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Supplementary Note 1: Gauge-invariant Density Matrix

To study the Multi-Dimensional Coherent Terahertz (MDC-THz) spectra, including light-wave acceleration non-
linear quantum transport effects, of superconducting (SC) systems, we consider the real space Bogolubov–de Gennes
Hamiltonian of s-wave superconductors [S1, S2]

H =
∑
α

∫
d3xψ†

α(x) [ε(p+ eA(x, t))− µ− eϕ(x, t) + µH(x) + µα
F(x)]ψα(x)

−
∫

d3x
[
∆(x)ψ†

↑(x)ψ
†
↓(x) + h.c.

]
. (S1)

Here, ψ†
α(x) and ψα(x) are the electron creation and annihilation operators with spin index α. The SC complex order

parameter is ∆(x) = −2 g⟨ψ↓(x)ψ↑(x)⟩ = |∆(x)|eiθ(x), where g is the effective electron–electron pairing interaction
and θ(x) is the phase. The energy band dispersion is ε(p), where p = −i∇x (h̄=1) is the momentum operator;
−e is the electron charge and µ denotes the equilibrium chemical potential. The Fock energy µα

F(x) ensures charge
conservation, while the Hartree energy µH(x) moves the phase mode of the SC order parameter above the QP
continuum [S2]. Excitation by THz electromagnetic fields is described by the direct coupling of the vector potential
A(x, t) and the scalar potential ϕ(x, t).

The coherent dynamics is analyzed by using the gauge-invariant density-matrix theory of Ref. [S2]. In addition to
the Anderson pseudo-spin precession treated by BCS pseudo-spin models, we include quantum transport, condensate
acceleration and spatial variation contributions to the THz nonlinear response. All of the above contributions are
treated by using a transformed Wigner function which, unlike for the original density matrix, is invariant under gauge
transformation [S2]:

ρ̃(k,R) =

∫
d3r exp

[
−ie

∫ 1
2

0

dλA(R+ λ r, t) · rσ3

]
× ⟨Ψ†(R+

r

2
)Ψ(R− r

2
))⟩

× exp

[
−ie

∫ 0

− 1
2

dλA(R+ λ r, t) · rσ3

]
e−ik·r . (S2)

Here, Ψ(x) = (ψ↑(x), ψ
†
↓(x))

T is the field operator in Nambu space and σ3 is the Pauli spin matrix. R = (x+ x′)/2
and r = x− x′ are the Cooper pair center-of-mass and relative coordinates, respectively.

The non-equilibrium coherent dynamics of superconductors is traditionally described by using the pseudo-spin
formalism first introduced by Anderson in Ref. [S3]. Here, the pseudo-spin operators are not related to the physical
spin operators. Instead, up and down pseudo-spins correspond to filled and empty electronic k-states. Canted (tilted)
spins describe a quantum superposition of up and down pseudo-spin states. To make the connection with previously
used pseudo-spin models, we expand the gauge-invariant density matrix Eq. (S2) in terms of pseudo-spin operators
defined at every k-point similar to the standard qubit analysis [S3]:

ρ̃(k,R) =

3∑
n=0

ρ̃n(k,R)σn , (S3)

where σn, n = 1 · · · 3, are the Pauli spin matrices, σ0 is the unit matrix, and ρ̃n(k,R) define the pseudo-spin
components, which here also depend on the condensate center-of-mass spatial coordinate R.

For the purposes of this article, we have expanded the full spatially-dependent equations of motion derived in
Ref. [S2] by assuming a weak R-dependence relative to the Cooper pair size. This expansion can be truncated
whenever the characteristic length for the spatial variation of the SC condensate (center-of-mass) is larger than the
coherence length of the Cooper pair (relative motion). Here, we assume a weak spatial dependence and neglect all
terms of order O(∇R ·∇k) and higher in the gradient expansion, which is a reasonable approximation for BCS s-wave
superconductors. For simplicity, we also neglected the Hartree potential, whose effect on the nonlinear response is
small for weak spatial dependence. By eliminating the order parameter phase via a gauge transformation [S2], we
obtain a set of gauge-invariant coupled equations of motion which describe a nonlinearly driven moving condensate
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quantum state with time-dependent center-of-mass momentum pS(t) [S2]:

∂tρ̃0(k) = −eE · ∇kρ̃3(k) + |∆| [ρ̃2(k+ pS/2)− ρ̃2(k− pS/2)] ,

∂tρ̃1(k) = − [ε(k− pS/2) + ε(k+ pS/2) + 2µeff(t) + 2µF(t)] ρ̃2(k) ,

∂tρ̃2(k) = [ε(k− pS/2) + ε(k+ pS/2) + 2µeff(t) + 2µF(t)] ρ̃1(k)

+ |∆| [ρ̃3(k+ pS/2) + ρ̃3(k− pS/2)− ρ̃0(k− pS/2) + ρ̃0(k+ pS/2)] ,

∂tρ̃3(k) = −eE · ∇kρ̃0(k)− |∆| [ρ̃2(k+ pS/2) + ρ̃2(k− pS/2)] , (S4)

where

|∆| = −2g
∑
k

ρ̃1(k) (S5)

is the time-dependent SC order parameter amplitude. For a homogeneous system, the effective chemical potential

µeff(t) = e ϕ(t) +
1

2

∂

∂t
θ(t)− µ (S6)

is determined by the time-dependent SC order parameter phase θ(t) and scalar potential ϕ(t), while the superfluid
momentum pS(t) resulting from Cooper pair acceleration by the light-wave electric field is given by [S2]

∂tpS(t) = 2 eE(t) → pS(t) = −2 eA(t) . (S7)

We now compare the above equations of motion to previously studied Anderson pseudo-spin models. Unlike for the
latter BCS models, here Eq. (S4) is gauge invariant. It is determined by the order parameter amplitude |∆(t)|, which
remains real at all times in our calculation. The dynamics of the order parameter phase θ(t) modifies the effective
potential µeff(t), Eq. (S6). Equation (S4) includes quantum transport terms such as eE · ∇kρ̃3(k), which are absent
in previous pseudo-spin models and displace the electronic populations in k-space due to condensate acceleration.
The coupling between ρ̃0(k) and ρ̃3(k) in Eq. (S4) arises from inversion symmetry (IS) breaking induced by the field
E(t), whose experimental consequences were studied in [S4–S6]. In the above equations, phase space filling (PSF)
contributions arise from the spin-↑ and spin-↓ non-equilibrium electron populations expressed as ρ̃3(k+pS/2)+ ρ̃0(k+
pS/2) and ρ̃0(k− pS/2)− ρ̃3(k− pS/2). These electron populations of the moving condensate non-equilibrium state
are displaced in k-space by the time-dependent condensate momentum pS(t). Unlike in previously studied Anderson
pseudo-spin models, here the THz-time-periodic condensate acceleration couples different pseudo-spins, i.e., couples
the density matrices ρ̃(k) at k and ρ̃(k±pS(t)/2) at k±pS(t)/2. For time-periodic driving, such light-induced coupling
of the pseudo-spins at different points in momentum space connected by the oscillating condensate momentum leads
to Floquet momentum sidebands. For strong E,pS ̸= 0, the light-induced dynamical breaking of the equilibrium
IS described by the above equations can result in symmetry-forbidden harmonics, gapless superconductivity, and
quasi-particle quantum phases controlled by strong THz field pulses [S2]. These theoretical predictions were verified
experimentally over long time intervals of 100’s ps [S4–S6].

