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S1. Supplementary Methods

S1.1 Optical forces in the dipole approximation in front of epsilon-near-zero
materials

Dipole approximation (DA) is an easy and quick method to calculate optical forces on a nanoparticle. It is
valid when the size of the particle is very small compared to the wavelength of the field [1, 2, 3], and due to
its simplicity it provides useful results that can be compared with more complex light scattering approaches
(T-matrix, DDA) in the limit of small particles [4].

In DA the total optical force on a particle is usually split in a gradient force Fgrad and a scattering force
Fscat [3]:

~Fgrad(r, z) =
1

2

nm

cεm
Re(α)~∇I(r, z) (S 1)

~Fscat(r, z) =
nmσext

c
I(r, z)k̂ (S 2)

Here, k̂ is the wave propagation direction that for an axially directed plane wave coincides with the axial
coordinate ẑ, r is the radial coordinate, c is the speed of light, εm = ε0n

2
m is the medium permittivity, ε0

is the vacuum permittivity, nm is the refractive index of the medium, I(r, z) is the wave intensity, α is the
particle complex polarizability,

α =
α0

1− i k3α0

6πεm

(S 3)

where α0 is the polarizability in the static field limit (Clausius-Mossotti), and σext is the extinction cross-
section, related to the particle absorption and scattering [2, 3]:
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σext =
k

εm
Im(α) = σabs + σscat (S 4)

with k = 2πnm

λ the wave number and λ the wavelength.
Fgrad drives the particles towards the maximum of light intensity if they have positive polarizability;

otherwise, the particles are repelled from it. On the contrary, Fscat always pushes the particles along field
propagation direction, k̂. Another contribution to the total force may come from the spin-curl force [3], but
only when beams having spatial polarization gradients are used [5], which is not the case in this work.

Recently, it has been proposed [6] that in front of an ε-near-zero (ENZ) surface a point dipole source
is subjected to a near-field repulsive force, reminding the Meissner effect in superconductors [6]. In the
quasistatic approximation the near-field force is [6]:

Fenz(z) ≈ −σ 9

512π4c
Re

(
εs − εm

εs + εm

)(
λ

nmz

)4

Prad (S 5)

where σ is a prefactor accounting for the orientation of the dipole (σ=1, horizontal dipole; σ=2, vertical
dipole), εs is the complex dielectric permittivity of the surface, z is the height of the dipole above the surface
and Prad is the radiated power of the dipole in free space.

S1.1.1 Plane wave illumination

Here, we calculate the total optical force on a finite-size particle in front of an arbitrary reflective surface
in the dipole approximation. In this case, the exciting field EE is the superposition of the incident EI and
reflected ER electromagnetic waves which produces a standing wave that, in the simplest case of plane waves
travelling in the z direction, can be written as:

I(z) =
nmε0c

2
|EE(z)|2 =

nmε0c

2

∣∣∣E0e
−ik(z) + ρE0e

+ik(z)+iφ
∣∣∣2 = I0 + 2ρI0 cos(−2kz − φ) + ρ2I0 (S 6)

with I0 = nmε0cE
2
0/2. Note that z is taken positive in the direction of the reflected beam and ρ and φ are

the amplitude and phase, respectively, of the complex reflection coefficient of the surface rm = ρeiφ, which
is connected to the surface complex refraction index ñ = ns + iks by [7]

ρ =

√
(nm − ns)2 + k2

s

(nm + ns)2 + k2
s

φ = arctan

[
−2nmks

n2
m − n2

s − k2
s

]
(S 7)

Thus, the gradient force along the axial direction on a finite-size particle in front of a reflective surface
can be written as:

Fgrad(z) =
1

2

nm

cεm
Re(α)

dI(z)

dz
(S 8)

where z = h + a is the axial coordinate, h is the edge-to-edge distance of the particle from the surface and
a is the particle radius.

The scattering force is the sum of the opposite contributions due to the incident and reflected plane waves
[8, 7, 9]:

Fscat(z) =
nm

c
σextI0

(
ρ2 − 1

)
(S 9)

where ρ is related to the surface reflection coefficient |rm|2 =
∣∣ρeiφ∣∣2 = ρ2.

Finally, the near-field force on the particle is:

Fenz(z) ≈ −σ 9

512π4c
Re

(
εs − εm

εs + εm

)(
λ

nmz

)4

σscatI(z) (S 10)
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where the radiated power Prad=σextI(z) is related to the light scattering process.
We can now add Eqs. S8-S10 to calculate the total optical axial force on different types of particles in

front of dielectric, metallic or ENZ surfaces. As the dipole is induced by a linearly polarized wave travelling
ortogonally to the surface, an horizontal dipole (σ=1 in Eq. S10) is used. We used an incident light intensity
of about 5.6·108 W/m2, corresponding to a beam power of 10 mW and a beam waist of approx. 3.5 µm,
both of which can be realized in a typical experimental configuration in our laboratories. Stable equilibrium
points for the particle dynamics are found at z values in which the total optical force vanishes with a negative
slope. For small displacements from these points, the particles are subjected to a restoring force that can
be linearized as Fz ≈ −κzz, with κz the trap spring constant. We consider four types of model particles:
a homogeneous dielectric (polystyrene) spherical bead, a spherical particle with parameters equivalent to
an ENZ material, a spherical core-shell particle (SiO2 core, Ag shell), and an Ag prolate spheroid. The
different surfaces have been considered in the calculation by means of their complex refractive index values
at 560 nm; in the ENZ case, we have chosen ns ≈ 0.476 and ks ≈ 0.511 in order to obtain a real part of
complex permittivity close to zero and an imaginary part close to 0.5. The same values have been used for
the complex permittivity of the ENZ particle.

