
exponential decay. 
 
As well, it is important to notice that the diffusion Monte Carlo method corrects wave function (4) 
and the obtained DMC energy and correlation functions are exact.  
 
Reviewer #3 (Remarks to the Author): 
 
The paper by Astrakharchik et al. investigates a novel mesoscopic quantum state that arises 
when a ionic impurity is immersed into a Bose-Einstein condensate. The authors show the 
correlated nature of the state and discuss the differences to usual polaronic states of neutral 
impurities. The work is of very good scientific quality and describes a qualitatively novel 
phenomenon. The paper addresses the community of researchers in atomic physics and 
quantum gases and the style of writing requires and in-depth knowledge of the physics as a 
prerequisite. 
 
- Figure 1 should represent a "phase diagram". Even though I think I understand the logic 
behind the representation, I find it not very intuitive. It is clear that for certain interaction 
strengths one can have several states at different energies (that's already the case for the 
neutral impurity). Wrapping the state arond the energy axis, however, does not make sense and 
I have no imagination what the authors intend to label the x and y axes with. 
 
Answer: Here, the intention was to picture the periodic changes of the scattering length as new 
two-body bound states appear at threshold; one should picture the Figure in cylindrical rather 
than cartesian coordinates. Specifically, our intention is to illustrate that the same values of the 
scattering length might correspond to very different physical states, depending on the number of 
bound states in the ion-atom problem. Importantly, the energy, as a function of the scattering 
length, is a continuous function, as indicated by the spiral. One should picture the Figure in 
cylindrical rather than cartesian coordinates, i.e. the reader should think about it in terms of the 



energy ​E​, as a function of atom-ion scattering length ​a​
ai​ and an angle, rather than as a function 

of (​x​, ​y​). 
 
- As compared to the experimental state-of-the-art, the proposal is a few years ahead and 
hence one should take the numerical values with a grain of salt since - to my knowledge- the 
atom-ion interaction parameters are not accurately known yet (in particular at short range). A 
more thorough discussion of the possible ranges would be desireable to understand whether 
the results are robust with respect to the potential variations of the scattering parameters which 
still have to be determined. I think Table I falls a bit short of convincing me that the results 
discussed here will be observable in a large enough parameter space. 
 
Answer: Indeed, in this work we are using a model potential, which is parametrized in a rather 
simple form. However, we checked that the observed effects are generic and do not require 
specific choice of the potential. Of course, a quantitative comparison with experimental data 
would require a more accurate choice of the potential parameters.  
 
- In Fig 5 the authors plot the g(1) function over 100 orders of magnitude and find universal 
scaling from from 20 orders of magnitude below unity. This result is maybe interesting from a 
theoretical perspective, however, the relevance to experiments is unclear. In detectable range, 
say between 1 and 0.01 (that's already an optimistic case), the results are indistinguishable. 
Also, an error budget and error bars would be very much desireable on this plot. 
 
Answer: We totally agree that from an experimental point of view, exponentially small values are 
irrelevant as being indistinguishable from zero. Still, conceptually, it is important to distinguish 
between a finite, but small residue, and a zero one.  
 
We added error bars in the new version of the figure.  
 
- The authors make reference to atom-ion Feshbach resonances in order to detect the proposed 
polaronic states. This is highly speculative since (1) these resonances have not yet been 
observed and (2) reaching the unitary regime with Feshbach resonances in Bose gases is 
usually accompanied by strong losses. It would be worthwhile to consider and discuss 
alternative approaches for detecting the novel many body state. 
 
Answer:  As mentioned in the response to Referee A, we estimate that the losses should not 
inhibit a successful experimental study, although directly at unitarity the ion lifetime will indeed 
be limited. The existence of ion-atom Feshbach resonances is certain from the theoretical point 
of view and already several groups are approaching the energies at which it will be possible to 
observe them. Furthermore, while access to Feshbach resonances would be highly appreciated, 
the basic effects that we predict (existence and structure of the many-body state) do not require 
changing the scattering length, but only reaching sufficiently low energies which seems to be 
within reach as well [17-19]. 
 



I think the work is publishable after some revisions/additionas and, maybe, nature 
communications is a good platform 
 
We hope that in the new version, the article is suitable for the publication. 
 
Sincerely yours,  
G. E. Astrakharchik 
L. A. Peña Ardila 
R. Schmidt 
K. Jachymski 
A. Negretti 
 



REVIEWERS' COMMENTS:  

Reviewer #1 (Remarks to the Author):  

I am satisfied by the answers to my concerns and the modifications to the manuscript. I have no 

objection for publication.  

Reviewer #2 (Remarks to the Author):  

The authors have addressed all questions raised up in my reports and other reports. The revised 

version look satisfactory. It would be useful for readers if the authors could address little more on 

the experimental proposal for testing such novel ionic polaron through the hybrid atom-ion setups. 

Anyhow, in view of their rich discussions on the iconic polaronic behaviour, I would like to 

recommend this submission for a publication in Communications Physics. 



Response to Reviewers  

 

Reviewer #1 (Remarks to the Author): 

I am satisfied by the answers to my concerns and the modifications to the manuscript. I have no 
objection for publication. 

 

We thank the Reviewer 1 for a positive judgement of our work. 

 

Reviewer #2 (Remarks to the Author): 

The authors have addressed all questions raised up in my reports and other reports. The revised version 
look satisfactory. It would be useful for readers if the authors could address little more on the 
experimental proposal for testing such novel ionic polaron through the hybrid atom-ion setups. Anyhow, 
in view of their rich discussions on the iconic polaronic behaviour, I would like to recommend this 
submission for a publication in Communications Physics. 

 

We have reworked and expanded the discussion of a possible experimentation observation. The “diff” 
version of the Manuscript follows below. 
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::::::::
Abstract The presence of strong interactions in a many-body quantum system can lead to a

variety of exotic effects. Here we show that even in a comparatively simple setup consisting of a
charged impurity in a weakly interacting bosonic medium the competition of length scales gives
rise to a highly correlated mesoscopic state. Using quantum Monte Carlo simulations, we unravel
its vastly different polaronic properties compared to neutral quantum impurities. Moreover, we
identify a transition between the regime amenable to conventional perturbative treatment in the
limit of weak atom-ion interactions and a many-body bound state with vanishing quasi-particle
residue composed of hundreds of atoms. In order to analyze the structure of the corresponding
states we examine the atom-ion and atom-atom correlation functions which both show nontrivial
properties. Our findings are directly relevant to experiments using hybrid atom-ion setups that have
recently attained the ultracold regime.

Introduction
An impurity immersed in a many-body quantum

system constitutes a fundamental building block in
condensed-matter physics, particularly with regards to
transport properties of materials [1, 2]. In order to in-
vestigate this paradigmatic problem, ultracold atoms are
especially suited as they allow for experimental control
of multiple parameters such as the shape of the confine-
ment and the form of interparticle interactions [3]. Over
the last decade atomic systems have proven to be capa-
ble to observe the formation of quasi-particles such as the
celebrated polaron in bosonic [4–6] and fermionic [7–12]
quantum gases as well as in a Rydberg system [13], with
the possibility of exploring impurity physics also in the
presence of dipolar interactions [14].

