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Supplementary Figure 1 | Diversity of laser-induced magnetisation dynamics for different polarisations.

The responses of the Ni bulk magnetisation varies depending on the type polarizations, linear (π) or circular

(σ), as well as in which direction or plane the electric field oscillates (indicated on the legend). The shapes

of the pulse are given in Eqs. (4) and (5) of the main text. The reference value for the laser field intensity is

E∗ = 9.7×108Vm−1. The pulse has 300 fs width and the values of the electric-field intensity were chosen

such that the maximum field is the same in all linear cases, which is
√
2 times larger than the circular ones.

Even then, the response for a circular polarization in the plane that includes the initial polarization is the

largest, as it also induces rotation of the magnetisation vector. The legend also indicates the corresponding

absorbed laser fluence.
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Supplementary Figure 2 | Magnetisation switching while the pulse still active. The z−component

of the magnetization of Ni bulk present distinct behaviour when pumped with varied laser intensi-

ties E∗ = 9.7× 108Vm−1, and a fixed width of 200 fs (in grey). For higher field intensities (as the

blue and violet curves), switching may occur while the pulse is still active.
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SUPPLEMENTARY NOTES

Supplementary Note 1 | Theoretical approach

In this Note, we detail the methods used in our code—TITAN, developed to describe time-dependent

transport and angular momentum properties in nanostructures 1–4—, including how the ground state

is obtained, as well as the propagation method we use to investigate the evolution of observables

when a laser pulse is applied to the system. As Ni bulk has only one atom in the unit cell, the site

indices are omitted.

Ground state The ground state of the system is described by the Hamiltonian

H = Hkin +Hxc +Hsoc , (1)

where

Hkin =
1

N

∑
k

∑
µνσ

tµν(k)ĉ
†
µσ(k)ĉνσ(k) , (2)

is the tight-binding Hamiltonian describing the electronic hoppings, with ĉ†µσ(k) and ĉνσ(k) being

the creation and annihilation operators of electrons with spin σ and wave-vector k in the orbitals

µ and ν, respectively. We employ an spd basis set. The tight-binding parameters tµν(k) were

obtained by fitting paramagnetic band structures from first-principles calculations up to second

nearest neighbors 5, within the two-center approximation 6. N is the number of k-points in the full

Brillouin Zone, which we use as an equally-spaced 22× 22× 22 mesh.

The electron-electron interaction is characterized by a local Hubbard-like 7 interaction within
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the Lowde-Windsor approximation 8, resulting in the mean-field exchange-correlation term

Hxc = − 1

N

∑
k

∑
µ∈d
σσ′

U

2

{
mασα

σσ′ +
∑
ν∈d

δnν (2δσσ′δµν − δσσ′)

}
c†µσ(k)cµσ′(k) . (3)

Here, U = 1.3 eV is the local effective Coulomb interaction 9, mα and σα are the α-component of

the magnetic moment vector (summed over the d orbitals) and of the Pauli matrix, respectively. δnν

is the change in the occupation of orbital ν compared to the first principles calculations included

in Eq. (2). mα and δnµ are determined self-consistently.

Finally, the coupling between the spin and orbital degrees of freedom are included in the

d-electrons through an atomic spin-orbit interaction described by

Hsoc =
1

N

∑
µν
σσ′

∑
α

λLα
µνS

α
σσ′ ĉ†µσ(k)ĉνσ′(k) , (4)

where Lα and Sα are the α components of the orbital and spin angular momentum operators,

respectively. The magnitude of the SOI λ is also obtained from first-principles calculations 10.

Real-time propagation The magnetic moments are excited by a laser pulse whose electric field

is given by E(t) = −dA(t)/dt. The shapes of the vector potential for the different polarizations

are given by Eqs. (4) and (5) of the main text. The Hamiltonian that describes the interaction with

the laser can be written as

Hlaser(t) =−
∫

dr ĴC(r, t) ·A(t)

=− e

h̄N

∑
k,σ

∑
µν

∇ktµν(k) ·A(t)c†µσ(k, t)cνσ(k, t) .

(5)

where ĴC(r, t) is the current density operator, e is the electronic charge.