To interpret the numerical results obtained by solving the full gauge-invariant equations of motion, we derive a
pseudo-spin oscillator model similar to Anderson’s original analysis [S3], by taking the second time derivative of
Eq. (S4) and using the condensate acceleration Eq. (S7):

∂2t ρ̃2(k) + [ε(k− pS/2) + ε(k+ pS/2) + 2(µeff + µF)]
2
ρ̃2(k) + 4|∆(t)|2ρ̃2(k)

= Sk(t) + ∂t|∆(t)| [ρ̃3(k+ pS/2) + ρ̃3(k− pS/2)− ρ̃0(k− pS/2) + ρ̃0(k+ pS/2)] + 2ρ̃1(k) ∂t [µeff(t) + µF(t)] .
(S8)

The above equation describes pseudo-spin oscillators at each different k-point. In equilibrium, similar equations
were derived by Anderson [S3] to describe pseudo-spin flips and Higgs collective modes within the random phase
approximation. Here, a THz-light-driven rotation of the pseudo-spins away from their equilibrium orientations along
the x–z plane leads to time-periodic pseudo-spin y-component modulation, ρ̃2(k) ̸= 0 (ρ̃2 = 0 in equilibrium). The last
term on the left-hand side (lhs) describes parametric driving of pseudo-spin oscillations by time-dependent changes
in the excitation energy gap determined by the time-dependent order parameter amplitude |∆(t)|.
The right-hand side (rhs) of Eq. (S8) contains three source terms that extend previous works [S7–S9]. The first

term is proportional to the laser electric field E(t):

Sk(t) = ρ̃1(k) eE(t) ·
[
∇k+pS/2 ε(k+ pS/2)−∇k−pS/2 ε(k− pS/2)

]
− |∆(t)|

(
eE(t) · ∇k+pS/2

)
[ρ̃0(k+ pS/2) + ρ̃3(k+ pS/2)]

− |∆(t)|
(
eE(t) · ∇k−pS/2

)
[ρ̃0(k− pS/2)− ρ̃3(k− pS/2)] . (S9)
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In the above equation, the first line corresponds to the previously studied longitudinal pseudo-magnetic field compo-
nent, which drives Anderson pseudo-spin precession [S7]. The second and third lines are quantum transport terms
due to condensate acceleration by E(t), absent in previous Anderson pseudo-spin models. These terms couple the
pseudo-spin at k with the pseudo-spins at k± pS/2. They have the form ∝ eE · ∇knσ(k), where nσ, σ =↑, ↓ are the
spin-up and spin-down electron populations, and enhance the effects of interest here.

The dynamics of the order parameter amplitude |∆(t)| determines the second term on the rhs of Eq. (S8). This
order parameter amplitude describes the transverse component of the pseudo-magnetic field [S3] arising from the
mean field coupling of the pseudo-spins [S3]. The amplitude dynamics is determined by the equation of motion

∂t|∆(t)| = 2g
∑
k′

[ε(k′ + pS/2) + ε(k′ − pS/2)] ρ̃2(k
′) , (S10)

which, similar to Anderson’s equilibrium theory [S3], describes the collective effects that characterize a SC state. Such
collective behavior arises from the coupling of all k-point pseudo-spins by the pairing interaction. By expanding the
above equation of motion to second order in pS(t), we obtain

∂t|∆(t)| = 4g
∑
k′

ε(k′) ρ̃2(k
′) +

g

2

∑
k′

(pS · ∇k′)2 ε(k′) ρ̃2(k
′) +O(p4

S) , (S11)

with initial condition |∆(t = −∞)| = ∆0. For sufficiently strong time-periodic driving, p2
S(t) on the rhs of Eq. (S11)

leads to sidebands of the equilibrium SC excitations, determined by the oscillations of the condensate momentum.
As seen from Eq. (S7), these sidebands are found at frequencies determined by the spectrum of A2(t), which is
peaked at frequencies ∼ 2ωp. The coherent nonlinear coupling introduced by the ∝ p2

S(t) term in Eq. (S11) results
in significant enhancement of low-frequency spectral changes in ∆(ω) with increasing pump field (Fig. 1). The
above driving term is modified by PSF effects as in Eq. (S8), determined by the non-equilibrium electron populations
ρ̃0(k+pS/2)+ρ̃3(k+pS/2) and ρ̃0(k−pS/2)−ρ̃3(k−pS/2). Compared to previous Anderson pseudo-spin models [S7–
S9], these populations are displaced in momentum space by pS(t)/2 due to acceleration of the superconductor into a
moving (current-flowing) condensate state with finite center-of-mass momentum. Finally, the last source term on the
rhs of Eq. (S8) drives pseudo-spin oscillations due to the time-dependent changes in the effective potential and Fock

energy, which depend on the SC order parameter phase dynamics ∂2θ(t)
∂t2 .