Within the plethora of compound atomic quantum sys-
tems available, atom-ion systems provide a new

::::::
unique

arena for investigating many-body quantum physics in
the strongly interacting regime. Indeed, the interaction
between the charge and the induced dipole of the neutral
particle results in the asymptotic form

Vai(r)
r→∞−→ −C4

r4
. (1)

Importantly, this polarization potential has a character-
istic length scale that is about an order of magnitude
larger than in the case of van der Waals interactions typ-
ical for neutral atoms and it can become comparable to
the mean interparticle distance. Moreover, the charac-
teristic interaction energy is typically in the microkelvin
range and thus comparable to experimentally achievable

collision energies [15]. Hence, although the polarization
potential has in principle short-ranged nature one cannot
replace it with a pseudopotential due to the lack of sepa-
ration of length and energy scales between the two-body
and the many-body systems. While this lack of scale sep-
aration gives rise to a striking competition of few- and
many-body processes, it poses a theoretical challenge due
to the necessity to account for details of the potential that
severely inhibits the possibility of using analytical meth-
ods to describe the properties of an ionic impurity such
as its effective mass.

Recently, it has been demonstrated that for certain
atom-ion combinations the ultracold regime is within ex-
perimental reach [16–18]. Exploiting the charge of the
impurity, one appealing possibility is to study trans-
port properties by dragging the ion by means of electric
fields and detect it with high spatial and temporal res-
olution [19]. The long range of the atom-ion potential,
on the other hand, allows to investigate the formation
of mesoscopic bound states [20–22] that would have dra-
matic impact on the ion transport dynamics.

Studies of the mobility of an ion moving in a bosonic
medium date back to the early sixties with the aim of
explaining the small ion mobility in liquid helium [23–
27]. Later, mean-field approaches were used to predict
the formation of mesoscopic molecular ions [20], to es-
timate the number of excess atoms around an ion in a
homogeneous Bose-Einstein condensate (BEC) [28], and
path integral methods to determine the ion polaron prop-
erties in the strong-coupling regime [29]. While such
approaches allow one to obtain a qualitative picture of
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FIG. 1. A schematic phase diagram showing various regimes
found

::
for

::
a

:::::
single

::
ion

:::::::::
immersed in the system

:
a
:::::
dilute

::::
Bose

:::
gas

upon changing the atom-ion scattering length and the num-
ber of the two-body bound states.

:::
The

:::::::
vertical

::::
axis

:::::::
indicates

:::
the

::::::
change

:::
of

:::
the

::::
ion

::::::
energy

::
E

:::
as

:::
the

::::::
value

::
of

::::::::
atom-ion

:::::
s-wave

:::::::::
scattering

::::::
length

:::
aai::

is
:::::::

varied.
::::

The
::::::

spiral
:::::
refers

::
to

:
a
:::::::::
continuous

:::::::
change

::
of

:::
the

:::::::
energy

::::::
leading

:::
to

:::::::::
realization

::
of

:::::::
different

:::::::
physical

:::::::
regimes

:::
as

:::
the

::::::
value

::
of

::::
aai ::

is
::::::::
cyclically

:::::::
changed

::::
from

::::::
minus

:::
to

::::
plus

:::::::
infinity.

::::::::::
Departing

:::::
from

:::
the

::::::::::::
non-interacting

::::
case

:::::::
aai = 0,

::::
with

::::
zero

:::
ion

::::::
energy,

::::::
E = 0,

:::
and

::
by

:::::::
making

:::
the

:::
ion

:::::::::
attraction

:::::::
stronger

:::
the

::::::::
following

:::::::
regimes

::
are

::::::::
observed.

:::
A

::::
weak

:::::::::
attraction

::::
leads

::
to

:::
the

::::::::
polaronic

::::::
regime

:::::
where

:::
the

:::
ion

::::
can

:::
be

::::::::
described

::
in

::::::
terms

::
of

::
a

:::::::::::
quasiparticle.

::::
Such

:
a
::::::::::
description

::
is

::
no

::::::
longer

:::::::
possible

::
in

:::
the

::::::
unitary

::::::
regime

::::::
marked

:::
by

:
a
::::::::
diverging

::::::
s-wave

:::::::::
scattering

::::::
length.

::::
The

::::::
unitary

:::::
point,

:::::::::
|aai| =∞,

::
is

:::
the

::::::::
threshold

:::::
value

:::
for

:::
the

:::::::::
formation

::
of

::
an

::::::::
ion-atom

::::::::
two-body

::::::
bound

::::::
state.

::::
For

:::::::
stronger

::::::::
atom-ion

::::::::
attraction

::::::::::
many-body

:::::
bound

:::::
state

::
is

::::::
formed

::
in

:::::
which

::
a

::::
large

::::::
number

::
of

::::::
atoms

::
is

::::::::
effectively

:::::::
trapped

:::
by

:::
the

:::
ion.

:

the underlying phenomenology, the interplay between the
long-ranged potential and strong interactions not only
leads to substantial shifts to the relevant observables such
as the energy of the system, but also has drastic conse-
quences for the structural properties of the ground state.
In line with the recent experiments with ion-atom mix-
tures [16, 30–38], in this letter we study the many-body
ground state properties of an ion immersed in a three-
dimensional (3D) bosonic gas. To this end, we employ
quantum Monte Carlo techniques that have been success-
ful in the context of the 3D Bose polaron [39–41], bipo-
larons [42], as well as in

::::::::::::::
two-dimensional

::
(2D [? ] and

:
)
::::
[43]

::::
and

:::::::::::::::
one-dimensional

:
(1D)

:
polarons [44–46]. The

method allows us to fully take into account the quan-
tum many-body correlations that turn out to be crucial
to predict

:::::::::
important

:::
for

::::::::::
predicting how the competition

between the few- and many-body length scales gives rise
to a striking impurity physics that is governed by a transi-
tion from a polaron to a many-body polaron bound state.
The resulting states cannot be captured by conventional
tools such as the Frölich model or Bogolyubov theory.
The system properties depend not only on the scatter-
ing length and effective range of the two-body potential,
but rely on the presence of the long-range tail of the in-
teraction, indicating the failure of the pseudopotential
approximation.

Results

System. We consider an ion of mass M immersed into
a gas consisting of N bosonic atoms of mass m at average
density n = N/L3. For simplicity we focus here on the
mass-balanced case (i.e. M = m). We consider periodic
boundary conditions in a box of size L chosen large com-
pared to the healing length ξ = (8πnaaa)−1/2, where aaa
is the boson-boson s-wave scattering length.

The microscopic many-body Hamiltonian is given by
[47]

Ĥ=−~2∇2
R

2M
−

N∑
n=1

~2∇2
rn

2m
− Vai(rn−R)+

N∑
n<j

Vaa(rn−rj).