Dielectric bead. We calculated the optical forces under λ=560 nm in water (nm=1.33) on spherical
polystyrene (relative permittivity 2.54) beads having radii a=20, 50 and 100 nm. In this case, the Clausius-
Mossotti polarizability is [10]:

α0 = 4πεma
3

(
εp − εm

εp + 2εm

)
(S 11)

In Fig. 2a of the main text, the results (short dots) obtained in DA approximation for the 20 nm
dielectric bead as a function of its distance from the different surfaces are compared with those obtained
by using more sophisticated approaches (COMSOL, cicles, and T-matrix, continuous lines). A very good
agreement is clearly observed. In all approaches, the total optical force on small particles is modulated by
the sinusoidal term in the gradient force. It is larger (in the fN range) on more reflective surfaces and, going
from Ag to ENZ, it changes phase, leading to stable traps at different distances (arrows in Fig. 2).

The axial trap spring constants κENZ and κAg in front of ENZ and Ag surfaces have been calculated by
a linear fit of the total force at the equilibrium points. They are κENZ = 15 fN µm−1 and κAg = 27 fN
µm−1, that can be compared to the trap spring constant in the axial direction obtained in a standard optical
tweezers setup, based on a single Gaussian beam. In this case,

I(x, y, z) = I0
w2

0

w(z)2
exp

[
−2

x2 + y2

w(z)2

]
(S 12)

where w0 is the beam waist, w(z) = w0

√
1 + (z−z0)2

z2R
is the beam width at z, zR =

nmπw
2
0

λ is the Rayleigh

range, z0 is the position of the beam waist and I0 = 2P/πw2
0 is the on-axis intensity at the waist of a beam

having total power P . To evaluate the beam waist, we used the Abbe criterion, w0 = 0.5λ
NA , with NA=1.3

the numerical aperture, as in typical single beam optical tweezers. Eqs. S1 and S2 can be used to calculate
the axial component of the total force, and the corresponding kS at the equilibrium point is obtained by a
linear fit. We consider as before the particle in water and illuminated at λ=560 nm. We find, at the same
light intensity used in front of ENZ and Ag surfaces, a two order of magnitude lower κS = 0.24 fN µm−1

axial spring constant.
In Fig. S1 the optical forces in DA on dielectric beads at increasing bead radius (20, 50 and 100 nm) are

shown. The increasing size of the particles corresponds to larger optical forces and different trapping points.
However, the 100 nm bead is not trapped in front of glass surface, whereas it is trapped in front of ENZ and
Ag surfaces, whose higher reflectivity with respect glass surface better counteracts the scattering force due
to the incoming beam.

In Fig. S2, a panel summarizing the results of the calculation of the total optical force (a-c) and of the
near-field force (d-f) on a 20 nm dielectric bead in water is shown. Three different surfaces are considered:
lossless, with medium loss (Im(εs/ε0)=0.5) and with high loss (Im(εs/ε0)=0.8). The comparison with the
results obtained for a point dipole in vacuum [6] shows that in this work the presence of a medium (water)
broadens the repulsive near field force region from −1 < εs/ε0 < 1 to −1.77 < εs/ε0 < 1.77; moreover, as
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Figure S1: Optical forces on a) 20 nm, b) 50 nm and c) 100 nm radius dielectric beads. The beads are in front
of ENZ (blue curve), Ag (magenta curve) or glass (red curve) surfaces. Note how for smaller particles the
dominant contribution to the optical force comes from the gradient force, while for larger particles the greater
scattering force shifts downwards the force modulation resulting from the interference between incident and
reflected field. In d) and e), 3D plots of the total force as a function of the particle radius and of the distance
from ENZ (d) and Ag (e) surfaces.
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Figure S2: Contour plots of the total optical force (a-c) and of the near-field force (d-f) in front of (a,d)
lossless, (b,e) medium loss, Im(εs/ε0)=0.5 and (c,f) very high loss, Im(εs/ε0)=0.8 surfaces on a 20 nm
dielectric bead as a function of the real part of the surface permittivity and of the particle normalized height
h/λ above the surface (λ=560 nm). The maximum optical force is in the fN range.

already observed [6], even in surfaces with high loss there is still a repulsive near field force. However, the
calculation of the total optical force gives values not higher than 1 fN, which is found only in front of lossless
surfaces.

Aiming at a direct comparison with Fig. 2d in Ref. [6], we plot (Fig. S3) the total and the near field
forces on a 20 nm dielectric bead at h=10 nm and h=28 nm from a suface as a function of the real and
imaginary part of the surface permittivity. The correspondence with results in Ref. [6] is evident, taking in
account the broadening of the repulsive near field force range due to the water medium already shown in
Fig. S2 (d-f).

ENZ particle. Optical forces on spherical beads made by ENZ material have been calculated in front of
glass, Ag or ENZ surfaces. ENZ beads having radii a=20, 50 and 100 nm have been considered. As shown
in Fig. S4, the forces are always larger than the ones observed in dielectric bead counterparts. The larger
scattering force of ENZ particle hinders its trapping in front of glass surface, for all radii. Moreover, the 100
nm radius ENZ particle cannot be trapped also in front of ENZ surface (Figure S4c).