Supplementary Note 2: Pump-driven non-equilibrium quantum state

First, we consider the time evolution of the pseudo-spins driven by a single strong pump pulse. We decompose the
density matrix ρ̃p(k) describing the pump-driven quantum state as

ρ̃p(k) = ρ̃0(k) + ∆ρ̃(k) , (S12)

where ρ̃0(k) is the density matrix of the equilibrium state and ∆ρ̃(k) describes the pump-induced change. Noting
that ρ̃02(k) = 0 for the stationary superconductor state, we describe the precession of the pseudo-spins away from
their equilibrium x− z plane orientations, ρ̃p2(k) = ∆ρ̃2(k), by combining Eqs. (S8) and (S10):

∂2t ∆ρ̃2(k) + [ε(k− pS/2) + ε(k+ pS/2) + 2(µeff + µF)]
2
p ∆ρ̃2(k) + 4|∆p(t)|2∆ρ̃2(k)

− 2g [ρ̃3(k+ pS/2) + ρ̃3(k− pS/2)− ρ̃0(k− pS/2) + ρ̃0(k+ pS/2)]p

∑
k′

[ε(k′ + ps/2) + ε(k′ − ps/2)]p ∆ρ̃2(k
′)

= Sp
k(t) . (S13)

The above equation of motion extends Anderson’s random phase approximation treatment of pseudo-spin canting to
the non-perturbative, THz-time-periodic driven superconductor regime [S3]. The field-dependent source term Sp

k(t),
Eq. (S9), drives the pseudo-spin precession. Our main results here can be captured by neglecting the quantum
transport contributions to this driving term, and by expanding the electron band dispersion in powers of the center-
of-mass momentum pp

S:

Sp
k(t) ≈ ρ̃p1(k) (eE

p(t) · ∇k)(p
p
S · ∇k) ε(k) . (S14)

This source term corresponds to the pseudo-magnetic field component along the z-axis considered in previous
works [S7, S8]. It describes time-periodic driving of pseudo-spin precession at frequencies ∼ 2ωp, where ωp is the
pump frequency.
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Figure S1. Dynamics and spectra of ∆ρ̃2(k) for different k pseudo-spins. a, c, and e Dynamics of ∆ρ̃2(k) for 3 different
wavevectors k using a pump peak electric field of 160 kV cm−1. b, d, and f The corresponding spectra. The spectra show three
main peaks centered at the QP excitation energy (solid red vertical line), the two-photon absorption frequency ω = 2ωp ∼ 2∆0

(dashed cyan vertical line), and the Higgs collective mode frequency ωH (solid black vertical line).

The lhs of Eq. (S13) describes the excitations of the pump-dressed non-equilibrium SC state. This driven state is
characterized by time-dependent parameters |∆p(t)|, pp

S(t), and µeff(t). The third-order nonlinear response is obtained
by approximating these parameters by their equilibrium values, i.e., by setting pp

S = 0, |∆p| = ∆0, and ρ̃
p(t) ≈ ρ̃0

on the lhs. The solution of Eq. (S13) can then be expressed in terms of a response function [S9, S10], similar to the
description of exciton–exciton correlations in semiconductor quantum wells [S11, S12]. This response function, defined
by the lhs of Eq. (S13), describes quantum dynamics and memory effects governed by the elementary excitations of
the SC system, i.e., by QPs and Higgs collective modes.

Two non-equilibrium effects become important for driving pseudo-spin dynamics in Eq. (S13) for sufficiently strong
pump field strengths. First, the ultrafast dynamics of the SC order parameter amplitude |∆p(t)|, which determines
the pseudo-spin oscillator frequency. Figure 1 shows that |∆p(t)| decreases from its equilibrium value during few
cycles of light-wave field oscillations, and then fluctuates at longer times around a new asymptotic value ∆∞ < ∆0.
This non-instantaneous order parameter dynamics in the pump-dressed system changes the quasi-particle energy gap
and the oscillator frequency in Eq. (S13) (third term on the lhs), which results in parametric driving of pseudo-spin
oscillations. Second, the coupling of the pseudo-spin (density matrix) at k with the pseudo-spins at k± pS/2 results
in Floquet momentum sidebands for strong THz-time-periodic driving.

To interpret our full numerical calculation, the time evolution of the density matrix component ∆ρ̃2(k), which
describes pseudo-spin canting from the equilibrium direction driven by a multi-cycle THz-time-periodic pump, is
calculated by solving Eq. (S13). The results are shown in Fig. S1 for three different k-point pseudo-spins. With
increasing driving field, the asymptotic value of the order parameter of the pump-driven non-equilibrium state,
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∆∞ < ∆0, changes significantly as compared to its equilibrium value. The calculated Fourier transformed ∆ρp2(ω,k)
then displays three distinct spectral peaks as a function of frequency ω, which depend on k. These three main peaks

are centered at (i) the QP excitation energy Ek = 2

√
[ε(k) + µeff + µF]

2
+ |∆∞|2 (solid red vertical line), (ii) the two-

photon absorption frequency ω = 2ωp ∼ 2∆0 (dashed cyan vertical line), which describes second harmonic generation
determined by the time-periodic multi-cycle field, and (iii) the Higgs collective mode frequency ωH = 2∆∞ < 2∆0

(solid black vertical line). Additional Floquet sidebands are suppressed for the chosen intermediate pump field
strengths here. When the QP excitations are resonantly excited by the pump E2 spectrum, the ∆ρp2(ω,k) calculated
spectra are dominated by the peak at the QP excitation energy Ek with k close to the minimum of the excitation
gap, where the density of states is maximum (first panel of Fig. S1). By varying k, the second panel shows a QP peak
at the position of the second harmonic generation peak. The last panel shows a QP peak around 3.4 meV, which is
weakly excited by the pump pulse. The above variations in the excitation of the different k Rabi oscillators are due
to the change in resonance between the QP excitation energies (pseudo-spin harmonic oscillator frequencies) Ek and
2ωp when varying k. Since Fig. S1 shows that the main contribution to the pseudo-spin oscillations comes from QP
excitations close to the minimum excitation energy ∼ ωH, where the density of states is enhanced, in the interpretation
of the MDC-THz spectral peaks, we use the fact that the dynamics of ∆ρ̃2(k) is dominated by frequencies ∼ ωH (Higgs
or QP excitations, field-dependent) and ∼ 2ωp (mostly QP excitations, fixed by the laser frequency).