(2)

:::::::::
Hereafter,

:::
we

:::::::
denote

::::
the

:::::
ion’s

:::::::::::::
characteristics

:::::
such

:::
as

:::::::
position

::::
and

:::::
mass

:::::
with

:::::::
capital

:::::
Latin

:::::::
letters,

::::::
while

:::
for

::::
atom

:::::
ones

:::
we

:::
use

:::::
small

::::::
Latin

::::::
letters.

:::::::::::::
Furthermore,

::::
bold

:::::::
symbols

:::::
refer

:::
to

::::::::::::::::
three-dimensional

:::::::
vectors

::::
and

:::::::
cursive

::::
ones

::::
the

::::::::::
respective

:::::::
norms.

:::
The first two terms

:
in

:::
Eq.

:::
(2)

:
represent the kinetic energy of the ion and of the

atoms, respectively, and Vaa(rn−rj) is a repulsive short-
range potential with coupling constant g = 4π~2aaa/m.
The potential Vai describes the atom-ion interaction, for
which it is essential to retain the long-range tail (1). It is
further characterised by the length R? = (2mrC4/~2)1/2

and energy scales E? = ~2/[2mr(R
?)2], where mr =

mM/(m+M) is the reduced mass. For the 87Rb/87Rb+

system one has R? ' 265.81 nm and E? ' kB×79 nK (kB
is the Boltzmann constant). Crucially

:::::::::::
Importantly, the

separation of length scales is lacking as for typical atom
density n = 1014cm−3 the mean interparticle distance
n−1/3 ' 0.8R? is of the same order as the interaction
range as well as the healing length (ξ ' R?).

At short range, the real interaction potential will de-
viate from the asymptotic formula (1). Here, we model
the short-range details by the regularization [48]:

V rai(r) = −C4
r2 − c2

r2 + c2
1

(b2 + r2)2
. (3)

Here, the b and c parameters have units of length and con-
trol the properties of the potential such as the number of
bound states and their energies as well as the scattering
length, while the long-range effects of the tail (1) remain
accounted for. Crucially, the properties of the system
depend not only on the energies, but also on the num-
ber of the available two-body bound states, as it will be
demonstrated below. In most of the calculations we tune
the potential in such a way that it has only one two-body
bound state. Under this assumption, there is a unique
connection between the b, c parameters and the s-wave
scattering length aai of the resulting potential.

The simulations are performed by using variational
(VMC) and diffusion Monte Carlo (DMC) methods. The
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VMC method samples the square of the trial wavefunc-
tion that we choose in the Bijl-Jastrow [49, 50] form

ΨT(R; r1, . . . , rN ) =
∏
j<n

fB(|rn − rj |)
∏
j<n

fI(|rn −R|).

(4)

Here, fB and fI account for two-particle intra- and inter-
species correlations, respectively. These functions are
constructed by matching the solution of the two-body
scattering problem at short distances to an appropri-
ate tail (see Methods), i.e. phononic decay in fB and
mean-field prediction for a heavy ion in fI. Both func-
tions contain variational parameters that are optimized
by minimizing the expectation value of the Hamilto-
nian (2). VMC calculations provide the upper bound to
the ground-state energy. In contrast the DMC approach
aims to obtain the exact ground state energy of the sys-
tem by solving the Schrödinger equation in imaginary
time. We are interested in the regime of weak atom-atom
interactions and fix the gas parameter to na3aa = 10−6

with aaa = 0.02R?.

Ground state energy. In Fig. 1 we illustrate the ‘phase
diagram’ of the system that is characterized by two
distinct sets of ground states: many-body bound state
(MBBS) and a polaronic one. As the “helix” structure
indicates, for negative atom-ion scattering lengths both
solutions are possible, while positive scattering lengths
always lead to a MBBS. Indeed, while

::
A

:::::
spiral

::
is
:::::

used

::
to

:::::::::
illustrate

::::
that

::::
the

:::::::
energy

::
E

::::::::
depends

:::::::::::::
monotonously

::
on

::::
the

:::::::
s-wave

:::::::::
scattering

::::::
length

::::
aai,:::::::::

although
::::::::
different

:::::::
energies

::::::::::
correspond

:::
to

:::
the

::::::
same

:::::
value

::
of

:::
aai::::::::::

depending

::
on

::::
the

:::::::
number

:::
of

::::::
bound

::::::
states.

:::::::
While

:
for aai > 0 the

potential (3) always has a bound state, for negative scat-
tering lengths the atom-ion interaction can be tuned such
that either a bound state is supported (left-bottom part
of the helix, MBBS), or no bound state is present (left-
upper part, polaronic). The ‘attractive’ polaron is typi-
cally encountered in ultracold quantum gases with neu-
tral atomic impurities [4, 5, 39, 40, 51]. On the other
hand, in the MBBS regime many bosons can be bound to
the ion with a large binding energy. Importantly, the spa-
tial range of the atom-ion interaction plays a crucial role
in the formation of the MBBS, while for neutral impuri-
ties physics can typically be well described by assuming
an effective short-range interaction.

Figure 2 provides characteristic examples of the de-
pendence of the system’s total energy on the number of
bosons in the MBBS (a) and polaronic (b) regime. In the
MBBS case, we find that the absolute value of the energy
grows almost linearly for a sufficiently small number of
bosons. The dependence can be roughly approximated
by the energy of N non-interacting particles bound to
the ion,

E(N) ' NEb(M = m) , (5)

as shown with a solid black line in Fig. 2 (a). We
also have verified that the effective impurity mass ap-
proaches the total mass of the MBBS, M? ≈ Nm.
As the number of bosons is increased further, the en-
ergy starts to significantly deviate from the behavior (5)
and it reaches a minimum at a critical number Nc,
which can be estimated from the extremum condition
∂E/∂N = 0 [47]. The value Nc can be interpreted as
the maximal number of bosons bound to the impurity,
similarly to the analysis of the 1D case [22].

:::
We

::::
note

::::
that

:::
Nc::::::

could
:::
be

:::::::
defined

::
in
:::::::::

different
:::::
ways,

::::
e.g.

::::::
from

:::
the

:::::
form

:::
of

:::
the

:::::::::
atom-ion

:::::::::::
correlation

:::::::::
function,

::::::
gai2 (r),

::
as

::::::::::::::::::::::::::::::::
Nc = n

∫
[gai2 (r)− 1 +Nc/N ]4πr2dr,

::
or

:::::
from

:::
the

:::::
atom

::::::
density

:::
far

:::::
from

::::
the

:::
ion,

::::
i.e.

:::::::::::::
n(1−Nc/N).