Core-shell particle. To enhance the optical force, we used a SiO2-Ag core-shell particle designed to be
resonant at approximately 560 nm and having a total radius atot= 20 nm. The calculation of the extinction
cross-section shows (Fig. S5a) that the resonance condition is fulfilled if the core-shell structure has a core
radius a1 = 16.1 nm, and the Ag shell thickness is 3.9 nm. The particle polarizability is [10]:

αcs = 4πa3
totεm

(ε2 − εm)(ε1 + 2ε2) + f3(ε1 − ε2)(εm + 2ε2)

(ε2 + 2εm)(ε1 + 2ε2) + f3(2ε2 − 2εm)(ε1 − ε2)
(S 13)
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Figure S3: Contour plots of the total force (a,b) and near field force (c,d) on a 20 nm dielectric bead as a
function of the real and imaginary part of the surface permittivity at h=10 nm (a,c) and h=28 nm (b,d)
above the surface.
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Figure S4: (a-c) Total force on spherical beads made by ENZ material. The forces are shown for 20 nm
radius (a), 50 nm radius (b) and 100 nm radius (c). ENZ (blue curve), Ag (magenta) and glass (red) surfaces
are considered for the calculation. (d,e) 3D plots of the total force as a function of the ENZ particle radius
and of the distance from the ENZ (d) surface and Ag (e) surface.

7



In this equation, atot is the core-shell total radius, ε1 and ε2 are the core and shell complex permittivity,
respectively, and f = a1

atot
is the ratio between the core radius a1 and the total particle radius atot.

As shown in Figure S5, the resonance at 560 nm enhances the optical force to the pN range but only
at very short distances from the surfaces, being repulsive in the ENZ case and attractive in the Ag case.
Otherwise, the total optical force is at the fN range.

More specifically, at the resonance Fenz is in the pN range close to the ENZ surface (from h=0 nm to
roughly 10 nm). Fgrad has an oscillating character, but its amplitude is smaller (≈ 1 fN) than Fenz, due to
the small real part of the polarizability at resonance Re(α) = 0.04 · 10−32 Fm2. On the contrary, Fscatt is
large (tens of fN), because of the great extinction coefficient at resonance. Thus, at 560 nm (black curve in
Fig. S6 a), the total force is repulsive and in the pN range close to the surface, but becomes attractive and
approximately constant as the Fenz contribution fades off.

The behaviour of the forces on the core-shell particle can also be studied for wavelengths smaller and
larger than the particle plasmon resonance. The calculation has been made for 552 nm, on the blue side
of the plasmon resonance, and at 566 nm, on its red side. At these wavelengths, the scattering force is
slightly lower than at resonance, while Fgrad increase by at least one order of magnitude. For this reason, its
oscillating character now can be better noticed in the total force (Fig.S6 a, blue and red curves). Moreover,
as the polarizability changes sign from one side to the other of the resonance, also the gradient force is
“out of phase” going from the blue to the red side of the resonance. Similar discussions hold also for the
calculation of forces in front of Ag surface (Figure S6 b); however, in this case, the Fenz is attractive close
to the surface.

Ag prolate spheroid. We choose an Ag prolate spheroid having long axis a1 = 56.8 nm and short axes
a2 = a3 = 20 nm. The particle polarizability is

αi =
4

3
πa1a2a3εm

εp − εm

εm + Li(εp − εm)
(S 14)

In this equation, εp is the particle permittivity and Li is a geometric factor relative to the spheroid axis ai.
In case of a prolate spheroid, L1 is

L1 =
1− e2

e2

(
−1 +

1

2e
ln

1 + e

1− e

)
e2 = 1− a2

2

a2
1

(S 15)

and L2 = L3 = 1
2 (1− L1).

As shown in Figure S7a, the particle has, in water, a long axis resonance at 560 nm and a short axis
resonance at 360 nm. For the calculation of the total optical force we considered the case in which the
spheroid has the long axis aligned with the wave polarization, so to use α1 for the polarizability in Eqs. S8
and S4, and the short semiaxis as the size parameter in Eq. S10. We obtain a further enhancement of the
total optical force (tens of pN) which, as in the core-shell structure, is repulsive in front of ENZ surface and
attractive in front of Ag surface. In Figure S7b a contour plot of the total optical force, calculated as a
function of the surface reflectivity R and phase shift φ, namely, in front of all possible surfaces, is shown.
We easily see that the repulsive force can be close to 200 pN in front of an “ideal” ENZ surface, having the
maximum reflectivity and a vanishing phase shift.

S1.1.2 Gaussian beams

In optical tweezers, light beams are tightly focused in order to increase Fgrad with respect to Fscat. We can
introduce this condition in our calculations by using Gaussian beams [8] instead of plane waves:

EI(z, r) = E0
w0

wi(z)
exp

(
− r2

w2
i (z)

)
exp

[
−ik(z + z0) +

i

2

kr2

Ri
+ i arctan

(
z + z0

zR

)]
(S 16)

ER(z, r) = E0ρ
w0

wr(z)
exp

(
− r2

w2
r(z)

)
exp

[
+ik(z − z0) +

i

2

kr2

Rr
− i arctan

(
z − z0

zR

)
+ iφ

]
(S 17)

8



Figure S5: (a) Extinction spectrum of the SiO2-Ag core-shell particle (total radius atot=20 nm and core
radius a1=16.1 nm) in water. (b,c) Total optical force of the core-shell particle at fixed distance h=10 nm
from ENZ (b) and Ag (c) surfaces as a function of the a1 to atot ratio. (d,e) Contour plots of the optical
force with respect to the a1 to atot ratio and the distance h from the surface. The force on the core-shell
particle is in the pN range only at short distances from the surfaces and repulsive in front of ENZ (d) while
attractive (e) in front of Ag.
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Figure S6: Total force on a SiO2-Ag core-shell particle at three different wavelengths: at resonance (560
nm, black curve), at 552 nm (blue-shifted with respect resonance, blue curve) and at 566 nm (red-shifted
with respect resonance, red curve). The total force is in the pN range close to the surface, due to the Fenz

contribution. The sinusoidal behaviour of the gradient force is visible only out of resonance (blue and red
curves), while it is negligible at resonance, where, far from the surface, only the scattering force drives the
total force. Close to the surface, the total force is repulsive in front of ENZ and attractive in front of Ag.