Supplementary Note 3: Phase Coherent Pump–Probe Spectra

To model the MDC-THz coherent nonlinear spectroscopy experiments of particular interest here, we consider the
experimental collinear pump–probe geometry of Refs. [S5, S13] first introduced to study semiconductors. A thin SC
film is excited by collinearly propagating THz pump and probe pulses arriving at times tp and tpro. The SC response
to these two phase-locked pulses is measured by the transmitted E-field Epp(t, τ), which depends on the sampling
time t (real time) and on the time delay τ = tp − tpro determining the phase difference between the two driving
electromagnetic fields (coherence time). As we discuss below, the important signals at high excitation come from the
temporal regime where the two pulses overlap in time. In this case, interference between pump and probe excitations
is coherently controlled by tuning τ . For a thin film geometry, we obtain from Maxwell’s equations the following
expression for the transmitted E-field [S2]:

E(t) = E(t)− µ0c

2n
J(t) , (S15)

where E(t) is the applied electric field, n is the refractive index, and

J = 2 e
∑
k

∇kε(k) ρ̃0(k) (S16)

is the gauge-invariant current. The latter supercurrent is expressed exactly in terms of the gauge-invariant density
matrix ρ̃ calculated here, so that the current explicitly obeys the continuity equation [S2]. In terms of the original
density matrix ρ, the calculated gauge-invariant density matrix ρ̃ is expressed as

ρ̃0(k) =
1

2
[ρ11(k− pS/2) + ρ22(k+ pS/2)]

= ρ0(k) +
1

2

[
−pS

2
· ∇kρ11(k) +

pS

2
· ∇kρ22(k)

]
+O(p2

S)

≈ ρ0(k)−
1

2
pS · ∇kρ3(k) , (S17)

which reproduces previous results [S7, S8] after expansion of the full results obtained here.
The MDC-THz spectra are determined by calculating the Fourier transformation of the nonlinear differential trans-

mission, after subtracting from the response to two phase-coherent pulses the nonlinear responses to the individual
pump and probe pulses. In this way, we obtain the correlated nonlinear signal

ENL(t, τ) = Epp(t, τ)− Ep(t, τ)− Epro(t), (S18)

where Epp(t, τ) is the transmitted field for excitation by both pulses and Epro(t) and Ep(t, τ) are the transmitted
fields for excitation by the probe (tpro = 0) and pump (tp = τ) fields alone. It is important to note that the above
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correlated signal cannot be interpreted in terms of the nonlinear response to a single pulse. Instead, it comes from
coupled excitations by two pulses, whose relative phase is controlled by the time delay τ . The MDC-THz spectra are
determined by the two-dimensional Fourier transformation ENL(ω), where ω = (ωt, ωτ ) is the 2D “frequency vector”.
A well-defined phase difference between pump and probe results in sharp peaks along the vertical ωτ -axis.
As seen from Eqs. (S15) and (S16), the experimentally measured correlated nonlinear signal Eq. (S18) is determined

by the dynamics of ∆ρ̃0(k) = ρ̃pp0 (k) − ρ̃p0(k) − ρ̃pro0 (k), where the density matrix ρ̃pp(k) describes the quantum
state driven by both pump and probe phase-coherent pulses, and ρ̃p(k) (ρ̃pro(k)) describes the state excited by the
pump (probe) field alone. We consider a strong narrowband pump pulse with spectrum centered at ωp = (ω0,−ω0)
(Fig. 1b). To simplify the interpretation of the numerical results and to resonantly drive both Higgs and quasiparticle
excitations, we consider here a weaker broadband probe pulse with frequencies ωpro = (ω0 ±∆ωpro, 0), where ∆ωpro

denotes the frequency width (Fig. 1b). Similar to previous studies in semiconductors [S11, S12, S14], the nonlinear
signal measured in the experiment can then be interpreted by considering the linear response of the pump-driven
quantum state, described by the density matrix ρ̃p, to a weak probe:

ρ̃pp(k) = ρ̃p(k) + δρ̃pp(k) , (S19)

where the probe induces the change δρ̃pp in the pump-driven non-equilibrium state. The latter is obtained from the
following equation of motion, linearized in terms of the probe, which determines the photocurrent Eq. (S16):

∂tδρ̃
pp
0 (k) =

1

2
|∆p(t)|ppro

S ·
[
∇k+pp

S/2
∆ρ̃p2(k+ pp

S/2) +∇k−pp
S/2

∆ρ̃p2(k− pp
S/2)

]
− eEpro · ∇kρ̃

p
3(k)− eEp · ∇kδρ̃

pp
3 (k)

+ |∆p(t)| [δρ̃pp2 (k+ pp
S/2)− δρ̃pp2 (k− pp

S/2)]

+ δ∆pp(t) [∆ρ̃
p
2(k+ pp

S/2)−∆ρ̃p2(k− pp
S/2)] +O([ppro

S ]2) . (S20)

The above equation extends previous nonlinear results in a gauge-invariant way and also treats strong fields and
interference effects between pump and probe excitations that overlap in time. There are four terms on the rhs. The
first term determines the pump–probe signal calculated in previous works [S9] and does not rely on interference between
pump and probe. It contributes when the probe arrives after the pump and does not require any temporal overlap
between the two pulses. Our calculations in Fig. 2 show that this term governs the signal for low fields. Noting from
Fig. S1 that the frequency components of the pump-driven ∆ρ̃p2(k) are centered at frequencies ∼ 2ωp (QP excitations)
and ∼ ωH (Higgs mode or charge density fluctuations close to the SC gap), this term generates MDC-THz peaks at
four-wave mixing (FWM) and third harmonic generation (3HG) 2D frequencies, 2ωp±ωpro = (2ω0±ω0±∆ωpro,−2ω0)
and ωH ± ωpro = (ωH ± ω0 ± ∆ωpro,−ωH). However, it does not produce the strong CWM peaks discussed in the
main text. The second term on the rhs of Eq. (S20) comes from quantum transport effects, which enhance the
spectral peaks. However, the main MDC-THz spectral features of interest here come from the last two terms on the
rhs of Eq. (S20), which contribute when the pump and probe excitations overlap in time. These contributions are
controlled by the phase coherence time τ . The third term is the most important one, described by the equation of
motion obtained by linearizing Eq. (S13) with respect to the weak probe without approximation of the strong pump
excitation [S11, S12, S14]:

∂2t δρ̃
pp
2 (k) + [ε(k− pS/2) + ε(k+ pS/2) + 2(µeff + µF)]

2
p δρ̃pp2 (k) + 4 |∆p(t)|2 δρ̃pp2 (k)

= δS
(2)
k (t, τ)− δ [ε(k+ pS/2) + ε(k− pS/2) + 2(µeff + µF)]

2
∆ρ̃p2(k)

+ ∂tδ|∆pp(t, τ)| [ρ̃3(k+ pS/2) + ρ̃3(k− pS/2)− ρ̃0(k− pS/2) + ρ̃0(k+ pS/2)]p

− 4 δ|∆pp(t, τ)|2∆ρ̃p2(k)
+ ∂t|∆p(t)| δ [ρ̃3(k+ pS/2) + ρ̃3(k− pS/2)− ρ̃0(k− pS/2) + ρ̃0(k+ pS/2)] . (S21)

In the above equation, the probe-induced fluctuations of the pump-driven order parameter, δ|∆pp(t, τ)| = |∆pp(t, τ)|−
|∆p(t, τ)|, are determined by the equation of motion

∂tδ|∆pp(t, τ)| = 2g
∑
k′

[ε(k′ + ps/2) + ε(k′ − ps/2)]p δρ̃
pp
2 (k′)

+ 2g
∑
k′

δ [ε(k′ + ps/2) + ε(k′ − ps/2)] ∆ρ̃
p
2(k

′) . (S22)
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Figure S2. ENL(ω) as a function of ωτ at fixed ωt = ω0. The result of the full calculation (shaded area) is compared with

the results obtained by switching off δS
(2)
k (t) (solid line). Vertical dashed lines indicate PP and FWM signals. Unlike for the

FWM peak at ωτ = −2ω0, the PP peak at ωτ = 0 is strongly reduced when δS(2) = 0, which indicates that it mainly comes
from sum-frequency Raman processes also discussed before.