:
For the cho-

sen parameters we obtain Nc ' 140 almost irrespective
of the exact value of the atom-ion scattering length, con-
trarily to the mean-field prediction of Ref. [20]. This
indicates that while the scattering physics of quasi-free
bosons is determined by the scattering length, it is the
large range of the potential that determines the number
of bound particles. Note that our result is significantly
larger as compared to the many-body bound states for
the case of a neutral impurity, for which MC calculation
predicts

::::::
Monte

:::::
Carlo

:::::::::::
calculations

:::::::
predict only few atoms

to be bound [39]. At the same time Nc is much smaller
than the number of bound atoms predicted by a mean-
field-based estimate, suggesting that the effective gas pa-
rameter is significantly increased in the vicinity of the
ion. For N > Nc the energy increases, meaning that no
more bosons are able to bind to the ion and the excess
atoms start to form an almost uniform gas. This view
is further corroborated by the snapshots of the system
taken in Fig. 3 for different system sizes, where the green
sphere of radius R? depicts the position of the ion (red
symbols for bosons). Figure 3(a) shows the snapshot of
the system in the case when the number of bosons is
smaller than the critical one, N < Nc, and therefore all
bosons are close to the ion forming a spatially localised
MBBS. Contrarily, panel

::::
Fig.

:
3(b) depicts the case with

N > Nc. In this scenario, the boson density around the
ion is still higher than the average one and the excess
bosons form a background gas.

Figure 2(b) shows the energy dependence on N fol-
lowing the “polaronic” branch where no two-body bound
states are present, for three characteristic values of the
atom-ion scattering lengths: aai = −0.1R?, aai = −R?,
and the unitary case aai → ±∞. For large system sizes it
is expected that the total energy can be decomposed into
two contributions, the chemical potential µpol of the ion
and the energy of a homogenous gas, E = µpol +Ngn/2.
For sufficiently small |aai|, the polaron energy can be cal-
culated variationally

::::
[52]

µpol = 4π(na3aa)

(
R?

aaa

)2(
aaa
aai
− aaa

a0

)−1
E? , (6)
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FIG. 2.
::::::::::
Ground-state

::::::
energy

:::
of

:::
the

::::::::::
many-body

:::::::
system.

(a) Total energy obtained as the expectation value of the
Hamiltonian (2) in units of the binding energy of the ion-
atom molecule Eb as a function of the number of bosons
N . The symbols represent the energy obtained via DMC

:
in

:::::::
diffusion

::::::
Monte

:::::
Carlo simulations, while the black solid line

shows the energy (5).
::::
Error

::::
bars

:::::
show

:::
the

:::::::
standard

::::::::
deviation

:
of
::::::

Monte
:::::
Carlo

:::::::::::
simulations. (b) Total energy in units of E?.

For the lines, the mean-field Gross-Pitaevskii energy is shifted
by the polaron energy, i.e. E(N) = µpol + gnN/2; solid line,
no ion, µpol = 0; long-dashed line, variational ansatz [52],
µpol is given by Eq. (6); short-dashed line, DMC

:::::::
diffusion

:::::
Monte

:::::
Carlo

:
calculation for short-ranged impurity-boson in-

teractions from Ref. [39].

where a0 = 32
3
√
π

√
na3aa is the shift of the scattering res-

onance due to the bosonic ensemble [52]. Therefore, in
the regime of sufficiently weak interactions the energy is
universal as it depends only on aai and no finite range
corrections are required.

It is important to notice that the Fröhlich model [29]
alone is not sufficient to describe the ion quantitatively,
predicting µpol = −0.096E? for aai = R?. Instead,

FIG. 3. Snapshots of the
::::::::
calculated

:
particle coordi-

nates
:
.
:::::::

Particle
::::::::::

coordinates
::::

are
::::::::::
represented

:
for two charac-

teristic numbers of bosons: Left panel
::
(a)

:
N = 50 , right

panel
:::::::
particles

::::
(b)

:
N = 500

::::::
particles. Note that

::
in

:::
the

::::::
critical

::::::
number

:::
of

:::::
atoms

::::::
which

:::
can

:::
be

:::::::
trapped

:::
by

:::
the

::::
ion,

Nc = 140and ,
::
is
:::
(a)

::::::
larger

:::
(b)

::::::
smaller

:::::
than

:::
the

:::::::
number

::
of

:::::::
particles

:::
N ,

::::::::::::::
correspondingly.

::::::::::
Parameters

::
of
::::

the
:::::::::
interaction

::
are

:::::::
chosen

:::::
such

::::
that

::::
the

::::::
value

::
of
::::

the
:::::::::

atom-ion
::::::
s-wave

::::::::
scattering

::::::
length

:::::
equals

:::
to

:::
the

:::::::::::
characteristic

::::::::::
length-scale

:::
R?

:
of
::::

the
:::
C4 :::::

decay
:::
(1),

:
aai = R?. The red areas denote instan-

taneous positions of the bosons in the box potential. Coordi-
nates are shifted so that the ion appears in the center.

beyond-Fröhlich perturbation theory correctly describes
the polaron energy both in the weakly-interacting regime
[aai = −0.1R? data in Fig. 2(a)] and remarkably even
for strongly interacting polarons (aai = −R?). In the
regime of weak interactions, the ion behaves similarly
to a neutral impurity with short-range interactions, for
which the VMC energy is shown with short-dashed lines.
The unitary regime is reached when the atom-ion scat-
tering length significantly exceeds the mean interparticle
distance. An important feature of the ion impurity is that
the unitary limit is continuous

::::::
energy

::
of

::::
the

::::::::::
many-body

::::::
ground

:::::
state

:::
is

::::::::::
continuous

:::::
when

::::::::
crossing

::::
the

::::::::
aai →∞

:::::
point

:
and connects the polaron and MBBS which are

both stable branches. We note that
:::::::
directly

:
at uni-

tarity the prediction (6), which is derived within Bo-
golyubov approximation, is beyond its validity and thus
it is not shown in Fig. 2(b). In particular, the Bogolyubov
approximation becomes questionable close to unitarity,
where the correlation functions shown in Fig. 4 indicate
a varying local gas parameter similar to the discussion
of beyond Bogolyubov corrections in Ref. [53]. For the
same reason, the Bogolyubov-Fröhlich description of the
ion polaron [29] has to be significantly revisited.

Correlation functions. In order to analyse the spa-
tial structure of the many-body bound state we further
turn our attention to the atom-atom and atom-ion cor-
relation functions. Typical examples are displayed in
Fig. 4. As it can be seen, the atom-ion correlation fea-
tures a pronounced peak indicating a strong bunching
effect at distances where the atom-ion interaction poten-
tial is strongly attractive. Moreover, for N < Nc (see red
lines) the atom-atom correlation function does not ap-



5

proach a constant at long distances, but instead it decays
exponentially, supporting the interpretation that essen-
tially all bosons are bound to the ion and are localized at
distances of the order of a fewR?. The width of gai2 can be
used as the definition of the size of the MBBS that can be
interpreted as a mesoscopic molecular ion. For N > Nc

(see blue lines) the position of the peak does not change;
the atom-atom correlation function, however, converges
to a constant value which is slightly below unity. This
demonstrates that the excess atoms are not bound to
the ion and indeed form a bosonic background for the
MBBS. The atom-atom correlation functions in the pres-
ence of the ion (dashed lines) also indicate the bunching
behaviour close to the ion. The effect is the strongest for
small systems, N < Nc, where the bosons tend to stay
close to each other as they are a part of the MBBS [see
also Fig. 3(a)]. This can be interpreted as an effective
interaction within the medium induced by the impurity.
As the system size is increased, gaa2 (r) starts to approach
a constant value at large distances, i.e. the whole volume
is filled with the gas [see also Fig. 3(b)], and the peak at
short distances is correspondingly lowered. The asymp-
totic value gaa2 (r)→ 1−Nc/N reflects a smaller effective
density, as Nc atoms are bound to the ion. Eventually,
in the thermodynamic limit atom-atom correlations will
coincide with those of a homogeneous Bose gas without
an ion (green line in Fig. 4).