5



The evolution of the observables of the system are then obtained by first diagonalizing the

ground state Hamiltonian H in Eq. (1), and then propagating the respective eigenvectors over time.

The eigenvalues and eigenstates of the time-independent Schrödinger equation (at t = 0) are given

by

H|ψn(t = 0)⟩ = En|ψn(t = 0)⟩ (6)

The pure states |ψn⟩ can be written using a static basis set (in our case, the basis of local

atomic orbitals used in the tight-binding model) |ϕi⟩ as

|ψn⟩ =
∑
i

Cn
i |ϕi⟩ (7)

Inserting (7) into the time-dependent Schrödinger equation, one gets an equation for the

time-dependent coefficients Cn
i (t)

−ih̄ ∂
∂t

∑
i

Cn
i (t)|ϕi⟩ = H(t)

∑
i

Cn
i (t)|ϕi⟩ (8)

It is convenient to rewrite the coefficients Cn(t) in terms of another set of C̃n
i given by

Cn
i = e

−i
h̄
EntC̃n

i (which does not affect the probability density). With this modification, the time-

dependent Schrödinger equation becomes

ih̄
∂

∂t

∑
i

C̃n
i (t)|ϕi⟩ = (H(t)− En)

∑
i

C̃n
i (t)|ϕi⟩ (9)

By making En as a reference, the evolution of the coefficients C̃n
i (t) becomes more stable, and

also improves the variable step-size algorithm 11.
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The time-dependent Schrodinger equation (9) is a first order differential equation of the form

dyµ
dt

= fµ(t, y1, ..., yN) (10)

with y = ψ and f(t,y) = − i
h̄
i[H(t) + Hlaser(t)]ψ(t). Note that the application of the laser field

causes changes to the magnetization and to the occupation, such that the exchange-correlation term

in Eq. (3) becomes time-dependent, and Hxc(t) must be updated after every time step.

For a reliable prediction of the solution, the propagation method has to be symplectic, sym-

metric, and stable12. The symplecticity is associated with the notion of conservation of energy,

while symmetry is related to time reversal. Stability refers to the dependence of the error on the in-

tegration step-size. If the method is insufficiently stable for a certain problem, the step size should

be much smaller than the evolution of the solution for it to be accurate. This slows down the in-

tegrator and might reduce its efficiency when working with large systems 13. Different methods

can be used for step-size selection. One easy and flexible way is the use of two methods to esti-

mate the local error. The method we have chosen uses an embedded pair of Runge-Kutta methods

to save computational costs, namely the embedded-implicit Runge-Kutta method of fourth order

(imRK4) 14.

In this method, the time interval [t0, t1] = [t, t+h] is discretized into s steps (i.e., ti = t+cih,

i = 1...s). At the end of the interval, the method yields two solutions, y1 and ŷ1, that have the
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following form:

y1 = y0 + h
s∑

j=1

bjf
(
t0 + cjh, gj

)
(11)

ŷ1 = y0 + h

s∑
j=1

b̂jf
(
t0 + cjh, gj

)
(12)

with the vector gi ∈ Cs satisfying

gi = y0 + h
s∑

j=1

aijf
(
t0 + cjh, gj

)
, i = 1, . . . , s (13)

The coefficients ci, bi, b̂i and ai are given in the Butcher table (see Ref. 15).

The previous set of non-linear equations are then linearized using the Newton’s iterative

method 16. The absolute difference between the two solutions is used in the calculation of errors

and prediction of the new step size 17. If the solutions are accepted (i.e., if they are inside the

chosen margin of error), the obtained states representing one of the solutions |ψn,k(t)⟩ are used to

calculate the expectation value of different observables as a function of time, as follows:

⟨Ô(t)⟩ =
∑
n,k

fn,k⟨ψn,k(t)|Ô(t)|ψn,k(t)⟩. (14)

Here fn,k are the occupations of the eigenstates in the ground state according to the Fermi-Dirac

distribution (which are kept constant), and the sub-notation (n,k) runs over the number of elec-

tronic bands and the number of k-points, respectively, and indicates the original ground state wave

function from which its time-evolved counterpart was obtained.
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