Figure S7: (a) Extinction spectra of Ag prolate ellipsoid in water oriented with the long axis parallel to the
field (black solid line) and oriented with the short axis parallel to the field (red dashed line). The resonances
relative to the long and short axes are indicated. (b) Contour plot of the total optical force on the Ag
ellipsoid at h=10 nm distance from a surface as a function of the surface reflectivity R and phase shift φ.
In the calculation, the spheroid is aligned with the long axis in the direction of the wave polarization. The
ENZ and Ag surfaces used for the calculation of the optical forces in DA approximation are shown. The
optical force is in the order of tens of pN in front of ENZ (repulsive) and Ag (attractive). The force can be
close to 200 pN if the spheroid is in front of an ideal ENZ surface, having R=1 and φ=0.
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Here, w0 is the beam waist, zR =
nmπw

2
0

λ is the Rayleigh range, z0 is the position of the beam waist, Ri
and Rr are the wave curvature radii of the incident and reflected wave, respectively, and wi(z) and wr(z)
are the beam widths at z distance:

wi(z) = w0

√
1 +

(z + z0)2

z2
R

wr(z) = w0

√
1 +

(z − z0)2

z2
R

(S 18)

For the sake of simplicity, we restrict ourselves to the calculation of the optical force along the beam
propagation axis. The light intensity distribution I(z) is [8]:

I(z) = I0
w2

0

w2
i (z)

+ 2ρI0
w2

0

wi(z)wr(z)
cos(ψ(z)) + ρ2I0

w2
0

w2
r(z)

(S 19)

Here, I0 = 2P/πw2
0 is the on-axis intensity at the waist of a beam having total power P and

ψ(z) = −2kz + arctan(
z + z0

zR
) + arctan(

z − z0

zR
)− φ (S 20)

is a factor due to the phase shift of the beam on reflection from the surface. Thus, optical forces are calculated
from Eqs. S1, S2 and S5.

As above, our calculations consider a particle in water (nm=1.33) and under illumination at λ=560 nm;
moreover, to evaluate the beam waist, we use the Abbe criterion w0 = 0.5 λ

NA , where the numerical aperture
(NA) of the beam is NA=1.3, as in typical optical trapping experiments. The comparison between the results
obtained with both plane wave and Gaussian beam on a small dielectric bead (radius 20 nm) are shown in
Fig. S8. It is worth noting that when Gaussian beams are used, the beam power is reduced with respect to
the plane wave case in order to maintain fixed the intensity at the beam focus.

S1.2 Electromagnetic scattering theory and T-matrix formalism in front of epsilon-
near-zero materials

We use two different modeling approaches based on the T-matrix formalism and on finite elements meth-
ods (COMSOL), respectively. In particular, electromagnetic scattering from particles near to or deposited
on a plane surface that separates two homogeneous media of different optical properties in the T-matrix
formalism[11, 12, 13, 14] can give account on the role of the different multipoles in the particle-surface in-
teraction. Indeed, the presence of the surface can have a striking effect on the scattering pattern from the
particles since the exciting field does not coincide with the incident plane wave and the observed field does
not coincide with the field scattered by the particle. The field that illuminates the particles is partly or
totally reflected by the surface and the reflected field contributes both to the exciting and to the observed
field. Moreover, the field scattered by the particles is reflected by the interface and thus contributes to the
exciting field. In other words there are multiple scattering processes between the particles and the interface.
As a result, the field in the accessible half-space includes the incident field EI, the reflected field ER, the
scattered field ES and, finally, the field ESR that after scattering by the particles is reflected by the surface.

The mathematical difficulties that are met in calculating the scattering pattern are due to the need that
the field in the accessible half-space satisfy the boundary conditions both across the (closed) surface of the
particles and across the (infinite) interface. In other words, even by assuming that we are able to impose the
boundary conditions across the surface of the particle, the problem still remains of imposing the boundary
conditions across the interface[12, 13, 14]. It is possible to define the transition matrix for particles in the
presence of the interface that is the starting point to calculate optical forces and torques either by direct
integration of the Maxwell stress tensor or by exploiting the general expressions of optical force and torque
in terms of multiple expansion[15, 16, 17].

Incident and Reflected Fields. The reflection of a plane wave on a plane surface can be dealt with
in general terms, i.e., without specifying whether the medium that fills the not accessible half-space is a
dielectric or a metal. This information can, indeed, be supplied at the end of the algebraic manipulations.
Let us thus assume that the interface is the plane z = 0 of a Cartesian frame of reference and that the
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Figure S8: (a,b) Total optical force on a 20nm dielectric bead under plane wave (blue curves) and focused
Gaussian beam (red curves), in front of ENZ (a) and Ag (b) surfaces, as a function of the distance h from
the surface. The focusing induces a fading of the total force with h. Note that the Gaussian beam power
is reduced with respect to the plane wave case in order to maintain fixed the intensity at the beam focus.
(c,d) Contour plots of the total optical force on a dielectric bead under focused Gaussian beam illumination
in front of ENZ (c) and Ag (d) surfaces, as a function of the distance h from the surface and of the bead
radius. The modulation due to the sinusoidal term in the gradient force is clearly visible. The total force
increases at increasing bead radius, reaching the range of tens of fN in front of ENZ and hundreds of fN in
front of Ag surface.
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half-space z > 0, which we take as the accessible half-space, is filled by a homogeneous medium of (real)
refractive index nm. The half-space z < 0 is assumed to be filled by a homogeneous medium with (possibly
complex) refractive index ñ. Figure S9 shows the adopted geometry. The plane wave field