We have also found that for aai < 0 the
two branches have very different behaviors in terms
of coherence, which is quantified by the quasi-
particle residue Z

::::::::::::::::
Z = limr→∞ g1(r)

:::::::::::::
corresponding

:::
to

:::
the

:::::::::::
long-range

:::::::::::
asymptotic

:::
of

:::::
the

:::::::
residue

:::::::::
function

:::::::::::::::::::::::
g1(|r− r′|) = 〈Ψ†(r)Ψ(r′)〉

:::::::
where

:::::
the

:::::
field

:::::::::
operator

:::::
Ψ†(r)

:::::::
creates

:::
an

::::
ion

::
at

::::::::
position

::
r
::::

and
:::
〈〉

:::::::
denotes

::::
the

:::::::::::
ground-state

:::::::
average. Indeed, the residue is finite in the

polaron branch and approaches unity (full coherence) in
the limit of weak attraction, aai → 0−. Instead, in the
MBBS branch the residue vanishes exponentially fast.
Figure 5 shows typical examples of the decay of the ion
residue function, g1(r), for a fixed number of particles for
several choices of the atom-ion s-wave scattering length.
We observe an exponential decay, which on the semi-
logarithmic scale of Fig. 5 is seen as a linear dependence.
This can be understood using a simple model. As dis-
cussed in the context of Fig. 2(a), the energy of small
clusters of bosons in the MBBS branch can be reason-
ably well interpreted in terms of N non-interacting atoms
bound to the ion. The two-body scattering solution (8)
for each atom-ion pair scales as f(r) = exp(−r/aai)/r
with r = |R − ri| for r � R?. By assuming a product
over ri, i = 1, · · · , N we arrive at the following approxi-
mate form for the residue function at large distances

g1(r) ∝ exp

(
−Ncr

aai

)
. (7)

For deeply bound states, aai → 0, all N particles are

FIG. 4.
::::::::
Two-body

:::::::::
correlation

:::::::::
functions.

:
Atom-atom (solid

line) and atom-ion (dashed line) two-body correlation func-
tion g2(r) obtained from VMC

:::::::::
variational

:::::
Monte

::::::
Carlo cal-

culation for N = 500
:::::
atoms

:
(upper curves) and N = 50

::::
atom

(lower curves) for aai = R?; g2(r) in a weakly interacting
Bose gas in absence of the ion is shown with a green line.

:::
The

::::::
critical

:::::::
number

::
of

:::::
atoms

:::
Nc:::::

which
::::

can
::
be

:::::::
trapped

:::
by

::
an

::
ion

::
is
::::::

larger
::::
than

:::
the

:::::::
number

::
of

::::::::
particles

:::
for

:::::::
N = 50,

:::::
which

:::::::
explains

:::
the

:::::::::
pronounced

:::::::::
maximum

:::::::
observed

::
in

:::
the

:::
red

::::
lines

::
at

:::::::
distances

::
of
:::
the

:::::
order

::
of

:::
the

:::
ion

::::::::
potential

::::::
range,

::::::
r ≈ R?.

::::
The

::::
data

::
is

:::::
shown

:::
up

::
to
::::

the
:::::::
half-size

::
of

::::
the

:::::::::
simulation

:::
box

::::
L/2

:::
and

::
as

::
a
:::::
result

:::
the

::::
data

::::
with

:::::::
N = 50

::::::::
abruptly

::::
stops

:::::::
without

::
yet

::::::::
reaching

::
a
:::::::
plateau.

::::::::
Instead,

:::
for

::::::::
N = 500

::::::::
particles,

:::
the

::::::
number

::
of
::::::

atoms
::
is

:::::
larger

:::::
than

:::
the

:::::::
critical

::::::
number

:::
Nc::::

and

:::
the

:::::::
half-size

::
of

:::
the

:::::::::
simulation

:::
box

::::
L/2

::
is

:::::
larger

:::::
than

:::
the

:::
size

:
of
::::

the
::::::::::
many-body

::::::
bound

:::::
state.

:::
As

::
a
::::::

result
:::
the

:::::::::
long-range

::::::
plateau

::::::::
observed

:::
for

::::::::
N = 500

::::::
atoms

::::::
signals

::::::::
presence

::
of
::

a

:::::::::::
homogeneous

:::
gas

::
of

::::::
atoms.

:

bound and participate in the MBBS. In turn, for weaker
interactions or larger number

:::::::
numbers

:
of particles, the

ion is able to capture only Nc atoms. We take this effect
into account by substituting N by Nc in Eq. (7). As
it can be seen in Fig. 5, the asymptotic expression (7)
captures correctly the exponential loss of coherence.

Let us finally briefly discuss the dynamic properties
of the system. In the polaronic case, the ion effective
mass approaches its bare value M? ≈ m in the limit of
weak attractions, whereas for stronger ones it gradually
increases for the given boson-boson scattering length to
the value at unitarity M? ≈ 6m, which is substantially
larger than the neutral impurity result M? ≈ 1.65m [39].
In the MBBS regime, M? becomes exceedingly large. In
particular, for large Eb and small N we find that M? ≈
Ncm and the total energy is given by Eq. (5). We could
not verify whether the relation M? ≈ Ncm holds in the
thermodynamic limit due to computational limitations.
Discussion
Our calculations are focused on the ground state prop-

erties of the system. Furthermore, we have assumed that
the two-body ion-atom potential only supports one or
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FIG. 5. Residue function of the ion impurity
::::::
showing

:::
an

:::::::::
exponential

:::::
decay

:
in the MBBS for N = 50 atoms

:::::::::
many-body

:::::
bound

:::::
state. The symbols show the extrapolated value from

VMC and DMC calculations
::::
values

:::
of

:::
the

::::::
residue

:::::
g1(r); the

lines show the analytical approximation
:
in
:::::
terms

::
of
::
a
:::::::
decaying

::::::::
exponent,

:
Eq. (7). Different values of the atom-ion s-wave

scattering length are obtained by fixing b = 0.0023R? and by
changing c in the ion-atom interaction potential.

::::::::
Simulation

:
is
:::::
done

::
for

:::::::
N = 50

::::::
atoms.