Substituting the above equation in Eq. (S21) and using the property δ|∆pp(t, τ)|2 = 2|∆p(t, τ)|δ|∆pp(t, τ)|, we obtain

∂2t δρ̃
pp
2 (k) + [ε(k− pS/2) + ε(k+ pS/2) + 2(µeff + µF)]

2
p δρ̃pp2 (k) + 4 |∆p|2 δρ̃pp2 (k)

− 2g [ρ̃3(k+ pS/2) + ρ̃3(k− pS/2)− ρ̃0(k− pS/2) + ρ̃0(k+ pS/2)]p

∑
k′

[ε(k′ + ps/2) + ε(k′ − ps/2)]p δρ̃pp2 (k′)

= δS
(2)
k (t, τ) + δSR

k (t, τ)

− 8|∆p| ∆ρ̃p2(k) δ|∆pp(t, τ)|
+ ∂t|∆p| δ [ρ̃3(k+ pS/2) + ρ̃3(k− pS/2)− ρ̃0(k− pS/2) + ρ̃0(k+ pS/2)] . (S23)

The lhs of the above equation describes the response function of the pump-driven system as discussed in the previous
section. Below we discuss the role of the different source terms on the rhs of Eq. (S23), which require phase-coherent
two-pulse photoexcitation and vanish if we neglect the coupling between excitations by different pulses.

I. Sum-frequency-Raman: Third-Order Responses

We start with the first term on the rhs of Eq. (S23), δS
(2)
k (t, τ) = Spp

k (t, τ)−Sp
k(t, τ). This is obtained from Eq. (S9)

and determines the third-order response. The dominant two-photon excitation process described by this term depends
on the interference between pump and probe fields, controlled by the coherence time τ :

δS
(2)
k (t, τ) ≈ ρ̃p1(k) [(eEp · ∇k)(p

pro
S · ∇k) + (eEpro · ∇k)(p

p
S · ∇k)] ε(k) . (S24)

This source term drives the pseudo-spin oscillators via the sum-frequency Raman process ωp + ωpro = (2ω0 ±
∆ωpro,−ω0). Its contribution to the MDC-THz signal is given by the third term on the rhs of Eq. (S20). This process
should be contrasted to the two-photon charge fluctuation processes considered in Ref. [S7, S8]. The latter are induced
by the pump field alone and contribute when the probe arrives later, via the first term on the rhs of Eq. (S20), without
pump–probe interference. δS(2) generates MDC-THz signals at 2D frequencies ωpro+ωp−ωp = (ω0±∆ωpro, 0) (pump–
probe, PP), and ωpro + ωp + ωp = (3ω0 ±∆ωpro,−2ω0) (pump–probe third-harmonic generation, 3HG). In contrast,
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Figure S3. ENL(ω) as a function of ωτ at fixed ωt = ωH − ω0. The result of the full calculation (shaded area) is compared
with the results obtained by switching off the first term on the rhs of Eq. (S25) (red line), second term on the rhs of Eq. (S25)
(orange line), third term on the rhs of Eq. (S23) (purple line), and fourth term on the rhs of Eq. (S23) (green line). CFWM
(CPP) peak is indicated by a dashed vertical black (blue) line. Switching off the vertex correction Raman contribution (orange
line) reduces the signals, while the non-interacting Raman contribution to Eq. (S25) (red line) only slightly modifies the signals.
Most importantly, the correlated wave-mixing signals identified here dominate over third- and fifth-order nonlinear processes
discussed before, as seen by the dramatic suppression of the peaks when the parametric driving seventh-order response processes
(purple line) proposed here are switched off. The latter higher correlation seventh-order nonlinear processes change the ωτ

spectral profile in a qualitative way, unlike for previously discussed third- and fifth-order conventional Raman processes. These
results indicate that, by looking at the slice ωt = ωH −ω0 as a function of ωτ and separating it from the slice ωt = 2ω0 −ω0 by
increasing the pump driving, we can identify correlated wave-mixing signals arising from light-induced SC correlations, further
distinguished from their temperature dependence discussed in the main text.

the two-photon excitations induced by the pump alone contribute at 2D frequencies 2ωp −ωpro = (ω0 ±∆ωpro,−2ω0)
(four-wave mixing, FWM) and 2ωp + ωpro = (3ω0 ±∆ωpro,−2ω0) (3HG) via the first term on the rhs of Eq. (S20).
To distinguish between the above one-pulse and two-pulse two-photon processes, we fix ωt = ω0 and plot in Fig. S2
the calculated ENL(ω) as a function of ωτ . The result of the full calculation (shaded area) is compared with the result
obtained by switching off δS(2) in Eq. (S23) (solid line). Figure S2 demonstrates two strong peaks, at ωτ = 0,−2ω0,
and two weaker peaks, at ωτ = ±ω0. The latter weaker peaks increase with probe field as O(E2

pro) and are generated

by ωp +ωpro −ωpro and ωpro +ωpro −ωp processes. The stronger peaks arise from the PP, ωpro +ωp −ωp (δS(2)) and
FWM, 2ωp − ωpro, processes. FWM and PP are distinguished via ωτ in Fig. S3. Our numerical results show that,
unlike for the peak at ωτ = −2ω0, the peak at ωτ = 0 is strongly reduced when δS(2) = 0. Figure S2 also shows that
the rest of the source terms on the rhs of Eq. (S23) play a minor role at ωτ = 0. This ωτ = 0 peak reflects the PP
process. On the other hand, the peak at 2ωp − ωpro is not affected by δS(2) and is generated by the FWM process.