EI = E0êI exp(ikI · r) , (S 21)

which propagates within the accessible half-space, is reflected by the interface into the plane wave

ER = E′0êR exp(ikR · r) , (S 22)

where kI = k′k̂I and kR = k′k̂R are the propagation vectors of the incident and of the reflected wave,
respectively, k′ = nmk and êI and êR are the respective unit polarization vectors. The polarization is
analyzed with respect to the two pairs of unit vectors ûIη and ûRη that are parallel (η = 1) and perpendicular
(η = 2) to the plane of incidence that, as usual, is defined as the plane that contains kI, kR and the z axis.
Our choice of the orientation is defined by the equations

ûI1 × ûI2 = k̂I , ûR1 × ûR2 = k̂R , (S 23)

with ûI2 ≡ ûR2. In terms of the projections on the polarization basis, the incident and the reflected field
can be written

EI = E0

∑
η

(êI · ûIη)ûIη exp(ikI · r) , (S 24)

and
ER = E′0

∑
η

(êR · ûRη)ûRη exp(ikR · r) . (S 25)

In the preceding equations the incident field EI and the reflected field ER are decomposed into their com-
ponents parallel and orthogonal to the plane of incidence and can be referred to each other by means of the
Fresnel coefficients Fη for the reflection of a plane wave with polarization along ûη.

Requiring the continuity of the normal and tangential components of the fields, the reflection condition[18]
yields the equation

E′0(êR · ûRη) = E0Fη(ϑI)(êI · ûIη) , (S 26)

where the Fresnel coefficients are defined as

F1(ϑI) =
n̄2 cosϑI −

[
(n̄2 − 1) + cos2 ϑI]

1/2

n̄2 cosϑI +
[
(n̄2 − 1) + cos2 ϑI

]1/2 , F2(ϑI) =
cosϑI −

[
(n̄2 − 1) + cos2 ϑI

]1/2
cosϑI +

[
(n̄2 − 1) + cos2 ϑI

]1/2 , (S 27)

in which ϑI is the angle between k̂I and the z axis, n̄ = ñ/nm. The reflected wave can be rewritten as

ER = E0

∑
η

Fη(ϑI)(êI · ûIη)ûRη exp(ikR · r) . (S 28)

The incident and the reflected field, solutions of Helmholtz equation in accessible free space, can be expanded
in terms of a series of spherical vector multipole fields centered on a suitable common origin, O. To ensure
the regularity of the fields at the origin, we choose J-multipole fields defined in terms of spherical radial
Bessel functions jl(k

′r) [18, 11]. The result is

EI =
∑
η

E0η

∑
plm

J
(p)
lm (r, k′)W

(p)
Iηlm ,

ER =
∑
η

E0ηFη(ϑI)
∑
plm

J
(p)
lm (r, k′)W

(p)
Rηlm ,

where the incident and reflected amplitudes are respectively:

W
(p)
Iηlm = W

(p)
lm (ûIη, k̂I) (S 29)
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Figure S9: Geometry adopted for electromagnetic scattering from a sphere in the vicinity of a surface.

W
(p)
Rηlm = W

(p)
lm (ûRη, k̂R). (S 30)

Because of the reflection condition due to the presence of the surface, the incident and reflected amplitudes
are not mutually independent. Infact, as the polar angles of ûR1 and ûR2 are

ϑR1 = ϑI +
π

2
, ϕR1 = ϕI + π , and ϑR2 =

π

2
, ϕR2 = ϕI +

π

2
, (S 31)

we get

W
(p)
Rηlm = (−)η+p+l+mW

(p)
Iηlm . (S 32)

In this way the amplitudes of the reflected field never need to be explicitly considered, and conveniently we
can define the exciting field as the superposition of incident and reflected fields

EE = EI + ER . (S 33)

As a consequence the multipole expansion of EE can be written in a more compact form as

EEη = E0

∑
plm

J
(p)
lm (r, k′)W

(p)
Eηlm (S 34)

with
W

(p)
Eηlm = [1 + Fη(ϑI)(−)η+p+l+m]W

(p)
Iηlm . (S 35)

Scattering from a Sphere on a Plane Surface. We assume that a spherical scatterer lies entirely
within the accessible half-space and is illuminated by a plane wave. Outside the scatterer the total field is

EExt = EE + ES + ESR , (S 36)

where EE = EI + ER is the same as we would have if no particle were present. ES, the field scattered by the
sphere, and ESR, the field that after scattering by the particle is reflected by the surface, are related to each
other by the reflection condition. Their superposition represent the observed scattered field that we indicate
with EObs.

The field that is scattered by a sphere that lies entirely in the accessible half-space can be expanded in
a series of vector H-multipole fields that satisfy the radiation condition at infinity. The multipole fields are
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defined in terms of spherical radial Hankel functions[11] hl(k
′r) Choosing for the scattered field the origin

O′ within the particle, we obtain

ESη = E0η

∑
plm

H
(p)
S,lm(r′, k′)A(p)

ηlm . (S 37)

where the unknown amplitudes A can be determined by applying the boundary conditions at the particle’s
surface. The asymptotic expression of ESη can be written easily as follows

H
(p)
Flm = − i

4πk′
eik′r′

r

∑
η′

ûSη′W
(p)∗
Sη′lm . (S 38)