::::::::::::
Extrapolation

:::::::::
procedure

:::::
based

::
on

::::::::
combining

:::::::::
variational

::::
and

:::::::
diffusion

::::::
Monte

:::::
Carlo

::::
data

::
is

::::
used

::
to

::::::::
minimize

:::
bias

:::
on

:::
the

::::::
choice

::
of

:::
the

::::
trial

::::
wave

::::::::
function.

:

zero bound states, while a realistic interatomic potential
typically features hundreds of vibrational levels, similar
to the potentials with van der Waals tails describing the
interactions between neutral atoms. For the latter, how-
ever, the occupation of bound states of the interatomic
potential is less likely for typical quantum gas densities,
unless the system is tuned close to a Feshbach resonance,
since the spatial range of the potential is on the order of
a few nms, and therefore it can be well described by a
pseudopotential. This is not the case for the atom-ion
system, whose spatial range of the polarisation potential
is tens of times larger. A natural question is then the
experimental relevance and the prospects for observing
the phenomena we have described.

The main process stemming from the existence of
deeply bound states is the three-body recombina-
tion, which will inevitably lead to losses, as it also
does for neutral Bose polarons. The timescale for
such losses can be estimated with the classical tra-
jectory result for the three-body recombination rate
constantK3 ' 2.51[α5/m2/(kBT )3]1/4

:
,
::::::

which
:::::

can
:::

be

::::::::
expressed

:::
as

::::::::::::::::::::::::::::::
K3 ' 12.52 ~

mr
(R?)

4
(E/E?)

−3/4
:
and the

decay rate given by γ = K3n
2 [54, 55]. Here, the

static polarizability of the atom, α, is connected to the

dispersion coefficient as C4 = αe2

2
1

4πε0
with e being the

electron charge and ε0 the vacuum permittivity. While
for thermal gases

:::::
While

:::
for

::
a
::::::::
thermal

:::
gas

:::::
with

:::::::
density

::::::::::::
n = 1012cm−3

:::::
and

::::::::
collision

:::::::
energies

:::
of

::::
the

::::::
order

::
of

::
a

:::::::::
milikelvin this gives lifetimes of the order of a second

:::::
(with

::::::::::
γ ≈ 2.4 Hz), an ion in a high density BEC is subject

to much stronger losses . We
:::
(for

:::::::::::::
n = 1014cm−3

:::
at

::::
1µK

::::::::::::
γ ≈ 140 kHz).

:::::
This

:::::
leads

:::
to

:::::::::::::
submilisecond

:::::
time

::::::
scales,

:::::
which

:::::::::::
nevertheless

:::
are

:::::::::
sufficient

::
to

:::::::
observe

:::
ion

:::::::::
dynamics

::
in

:::::::::::
experiments

::::
[19].

:::::
For

::::
our

:::
gas

::::::::::
parameter

::::::::::
γ ≈ 600 Hz

:::::
while

::::
the

::::::::::::
characteristic

:::::::
energy

::::::::::::::::
E?/~ = 1646 Hz.

:::::
We

::::::
further

:
note that the quantum three-body recombination

involving an ion is still not fully understood and may de-
viate from the classical result, e.g. it may feature min-
ima for certain parameters (similar to loss recombination
minima found for neutral atoms [56]). In particular, the
dependence on the binding energy of the weakly bound
state should be similar to the case of van der Waals in-
teractions for which K3 ∝ a4ai.

For sufficiently small loss ratesthe signature of the
formation of the polaron and

:
,
::::::::::::
experimental

:::::::::
detection

::
of

::::
the

:::::::::
signatures

:::
of

::::
the

:
many-body bound state can

be observed in experiment in which the ion is slowly
dragged through the gas due to

:::::::::
formation

:::
can

:::
be

:::::::
realized

:::
e.g.

::::
by

::::::::
injecting

::::
the

:::
ion

:::::
into

:
a
:::::

cold
::::
gas

::::
and

::::::::
dragging

:
it
:::::::

slowly
:::::
using

:
an external electric field,

:::
as

::::
has

:::::
been

::::
done

:::
in

::::
[19]. The response of the impurity

:::
and

::::
the

::::::::
measured

:::::
time

:::
of

::::::
arrival

:::
at

::::
the

::::::::
detector

:
will then be

::::::
mainly

:
determined by the dramatically increased effec-

tive mass of the impurity. High
:::::::::
Moreover,

::::
one

::::
can

:::
use

::::::
precise

:::
in

::::
situ

:::::::
imaging

:::::::::
techniques

:::::
with

:::::
high spatio-

temporal resolution enabling these measurements, as
well as the observation of the

:::
such

:::
as

::::
the

:::::
setup

::::::
based

::
on

::::::::
charged

::::::::
particle

::::::
optics

:::::
[57]

::
to

::::::
study

::::
the

::::::::
increase

::
in

::::
the

::::
gas

::::::::::
correlation

:::::::::
functions

:::::
due

:::
to

::::
the

::::::::
presence

::
of

::::
the

::::
ion

::::::
which

:::::::
would

:::::::
provide

::::::::
further

:::::::::::
information

:::::
about

:
MBBS formation dynamicscan be provided .

::::::::::::::
Radiofrequency

::::
and

::::::::::
microwave

::::::::::::
spectroscopy

:::::::::
developed

::
for

:::::::
neutral

::::::
gases

:::
can

:::
be

:::::
used

::::
here

:::
as

::::
well,

:::
in

:::::::::
particular

::
to

::::::::::
investigate

:::
the

:::::::::
polaronic

::::::::
branch.

::::::::
Finally,

:::::::::
quenching

::::::::
protocols

:::
in

::::::
which

:::
one

:::::::
makes

:::
use

:::
of

::::
the

:::
ion

:::::::::
hyperfine

::::::::
structure

::::
can

:::
be

:::::::::::::
implemented.

:::::::::
Taking

:::::::::
advantage

:::
of

:::
the

:::::::::
existence

::
of

:::::::::
Feshbach

:::::::::::
resonances,

::::
one

::::
can

:::::::
transfer

::
an

::::::::
initially

:::::::::::::
noninteracting

::::
ion

:::
to

:
a
:::::::::::::

superposition
:::::
state

::::
with

::::::
vastly

:::::::::
different

::::::::::
scattering

:::::::
lengths

:::::
and

::::::::
perform

:::::::
Ramsey

:::::::::::
spectroscopy

::::::::
[58, 59]

::
to

:::::::::
determine e.g. by means

of recently developed charged-particle optics setup [? ]

:::
the

::::::::::::
quasiparticle

:::::::
weight.

:::::
We

::::
note

:::::
that

:::::
most

:::
of

:::::
these

:::::::::
techniques

::::
still

::::::::
require

:::::
some

::::::::::::
experimental

::::::::
progress

:::
in

:::::::
reaching

:::::::::::
sufficiently

::::
low

::::::::::::
temperatures

:::
to

::::::::
increase

::::
the

:::::::::
interaction

:::::::
times

::::
and

::::
the

::::::::
number

::::
of

:::::::
partial

::::::
waves

:::::::
involved.