We conclude that one can isolate and separate experimentally the different third-order nonlinear response contri-
butions discussed in previous works, by varying the frequency ωτ corresponding to the coherence time τ while fixing
ωt = ω0, the frequency corresponding to the real time t. In particular, by looking at the MDC-THz slice at ωt = ω0,
the peak at ωτ = 0 arises from sum-frequency Raman processes, which require pump–probe interference (δS(2)), while
the peak at ωτ = −2ω0 arises from two-photon excitations by the pump pulse alone, which is sensed by a probe
pulse arriving later than the pump. All third-order nonlinear processes discussed above and the third-order nonlinear
signals, which emerge when the excitation energy gap, ωH = 2∆∞ < 2ω0 ∼ 2∆0, shifts with increasing pump field,
are summarized in Tables S1 and S2.



10

II. Difference-Frequency-Raman: Fifth-Order Responses

The second source term on the rhs of Eq. (S23) generates fifth-order SC responses via difference-frequency Raman
nonlinear processes with vertex corrections:

δSR
k (t, τ) = −δ [ε(k+ pS/2) + ε(k− pS/2) + 2(µeff + µF)]

2
∆ρ̃p2(k)

+ 2g [ρ̃3(k+ pS/2) + ρ̃3(k− pS/2)− ρ̃0(k− pS/2) + ρ̃0(k+ pS/2)]p

∑
k′

δ [ε(k′ + ps/2) + ε(k′ − ps/2)] ∆ρ̃
p
2(k

′) ,

(S25)

where

δ [ε(k− pS/2) + ε(k+ pS/2)] =
1

2
ppro
S ·

[
∇k+pS/2 ε(k+ pS/2)−∇k−pS/2 ε(k− pS/2)

]
p

≈ 1

2
(pp

S · ∇k) (p
pro
S · ∇k) ε(k) (S26)

drives difference-frequency Raman excitations, ±(ωp − ωpro). δS
R
k (t, τ) can be expanded perturbatively and is pro-

portional to the pump and probe condensate momenta. In the absence of the electromagnetic propagation effects
and spatial dependencies discussed in our previous works, these Cooper pair center-of-mass momenta oscillate in time
during the pulse without any static components. Recalling that ∆ρ̃p2(k) mainly oscillates at frequencies ∼ ωH and
∼ 2ωp (Fig. S1), we see that this difference-frequency Raman source term resonantly drives pseudo-spin precession at
frequencies ω = 2ωp ± (ωpro − ωp) = (2ω0 ±∆ωpro,−2ω0 ± ω0) and ω = ωH ± (ωpro − ωp) = (ωH ±∆ωpro,±ω0 − ωH)
similar to previous works. The first process gives MDC-THz peaks at ω = ωp ± (ωpro − ωp) (PP and FWM) and
ω = 2ωp + ωpro (3HG). For strong pump fields such that ωH < 2ωp, new peaks emerge, determined by the field-
dependent SC excitation energies ∼ ωH rather than by the laser frequency (Fig. S1). The latter MDC-THz signals
arise from the fifth-order processes ωH + ωpro + ωp − ωp, ωH − ωpro + ωp − ωp, ωH − 2ωp + ωpro, and ωH +2ωp − ωpro.
Figure S3 demonstrates the contributions to these processes to MDC-THz peaks, by plotting ENL(ω) as a function
of ωτ for fixed ωt = ωH − ω0. The result of our full calculation (shaded area) shows two additional strong peaks,
at ωτ = −ωH and ωτ = 2ω0 − ωH , which are generated by the CFWM and CPP seventh-order processes proposed
here. Note that the sum-frequency third-order processes described by δS(2) have minimal contribution to these
peaks. Figure S3 shows the contribution of δS(R) by comparing the result of the full calculation (shaded area) with
the results obtained by switching off the non-interacting contribution to the Raman source term δSR

k (first term in
Eq. (S25), red line) or the vertex correction (second term in Eq. (S25), orange line). The main effect of the vertex
correction is an enhancement of the signal, while the non-interacting contribution only slightly modifies the signals.
The interaction-induced vertex corrections, Eq. (S25), must therefore be included in order to consistently describe the
overall nonlinear contribution in a gauge-invariant way [S2]. The weaker peak centered at ωτ = ω0 − ωH in Fig. S3
comes from the Raman process (ωH − ωp − ωpro) + ωpro = (ωH − ω0, ω0 − ωH). While third- and fifth-order Raman
and two-photon nonlinear processes have also been discussed in previous works, the enhanced resolution offered by
2D frequency space allows us to distinguish these conventional coherent nonlinear processes from the light-induced
SC correlations leading to new CWM peaks with distinct driving field and temperature dependences, discussed in the
main text, whose physical origin is analyzed next. The fifth-order Raman nonlinear processes discussed above are
listed in Table S3.

III. Parametric pseudo-spin oscillator driving: Seventh-order responses and higher correlations (CWM)

The third term on the rhs of Eq. (S23) describes parametric driving of pseudo-spin oscillations resulting by the
coherent pump–probe modulation of the SC order parameter amplitude, δ|∆pp(t, τ)| = |∆pp(t, τ)| − |∆p(t, τ)|, which
is controlled by the coherence time τ . δ|∆pp(t, τ)| changes the pseudo-spin oscillation frequencies, described by
self-consistently solving Eqs. (S22) and (S23). The parametric driving of the pseudo-spin oscillator results from the
modulation of the SC energy gap, which, unlike in semiconductors, is determined by the off-diagonal long range order in
the driven non-equilibrium SC state. Figure S4 shows the calculated dynamics and corresponding 2D Fourier transform
of δ|∆pp(t, τ)|. The full result (left column) is compared with the result obtained by setting pS = 0 in Eq. (S22)
(right column). First, the Higgs collective mode contribution to δ|∆pp(ω)| is the peak located at ω = (ωH,−ωH).
This Higgs mode contribution arises to order O(E2

pro), from the process ωH + ωpro − ωpro. For the weak probe fields
chosen here, the main contribution to δ|∆pp(ω)| in Fig. S4 comes from the Raman processes ±(ωH −ωp −ωpro) (cyan
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a

dc

b

Figure S4. Dynamics and spectra of δ∆pp(t, τ). The full result (a and c) is compared with the result obtained by setting
pS = 0 in Eq. (S22) (b and d). Vertical dashed line indicates ωt = ωH, while ωτ = ωH − ω0 and ωτ = ω0 are marked by
horizontal dashed cyan and black lines, respectively.

line) and ±(2ωp − ωp − ωpro) (black line). The latter two processes manifest themselves as two separate satellite
peaks in the Fourier transform of Fig. S4, located at ωt ∼ 0. For the fields considered here, these peaks in δ|∆pp(ω)|
can be described by expanding Eq. (S22) to order O(p2