In conclusion, we have investigated the ground-state
properties of an ion immersed in a dilute Bose gas by
means of Quantum Monte Carlo and Bogolyubov tech-
niques. We identify three physically different regimes
in the many-body system depending on the presence
of the bound state in the atom-ion scattering problem:
(i) polaronic branch, two-body bound state is absent;
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(ii) many-body bound-state (MBBS) branch, two-body
bound state is present; (iii) unitarity, at the thresh-
old of the appearance of the bound state. In the po-
laronic branch, many-body dressing leads to formation
of a quasiparticle (ionic polaron). In the limit of weak
interactions, variational methods developed for neutral
atomic polarons accurately predict the energy of the sys-
tem. Close to the unitarity limit the calculations unveil
strong deviations from the approximate results. Finally,
the MBBS branch is characterized by the formation of a
large cluster (consisting of hundreds of atoms) around the
ion, which in this case possesses a large effective mass,
thus providing a strong analogy between the MBBS and
a localized state. These quite distinct regimes should
give rise to different timescales in the impurity dynamics
observed in experiment, especially when combined with
Feshbach resonances that allow for tuning the position of
the last bound state [60]. Our results highlight the crucial

:::::::::
important role of the interatomic interactions which are
strongly enhanced in the proximity of the ion, driving the
system away from the weakly interacting regime to a non-
trivial state characterized by the interplay of long-range
interaction and high local density. Apart from the atomic
gases, these findings can be relevant to condensed mat-
ter systems such as electron-doped exciton gases in het-
erostructures of two-dimensional semiconductors, where
the long-range electron-exciton interaction also has long-
range character which cannot be neglected for typical
experimental parameters [61].

Methods.
Values of the parameters of the regularized potential.

For the sake of numerical convenience we employed in
our Monte Carlo simulations the regularized atom-ion
potential (3) of the main text. We only considered a few
specific values of the pair (b, c) that are characteristic
of the three regimes outlined in the diagram of Fig. 1
of the main text: weak-coupling Bose polaron (WCP),
many-body bound state (MBBS), and strong-coupling
Bose polaron (SCP). In table I we list those values in
units of R? and E?.

Trial wave functions for the Monte Carlo simulations.
The trial wave functions are written as a pair product

of Jastrow functions for both atom-atom and atom-ion
correlations, featuring appropriate short and long-range
asymptotic behavior [see Eq. (4) of the main text].

The short-range part of both the atom-atom and atom-
ion Jastrow function is taken from the lowest energy so-
lution of the two-body scattering problem

− ~2

2mr
∇2ψ(r) + V rai(r)ψ(r) = Eψ(r), (8)

where V rai(r) is the corresponding interaction potential
of Eq. (3) of the main text and mr is the reduced mass.
For the atom-atom wave function we choose scattering
states with energy E = 0, whereas for the atom-ion wave
function we use the exact two-body bound state with

aai [R?] b [R?] c [R?] Eb (m = M) [E?] Regime

-1.0 0.0023 0.1511 -35 MBBS
0.1 0.0033 0.1847 -9.0 MBBS
0.9 0.0200 0.2256 -1.6 MBBS
10 0.0858 0.2910 0.0 MBBS
97 0.0846 0.3034 0.0 SCP

1086 0.0903 0.3044 0.0 SCP
-1.1 0.0023 0.4738 NBS SCP
-0.2 0.0023 0.9070 NBS WCP

TABLE I. Parameters
:
of

:::
the

:::::::::
regularized

::::::::
atom-ion

:::::::::
interaction

::::::::
potential.

::::::::::
Parameters

:
b and c of the regularized atom-ion

interaction with corresponding 3D
::::::::::::::
three-dimensional

:
s-wave

atom-ion scattering length, aai, at zero-energy and energy
of the uppermost energy level Eb, i.e. the most loosely
bound state. NBS means no bound state is supported. The
acronyms in the last column refer to: many-body bound state
(MBBS); strong-coupling polaron (SCP); weak-coupling po-
laron (WCP). Close to unitarity the sensitivity of the b and
c parameters is higher and therefore more digits are pro-
vided. The length and energy scales R? ≡

√
mC4/~2 and

E? ≡ ~4/(m2C4), respectively, are defined with respect to
mr = m/2, i.e. equal atom and ion masses.

energy Eb when a bound state is present.

The long-range (large distance) part of the Jastrow
term is taken from hydrodynamic theory. As shown by
Reatto and Chester in Ref. [62], if phonons are the lowest-
energy excitations in the system, the long-range behavior
of the many-body wave function can be factorized as a
pair-product of Jastrow functions.

The atom-atom potential Vaa in Eq. (2) of the main
text is modelled by a repulsive soft-sphere potential:
Vaa(r) = V0 > 0, for r < Rss with Rss = 0.1R?

and zero elsewhere. The height V0 is chosen to repro-
duce the desired value of the s-wave atom-atom scat-
tering length aaa = 0.02R? � R?. We further choose
the density n(R?)3 = 0.1288, resulting in gas parameter
n(aaa)3 = 10−6.

Mean-field estimate of the effective mass and critical
number. In order to formulate a self-consistent mean-
field theory in the ion’s frame of reference, the following
wave function can be used [27]

ΨG(R,k; r1, . . . , rN ) ∝ eik·R
N∏
n=1

f(rn −R)eis(rn−R). (9)

Here, k is the ion momentum, f2 the relative probability
distribution of the position of the ion and the bosons,
while ∇rs(r −R) indicates the fluid velocity relative to
the ion. Performing functional variation of the expecta-
tion value of the Hamiltonian (2) of the main text, one
obtains the ion effective mass [27, 63]:

M?

mr
= 1 +

M

M +mr

Rµ
R0

4πR3
µn. (10)
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Here, R0 is a hard-core radius physically meaning the dis-
tance at which the atom-ion interaction starts to deviate
from its long-range C4

r4 asymptote. Typically R0 ∼ 10 a0
with a0 ' 53 pm being the Bohr radius. Furthermore,
the distance Rµ is defined as |Vai(Rµ)| = µ with µ = gn
the chemical potential of the bosons, from which we get

Rµ = R?
(
E?

µ

)1/4

. (11)

For the pair 87Rb/87Rb+ with an atomic density n =
1014 cm−3 we obtain Rµ ' 1.2R? ' 6061a0. Given this,
the formula (10) predicts an effective mass M? ' 8.4 ×
103M . Thus, the critical number of bosons bound to the
ion can be estimated as: Nc = M?/m− 1 with M? given
by Eq. (10) and M = m.

Another estimate of Nc can be attained via rate and
Gross-Pitaevskii equations [20]. Denoting the binding en-
ergy of the two-body bound state as Eb = −~2/(2mra

2
ai),

it can be shown that in the presence of many weakly in-
teracting bosons Eb(Nb) = Eb[maai/(6mraaaNb)]2/3. At
thermal equilibrium one would expect that

|Eb(Nc)| = kBT ⇒ Nc =
1

6

m

mr

aai
aaa

(
Eb

kBT

)3/2

. (12)

For the pair 87Rb/87Rb+ with aai = R? (i.e. Eb ≡ E?),
aaa = 100 a0, and T = 10 nK (� E?/kB), we obtain
a critical number of Nc ' 372. This number is much
smaller than the previous estimate (10), but also does
not agree with our numerical simulations. Moreover, our
study predicts that Nc emerges already at zero tempera-
ture. Thus, it is not only determined by charge hopping
and thermal fluctuations, but also by interaction-induced
correlations. Finally, the formula (12) predicts a reliance
on the atom-ion scattering length as a4ai, while our many-
body analysis [see Fig. 2(a)] shows that there is almost
no dependence on that length parameter. This finding
highlights once more how semi-classical estimates can be
quantitatively erroneous.

:::
The

:::::
data

:::::
that

:::::::
support

::::
the

:::::::
findings

:::
of

::::
this

::::::
study

:::
are

::::::::
available

::::
from

::::
the

::::::::::::
corresponding

:::::::
author

:::::
upon

:::::::::
reasonable

:::::::
request.
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and F. Meinert, Phys. Rev. Lett. 120, 193401 (2018).

http://dx.doi.org/ 10.1103/PhysRevLett.117.055301
http://dx.doi.org/ 10.1103/PhysRevLett.117.055301
http://dx.doi.org/10.1103/PhysRevLett.117.055302
http://dx.doi.org/ 10.1126/science.aax5850
http://dx.doi.org/ 10.1103/PhysRevLett.102.230402
http://dx.doi.org/ 10.1103/PhysRevLett.108.235302
http://dx.doi.org/10.1103/PhysRevLett.118.083602
http://dx.doi.org/10.1103/PhysRevLett.120.083401
http://dx.doi.org/10.1103/PhysRevLett.120.083401
http://dx.doi.org/ 10.1103/PhysRevLett.121.213601
http://dx.doi.org/ 10.1103/PhysRevLett.121.213601
http://dx.doi.org/ 10.1103/RevModPhys.91.035001
http://dx.doi.org/ 10.1103/RevModPhys.91.035001
http://dx.doi.org/ 10.1103/PhysRevLett.120.193401


9

[17] T. Feldker, H. Fürst, H. Hirzler, N. V. Ewald, M. Maz-
zanti, D. Wiater, M. Tomza, and R. Gerritsma, Nat.
Phys. 16, 413 (2020).

[18] J. Schmidt, P. Weckesser, F. Thielemann, T. Schaetz,
and L. Karpa, Phys. Rev. Lett. 124, 053402 (2020).

[19] T. Dieterle, M. Berngruber, C. Hölzl, R. Löw,
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Rev. X 11, 011036 (2021).

[58] M. Knap, A. Shashi, Y. Nishida, A. Imambekov, D. A.
Abanin, and E. Demler, Phys. Rev. X 2, 041020 (2012).

[59] R. Schmidt, M. Knap, D. A. Ivanov, J.-S. You, M. Cetina,
and E. Demler, Reports on Progress in Physics 81,
024401 (2018).

[60] Z. Idziaszek, T. Calarco, P. S. Julienne, and A. Simoni,
Phys. Rev. A 79, 010702(R) (2009).

[61] C. Fey, P. Schmelcher, A. Imamoglu, and R. Schmidt,
Phys. Rev. B 101, 195417 (2020).

[62] L. Reatto and G. V. Chester, Phys. Rev. 155, 88 (1967).
[63] E. P. Gross, Journal of Mathematical Physics 4, 195

(1963).

[1] G. D. Mahan, Many-Particle Physics (Kluver Academic
/ Plenum Publisher, New York, 2000).

[2] A. S. Alexandrov, Theory of superconductivity: from
weak to strong coupling (CRC Press, 2003).

[3] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
80, 885 (2008).

[4] M.-G. Hu, M. J. Van de Graaff, D. Kedar, J. P. Corson,
E. A. Cornell, and D. S. Jin, Phys. Rev. Lett. 117,
055301 (2016).

[5] N. B. Jørgensen, L. Wacker, K. T. Skalmstang, M. M.
Parish, J. Levinsen, R. S. Christensen, G. M. Bruun,
and J. J. Arlt, Phys. Rev. Lett. 117, 055302 (2016).

[6] Z. Z. Yan, Y. Ni, C. Robens, and M. W. Zwierlein,
Science 368, 190 (2020).

[7] A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwier-
lein, Phys. Rev. Lett. 102, 230402 (2009).

[8] Y. Zhang, W. Ong, I. Arakelyan, and J. E. Thomas,
Phys. Rev. Lett. 108, 235302 (2012).

[9] M. Koschorreck, D. Pertot, E. Vogt, B. Fröhlich, M. Fel-
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N. Zuber, R. Löw, T. Pfau, and F. Meinert, Phys. Rev.

Lett. 121, 193401 (2018).
[39] L. A. Pena Ardila and S. Giorgini, Phys. Rev. A 92,

033612 (2015).
[40] L. A. Pena Ardila and S. Giorgini, Phys. Rev. A 94,

063640 (2016).
[41] L. A. Peña Ardila, N. B. Jørgensen, T. Pohl, S. Giorgini,

G. M. Bruun, and J. J. Arlt, Phys. Rev. A 99, 063607
(2019).

[42] A. Camacho-Guardian, L. A. Pena Ardila, T. Pohl, and
G. M. Bruun, Phys. Rev. Lett. 121, 013401 (2018).

[43] L. A. P. n. Ardila, G. E. Astrakharchik, and S. Giorgini,
Phys. Rev. Research 2, 023405 (2020).

[44] G. E. Astrakharchik and I. Brouzos, Phys. Rev. A 88,
021602(R) (2013).

[45] F. Grusdt, G. E. Astrakharchik, and E. Demler, New
Journal of Physics 19, 103035 (2017).

[46] L. Parisi and S. Giorgini, Phys. Rev. A 95, 023619 (2017).
[47] Hereafter, we denote the ion’s characteristics such as

position and mass with capital Latin letters, while for
atom ones we use small Latin letters. Furthermore, bold
symbol refers to three-dimensional vectors and cursive
ones the respective norms.

[48] M. Krych and Z. Idziaszek, Phys. Rev. A 91, 023430
(2015).

[49] A. Bijl, Physica 7, 869 (1940).
[50] R. Jastrow, Phys. Rev. 98, 1479 (1955).
[51] S. P. Rath and R. Schmidt, Phys. Rev. A 88, 053632

(2013).
[52] Y. E. Shchadilova, R. Schmidt, F. Grusdt, and E. Dem-

ler, Phys. Rev. Lett. 117, 113002 (2016).
[53] N.-E. Guenther, R. Schmidt, G. M. Bruun, V. Gurarie,

and P. Massignan, “Mobile impurity in a bose-einstein
condensate and the orthogonality catastrophe,” (2020),
arXiv:2004.07166 [cond-mat.quant-gas].
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