S), which gives a coherent nonlinear coupling between ωH and
ωH − ωp − ωpro. The first process, ±(ωpro + ωp − ωH) = ±(2ω0 − ωH ±∆ωpro, ωH − ω0) (cyan line), is described by
the second term on the rhs of Eq. (S22). The first term on the rhs of Eq. (S22) also contributes to this peak via the
higher order process ±(ωH + ωp − ωpro − 2ωp). The second process, ±(2ωp − ωpro − ωp) = ±(∆ωpro, ω0), arises from
the second term in Eq. (S22) and leads to a slightly smaller peak in Fig. S4 (black line). We conclude that the main
contribution to the coherent order parameter modulation δ|∆pp(t, τ)| arises from the difference-frequency nonlinear
process involving a Higgs or QP coherence ∆ρ̃p2 (ωH or 2ωp SC excitation) and a two-photon excitation ωp + ωpro

controlled by the coherence time τ . The above difference-frequency nonlinear Raman processes are analogous to the
coherent exciton population photogeneration process that determines the exciton–exciton interaction coherent signal
in semiconductors [S11, S12], or the photogeneration of collective excitations that determines the coherent signal of
the two-dimensional electron gas [S15, S16]. While the photogeneration of coherent exciton populations is a second
order process, here coherent order parameter modulation is a fourth-order process, since it involves creation and
annihilation of two-photon SC excitations. Coherent control of the SC order parameter via τ manifests itself via the
shift of the ωt ∼ 0 spectral peaks along the vertical ωτ axis, by ωτ = ±(ωH − ω0) and ωτ = ±ω0 in Fig. S4.
To interpret the contributions to MDC-THz coming from such SC order parameter pump–probe coherent modula-

tion, we stress that, for weak probe, the relevant source term on the rhs of Eq. (S23) is ∝ ∆ρ̃p2 δ|∆pp|. Unlike for the
Raman processes driven by δS(2) and δS(R), which follow the laser pulse time dependence (Eqs. (S24) and (S26)), the
contribution of ∆ρ̃p2 δ|∆pp| is determined by the coupling of all k-state pseudo-spins by the pairing interaction. While
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such collective effects also give rise to the Higgs elementary excitation, here they enhance the nonlinear response
determined via light-induced interactions between different elementary excitations. This interaction-induced highly
nonlinear signal may be thought of as analogous to the interaction of the exciton polarization P with the coherent
population grating δn, which describes the ∝ Pδn exciton–exciton interaction signal in semiconductors. Similarly
here, ∆ρ̃p2 δ|∆pp| describes the interaction of an elementary excitation of the pump-driven state, ∆ρ̃p2 , with the SC
excitation in δ|∆pp|, Eq. (S22). Importantly, the distinct temperature and field dependence of δ|∆pp| leads to distinct
behavior of the MDC-THz peaks generated by this term (Fig. 3). Note that the last term in Eq. (S23) also originates
from collective effects (Higgs mode), whose role is discussed in the next section.

∆ρ̃p2 δ|∆pp| drives δρ̃pp2 (k, ω) via the sixth-order processes 2ωp ± (ωpro + ωp − ωH), ωH ± (ωpro + ωp − ωH), 2ωp ±
(ωpro + ωp − 2ωp), and ωH ± (ωpro + ωp − 2ωp). The above nonlinear processes involve correlations between two
pump-driven SC excitations, Higgs or QP (ωH or 2ωp), and a two-photon excitation ωpro + ωp. In contrast, δS(2)

involves a sum-frequency excitation ωpro + ωp (Eq. (S24)) and δS(R) involves a single SC excitation (ωH or 2ωp)
coupled with a difference-frequency Raman excitation ±(ωpro −ωp). From the third term on the rhs of Eq. (S20), we
obtain that ∆ρ̃p2 δ|∆pp| generates MDC-THz peaks in Fig. 2g close to PP frequencies, ωpro + (2ωp − ωH) + (ωp − ωp)
and ωpro + (ωH −ωH) + (ωp −ωp), 3HG frequencies, 2ωp +ωpro + (2ωp −ωH) and 2ωp +ωpro + (ωH −ωH), and FWM
frequencies, ωH − ωpro + (2ωp − 2ωp) and ωH − ωpro + ωH − 2ωp. For sufficiently high driving fields, the above higher
correlation processes dominate the conventional FWM, PP, and 3HG signals. This is clearly seen in Fig. S3, which
shows the spectrum as a function of ωτ at the FWM frequency ωt = ωH − ω0 (compare the results in Fig. S3 with
those obtained for δ|∆pp| = 0, purple line). Most important, however, for distinguishing the proposed light-induced
higher correlation processes experimentally is that that they lead to new CWM peaks at frequencies where there
is no contribution for weak driving fields. In particular, strong CWM peaks are clearly seen in Figs. 2f and g, at
2ωp + ωH − ωpro + (ωp − ωp) (strong CWM peak) and at 2ωH − ωpro + (ωp − ωp) (weaker CWM peak). These new
CWM peaks are located at ωt ∼ ωH + ω0 and 2ωH − ω0, which is comparable to the frequency ωt corresponding to
3HG processes. However, the CWM peaks are well separated from the 3HG peaks along the vertical ωτ axis, by the
field-dependent ωτ = −2ω0 − ωH and ωτ = −2ωH. This shift along the axis corresponding to the coherence time
provides a clear experimental prediction of how to observe higher correlations in the MDC-THz spectra. Finally,
weaker peaks are also observed at ωH+ωpro+2ωp−2ωp and ωpro+ωH−2ωp+ωp−ωp. We conclude that MDC-THz
for phase-locked pump–probe THz pulses and 2D frequency space provide super-resolution for imaging light-driven
SC quantum states controlled via the relative phase of the two electromagnetic fields. All seventh-order nonlinear
processes discussed above are summarized in Table S4.

IV. Inversion-Symmetry-Forbidden Nonlinear Responses (ISWM)

The difference-frequency Raman pump–probe processes ±(ωp −ωpro) become directly observable in the MDC-THz
spectra when the THz dynamical breaking of inversion symmetry persists after the pulse. The theoretical prediction of
equilibrium-symmetry-forbidden spectral peaks above critical driving field when electromagnetic propagation effects
are included to break IS was confirmed experimentally [S5, S6]. In particular, we have already showed, by using
the theory of Ref. [S2], that THz dynamical breaking of inversion symmetry arises from difference-frequency Raman
coherent nonlinear processes when light-wave electromagnetic propagation effects inside a thin SC film are included
in the calculation. Figure 4 shows the MDC-THz spectra obtained in this way. Electromagnetic propagation inside
the nonlinear SC medium results in the coherent photogeneration of a symmetry-breaking nonlinear dc supercurrent
through difference-frequency Raman processes. This dc nonlinear photocurrent is controlled coherently via the dynam-
ical interplay of pump-induced nonlinear response with light-wave propagation inside the SC system. Electromagnetic
propagation inside the thin SC film is included in our calculation by self-consistently solving Maxwell’s equations and
the gauge-invariant SC Bloch equations [S2]. The photogenerated dc supercurrent results in a ω = 0 component of
pp
S, in addition to the ω0 frequency in Eq. (S20), which persists well after the pulse in the realistic system. As a result

of such persisting inversion symmetry breaking, the Raman processes assisted by SC excitations, discussed above,
lead to new symmetry-forbidden seventh-order wave-mixing peaks in the MDC-THz spectra (ISWM). The latter are
separated in 2D frequency space from the rest of the peaks. In particular, with photoinduced inversion symmetry
breaking (IS), we obtain MDC-THz peaks at new frequencies ω = ωH ± (ωpro − ωp) = (ωH ±∆ωpro,±ω0 − ωH) and
ω = (ωH,−ωH). These even-order nonlinearity MDC-THz peaks are forbidden by the equilibrium symmetry, but are
clearly observed in the calculation of Fig. 4, where electromagnetic propagation effects are included. The dominant
IS MDC-THz peaks are listed in Table S5.

The above seventh-order wave-mixing processes directly reflect the Higgs collective mode. The latter uniquely
identifies a SC state, similar to the Meissner effect. As a result, the observation of wave-mixing peaks at ωt = ωH,
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including sidebands along the ωτ vertical axis, which can be used as the basis of a quantum sensor of non-equilibrium
superconductivity, with the super-resolution offered by MDC-THz imaging of quantum states.

Supplementary Note 4: High-order Correlation Contributions to the MDC-THz spectra

In this section, we summarize and distinguish between all the different processes that contribute to the MDC-THz
spectra, by separating their contributions in 2D frequency space to achieve super-resolution imaging of non-equilibrium
SC quantum states. While many different processes contribute at the same frequency, ωt the second frequency, ωτ ,
introduced by the pump–probe electromagnetic field relative phase allows us to separate and distinguish them. First,
we list the pump–probe (PP), four-wave-mixing (FWM) and third harmonic generation (3HG) nonlinear processes
previously discussed in the SC literature, which also contribute in semiconductor systems:

signal nonlinear process frequency space

PP ωp − ωp + ωpro (ω0, 0)
PP ωpro − ωpro + ωp (ω0,−ω0)

FWM 2ωp − ωpro (ω0,−2ω0)
FWM 2ωpro − ωp (ω0, ω0)
3HG 2ωpro + ωp (3ω0,−ω0)
3HG 2ωp + ωpro (3ω0,−2ω0)

Table S1. Third-order nonlinear processes.

Next we summarize the third-order signals which separate from the above signals when the excitation energy gap,
ωH = 2∆∞ < 2ω0 ∼ 2∆0, shifts with increasing pump field, as is the case in superconductors:

signal nonlinear process frequency space

FWM ωH − ωpro (ωH − ω0,−ωH)
3HG ωH + ωpro (ωH + ω0,−ωH)

Table S2. Third-order signals for ωH < 2ω0.

The difference-frequency-Raman process described by δSR
k leads to the fifth-order signals:

signal nonlinear process frequency space

PP (ωH − 2ωp) + ωpro (ωH − ω0,−ωH + 2ω0)
FWM ωH − ωpro + (ωp − ωp) (ωH − ω0,−ωH)
3HG ωH + ωpro + (ωp − ωp) (ωH + ω0,−ωH)
WM ωH + 2ωp − ωpro (ωH + ω0,−ωH − 2ω0)

Table S3. Fifth-order signals.

Next we summarize the main result of this paper: seventh-order correlation processes photogenerated by parametric
driving of the Anderson pseudo-spin oscillators by pump–probe coherent modulation of the SC order parameter. These
processes lead to strong CWM peaks discovered theoretically here, which dominate over the third-order and fifth-
order signals summarized above for strong pump fields, when ωH < 2∆0. Unlike for the previously discussed nonlinear
signals, the above seventh-order nonlinear responses are determined by interactions between two SC excitations (QP
and Higgs), which dominate above critical pump driving over the single-excitation dynamics that generates the third-
and fifth-order responses.
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signal nonlinear process frequency space

CPP (ωH − 2ωp) + (ωp − ωp) + ωpro (ωH − ω0,−ωH + 2ω0)
CPP (ωH − ωH) + (ωp − ωp) + ωpro (ω0, 0)

CFWM (ωH − 2ωp) + 2ωp − ωpro (ωH − ω0,−ωH)
CFWM (ωH − 2ωp) + ωH − ωpro (2ωH − 3ω0,−2ωH + 2ω0)
C3HG (ωH − 2ωp) + 2ωp + ωpro (ωH + ω0,−ωH)
C3HG (ωH − ωH) + 2ωp + ωpro (3ω0,−2ω0)
CWM ωH + 2ωp + (ωp − ωp)− ωpro (ωH + ω0,−ωH − 2ω0)
CWM 2ωH + (ωp − ωp)− ωpro (2ωH − ω0,−2ωH)

Table S4. Seventh-order correlation processes.

Finally, the following seventh-order processes, which contribute when light-induced inversion symmetry breaking
persists after the pulses, lead to new wave-mixing peaks at symmetry-forbidden frequencies (ISWM):

signal nonlinear process frequency space

ISWM (ωH − 2ωp) + ωp + ωpro (ωH,−ωH + ω0)
ISWM ωH + (ωp − ωp) + (ωpro − ωpro) (ωH,−ωH)
ISWM ωH + ωp + (ωp − ωp)− ωpro (ωH,−ωH − ω0)

Table S5. IS wave-mixing signals.

These seventh-order wave-mixing peaks at ωt = ωH represent direct signatures of the Higgs collective mode, which
characterizes non-equilibrium superconductivity in ways that become possible due to dynamical symmetry breaking
by light-wave electromagnetic propagation inside the SC sample. In particular, observation of these Higgs ISWM
peaks presents direct evidence of a moving condensate light-driven non-equilibrium SC state. We conclude that the
super-resolution offered by the MDC-THz spectra calculated here provides a sensor of light-induced correlations in
non-equilibrium quantum states.
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