These are the multipole fields that enter in the definition of scattering amplitude of the system.
The scattered field ESη impinges on the plane surface and, by reflection yields a reflected-scattered field

in the vicinity of the surface of the particle. Thanks to the reflection rule of H-vector multipole fields[19],
that proves the fields are given by a superposition of J-multipole vector fields with origin at O′, we get:

ESRη = E0η

∑
plm

∑
p′l′

J
(p)
lm (r′, k′)F (pp′)

ll′;mA
(p′)
ηl′m , (S 39)

The quantities F (pp′)
ll′;m can be understood as the elements of a diagonal matrix F that effects the reflection of

the H-multipole fields on the plane interface giving the formal solution to the problem. Assuming that the
scattering particle is a homogeneous sphere with (possibly complex) refractive index np and radius a, also
the field regular at O′ within the sphere can be expanded in the form

ETη = E0η

∑
plm

J
(p)
lm (r′, kp)C(p)

ηlm . (S 40)

The boundary conditions at the surface of the sphere between the external total field, EE + ES + ESR , and
the field within the scatterer, ET, can be applied provided that the exciting field EE is referred to the center
of the sphere, O′. This can be done resorting to the appropriate phase factors: exp(ikI ·R′) and exp(ikR ·R′).
For each p, l, and m, we obtain four equations among which the amplitudes of the internal field C can be
easily eliminated. As a result, we get, for each m, a system of linear nonhomogeneous equations for the

amplitudes A(p)
ηlm, namely ∑

p′l′

M(pp′)
ll′;mA

(p′)
ηl′m = −W(p)

ηlm , (S 41)

where
M(pp′)

ll′;m =
(
R

(p)
l

)−1
δpp′δll′ + F (pp′)

ll′;m , (S 42)

and
W(p)
ηlm = exp(ikI ·R′)W (p)

Iηlm + exp(ikR ·R′)FηW (p)
Rηlm . (S 43)

The quantities R
(1)
l and R

(2)
l coincide with the Mie coefficients bl and al, respectively, for a homogeneous

sphere of refractive index np embedded into a homogeneous medium of refractive index nm. We remark
that our theory can easily deal also with sphere sustaining longitudinal waves (plasmonic particles) or with
radially nonhomogeneous spheres[11].

Once the amplitudes A(p)
ηlm of ESη have been calculated by solving (41), the reflected-scattered field ESRη

is also determined by (45). A brief comment on the expression of the reflected-scattered field is in order.
ESRη is valid only in the vicinity of the surface of the sphere as it includes multipole fields that do not satisfy
the radiation condition at infinity, for this reason to get the reflected-scattered field that would be observed
by an optical instrument in the far zone it is necessary to cast ESRη in its asymptotic form. At any point of
the accessible half-space, EFSRη is given by the equation [20]

EFSRη = E0η

∑
plm

H
(p)
FR,lmA

(p)
ηlm, (S 44)

15



where

H
(p)
FR,lm = − i

4πk′
eik′r′′

r

∑
η′

ûSη′W
(p)∗
Sη′lm(−)η

′+p+l+mFη′(π − ϑS) . (S 45)

for a sphere on or near the surface, this H-vector multipole fields with the origin at O′′ can be considered
as the the mirror image of the source of the original H fields. From the superposition of scattered and
reflected-scattered fields, all referred to a common origin, eqs.37-41 and 44-45, we get the field

EObs η = E0η

∑
plm

H
(p)
Obs,lm(~r, k′)A(p)

ηlm , (S 46)

with

H
(p)
Obs,lm = − i

4πk′
eik′r′

r

∑
η′

ûSη′W
(p)∗
Sη′lm[1 + (−)η+p′+l+mFη′(π − ϑS] (S 47)

Eqs. (46-47) lead us to the definition and derivation of the transition matrix for a scatterer in the presence
of a plane interface[12, 13, 14]. The advantages yielded by the use of the transition matrix is evident if we
had to deal with the problem of a random dispersion of non spherical particles deposited on a plane surface.
Moreover, the amplitudes of the observed field are the key quantities for calculating the radiation force of
which we will discuss later.

S1.2.1 Optical force in front of a substrate

In this section we briefly recall our approach to determine the radiation force exerted by a plane waves,
with a definite polarization, on a scatterer (of any shape and composition) placed in a homogeneous medium
of (real) refractive index nm. We refer to the geometry sketched in Fig. S9 in which Σ is the customary
laboratory frame and Σ′ is a frame of reference whose axes are parallel to the axes of Σ and whose origin O′

lies within the particle. The vector position of O′ with respect to Σ is R′O. The conservation laws applied
to the electromagnetic scattering problem leads to the optical force acting on the particle[18, 11, 3]:

FRad = r′2
∫

Ω′
r̂′ · 〈TM〉dΩ′ , (S 48)

where the integration is over the full solid angle, r′ is the radius of a sphere with center at ~RO′ surrounding
the particle, and 〈TM〉, the averaged Maxwell stress tensor (MST), describes the mechanical interaction of
light with matter. The general expression of the MST in a medium in the Minkowski form[18, 11, 3] is

TM = E′ ⊗D′ + H′ ⊗B′ − 1

2
(E′ ·D′ + H′ ·B′) I , (S 49)

where E′ is the electric field, D′ is the electric displacement, H′ is the magnetic field, B′ is the magnetic
induction, evaluated in the frame Σ′ as indicated by the prime, ⊗ represents the dyadic product, and I is
the dyadic unit. We assume that all the fields are harmonic, propagating in a homogeneous, linear, and
non-dispersive medium, and depend on time through the factor e−iωt that is omitted. So, we can simplify
the expression for the MST by using the complex amplitudes of the fields, E′ = E′(r) and B′ = B′(r),
as[21, 15, 3]:

〈TM〉 =
εm

2
Re

[
E′ ⊗E′∗ +

c2

n2
m

B′ ⊗B′∗ − 1

2

(
|E′|2 +

c2

n2
m

|B′|2
)
I

]
, (S 50)

where the fields are the superposition of the incident and of the scattered field. In presence of a plane
surface that separates two homogeneous media with different refractive indexes, the role of the incident field
is played by the exciting field EE = EI + ER while the superposition of ES and ESR acts like the observed
field due to the presence of particle. It is possible to simplify[11] equation (S 48) since the dyadic products
in the expression of 〈TM〉 give a vanishing contribution to the radiative force [21, 15]. For these reason, the
component of the radiation force along the direction characterized by the unit vector v̂ζ turns out to be

FRad ζ = −1

4
εmr

′2Re

∫
Ω′

(r̂′ · v̂ζ)
[
(|E′Osb|2 + 2E′∗E ·E′Obs) +

c2

n2
m

(|B′Obs|2 + 2B′∗E ·B′Obs)
]

dΩ′ , (S 51)
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where E′Obs and B′Obs are the superposition of the fields scattered by the particle and the reflected-scattered
fields. Obviously, since the exciting field is a plane wave, the integral (S 51) gets no contribution from the
terms E′E · E′∗E , and B′E · B′∗E that, accordingly, have been omitted. At this stage, using the orthogonality
properties of vector spherical harmonics through which we develop the fields, see eqs. (S 34)-(S 35) and
eqs.(S 37)-(S 45), we obtain the Borghese equations for the optical force components[17]:

FRad ζ = −F (Sca)
Rad ζ + F

(Ext)
Rad ζ (S 52)

where

F
(Sca)
Rad ζ =

εm|E0|2

2k′2
Re
∑
plm

∑
p′l′m′

A(p)∗
lm A

(p′)
l′m′i

l−l′I
(pp′)
ζ lml′m′ , (S 53a)

F
(Ext)
Rad ζ = −εm|E0|2

2k′2
Re
∑
plm

∑
p′l′m′

W
(p)∗
E lmA

(p′)
l′m′i

l−l′I
(pp′)
ζ lml′m′ , (S 53b)

where the matrix elements

I
(pp′)
ζ lml′m′ =

4π

3

∑
µ

Y ∗1µ(v̂ζ)
il

′−l

16π2

∑
η′

∫
Y1µ(k̂S)W

(p)
Sη′lmW

(p′)∗
Sη′l′m′ dΩS , (S 54)

can be analytically valuated. We notice that F
(Sca)
Rad ζ depends on the amplitudes A

(p)
lm of the scattered field

only, whereas F
(Ext)
Rad ζ depends jointly on the amplitudes of the scattered field A

(p)
lm and on those of the incident

field W
(p)
I lm. This dependence is analogous to that of the scattering cross section and of the extinction cross

section, respectively, so that F
(Sca)
Rad ζ can be somewhat related to scattering properties of the particle, whereas

F
(Ext)
Rad ζ can be related to its extinction. Similar considerations hold true also for the radiation torque [16, 22].

S1.3 Finite elements methods

To evaluate the accuracy of the analytical results, we have computed the optical force on the macro particle
using numerical simulations (Fig. S10). We used software package COMSOL Multiphysics 5.4 which uses
finite element method (FEM) to solve Maxwell’s equation and calculate the optical force. To increase
the accuracy of simulation we used periodic boundary condition; however, the micro-particle radius, a, is
significantly smaller than the unit cell size, L, to prevent the mutual coupling between adjacent cells (a/L
=0.02) . In order to reduce the computation time the simulation is run for silicon particle with radius a =
20 nm while the wavelength of incoming plane wave is λ=560 nm. The surrounding medium is water. We
used different substrates as reflecting surfaces and compared the computed force for all substrates with the
analytical results. We used silver, glass, layered structure (silver and aluminum dioxide) and ENZ surfaces.
The optical properties used for all surfaces are measured values at λ=560 nm. The thickness of all substrates
are considerably larger than λ to mimic the semi-infinite medium. The simulation region should be meshed
finely specially in three regions: i) the plasmonic layers (Ag) in the layered structure ii) in the near-field of the
substrate (0− λ/10) to capture the near-field effects on the calculated force and iii) the region surrounding
the particle that the force is calculated.

To calculate the force, we used Maxwell’s stress tensor. It is known that the total time-averaged force
acting on any material objects can be found by calculating the integral of Maxwell’s stress tensor on any
surface that defines a volume containing the objects

FRad = 〈F (t)〉 =

∫
S

〈TM(r, t)〉 · n̂ dS (S 55)

where TM is the Maxwell’s stress tensor calculated based on the total electric and magnetic fields, S
is the surface surrounding the volume containing the object and n̂ is the unit vector perpendicular to the
surface S. In the simulation, we chose a cylinder as a surrounding volume (Fig. S10b). In our simulation,
we are interested to calculate the force in z direction consequently 〈TM,zz (r, t)〉 on top and bottom of the
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Figure S10: Numerical computation of the optical force: (a) Simulation region and the geometry of the
problem. A polystyrene particle is placed above a substrate, the distance h is from the bottom of the
particle to the substrate. The particle is surrounded with water and the incoming plane-wave is illuminated
from the top and propagates in –z direction. (b) Calculation of the optical force by integration of Maxwell’s
stress tensor on a surface of cylindrical volume surrounding the particle. The Maxwell’s stress tensor consists
of information about the total electric and magnetic field which includes incident field (EI), reflected field
(ER), field scattered by the particle due to the excitation filed (ES), and field scattered by the particle and
reflected by the surface (ERS). As we are interested on the optical force in z direction it is enough to integrate
TM,zz on top and bottom surface and TM,rz on the circumferential surface. (c) [Fig. 2a of the main text]
Numerical computation (circles) versus analytical T-matrix calculation (solid line) and dipole approximation
calculation (dots) of optical force for different distances h above different substrates (Silver, ENZ, glass).
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cylinder and 〈Tzr(r, t)〉 on its circumference should be calculated (Fig. S10b). As the normal vector on the
top and bottom of the cylinder has opposite direction, the total time-averaged force is:

〈F (t)〉 =

∫
STop

〈TM,zz (r, t)〉dS −
∫
SBottom

〈TM,zz (r, t)〉dS +

∫
SCircum

〈TM,rz (r, t)〉dS (S 56)

As integrals in Eq. S56 are calculated over the surface of the cylinder, the cylinder is meshed densely (λ/200)
to avoid the numerical error. Since the field scattered by the particle causes no singularity, the height and
radius of the cylinder can be as close as possible to the diameter and radius of the sphere respectively, however
the smaller is the cylinder the denser should be the mesh to capture the intensity of the electric and magnetic
field. To avoid computational error within reasonable computation time, the height of the cylinder is chosen
to be 10 nm bigger than the sphere’s diameter and the radius of the cylinder to be 5 nm bigger than the
radius of the sphere. The numerical computation of total force is done for various spacing (h) of the sphere
from different reflecting surfaces (Fig. S10a). h is the distance from the bottom of the sphere to the surface
as shown in Fig. S10a. The numerical calculation is done for several scenarios; various spacing h, various
radii a, different substrates, and particles with different polarizabilities and geometries. The comparison
between analytical solution and numerical analysis for various spacing above various substrates is shown in
Fig. 2a. There is a very good agreement between analytical calculation and numerical simulation.

S1.4 Layered metamaterial calculations

Transfer matrix numerical details. The numerical results in Fig. 3 of the main text for reflectance
(R) versus reflected phase (φ) from the surface of a thin film stack at constant wavelength λ = 560 nm, as
described in the caption, are calculated using the standard transfer matrix approach [23]. The dependence
of the phase on wavelength for a subset of the stack configurations in main text Fig. 3 is shown in Fig. S11.
The refractive indices at 560 nm for each material are as follows: Ag: 0.146+3.27i [24]; Al2O3: 1.68 [25]; Au:
0.384 + 2.55i [24]; Ge: 3.02 + 2.90i [26]; TiO2: 2.43 [27]; glass substrate: 1.52; water superstrate: 1.33 [28].

Experimental comparison. The experimental (φ,R) points shown as green stars in Fig. 3 are based on
six different fabricated trilayer thin film stack systems (5 trilayers of Al2O3 / Ag / Ge from top to bottom).
The Ag layer thicknesses were in the range 10-25 nm, with a thin Ge layer (1-3 nm) underneath to ensure
surface wetting. The Al2O3 thicknesses were systematically varied between roughly 20 nm and 80 nm across
the different systems. These stacks were deposited on a glass substrate (Corning Inc.) using electron-beam
evaporation for Ge (0.5 Å/s) and Al2O3 (0.3 Å/s), and thermal evaporation for Ag (0.5 Å/s). All materials
were purchased from Kurt J. Lesker. The sample’s ellipsometric properties (amplitude Ψ and phase difference
∆) were measured in an air superstrate using a Variable-angle, high-resolution spectroscopic ellipsometer
(J. A. Woollam Co., Inc, V-VASE) for incident angles 45◦, 50◦, 55◦ and wavelength range 300 − 1000 nm.
Individual fits to the ellipsometric data for each system yielded best-fit results for the thicknesses and optical
constants, which were then used to estimate the values of R and φ at normal incidence with λ = 560 nm
shown in Fig. 3.

Effective medium theory. The effective medium theory (EMT) used to calculate the (φ,R) curves in
Fig. 1c and the curve labeled EMT in Fig. 3 takes the following form. We consider the interface between a
water superstrate with refractive index n0 and an underlying metamaterial which is a mixture of dielectric
with index nd and a metal with complex index ñM = nM + ikM. If f is the filling fraction of the metal versus
the dielectric, the approximate EMT permittivity of the metamaterial is given by εEMT = (1− f)n2

d + fñ2
M.

This allows us to calculate the effective refractive index nEMT and extinction coefficient kEMT as:

nEMT =

√
|εEMT|+ Re εEMT

2
, kEMT =

√
|εEMT| − Re εEMT

2
. (S 57)

The corresponding complex Fresnel reflection coefficient is given by:

rEMT =
n0 − nEMT − ikEMT

n0 + nEMT + ikEMT
. (S 58)

The associated reflectance R = |rEMT|2 and phase φ = − arg rEMT.
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Figure S11: The dependence of phase φ versus wavelength for a subset of the layered metamaterials shown
in main text Fig. 3, calculated using the transfer matrix approach. The three rows are labeled n× d, where
n refers to the number of bilayers in the stack, and d the thickness of each bilayer. The total thickness
nd = 500 nm is kept constant. The bilayers consist of individual Ag and Al2O3 layers, with the fraction
of Ag in the bilayer indicated by the metal filling fraction color. The left column corresponds to systems
where the metal is the upper layer in each bilayer (the one closest to the surface), while the right column
corresponds to the ones where the dielectric is on top.
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S2. Supplementary Discussion

S2.1 Casimir effect

Casimir effect is usually observed between two metallic surfaces (or a particle and a surface) at very short
distances and usually for large (µm-size) particles. In the case of dielectric beads, the Casimir force is even
weaker. More in detail, literature studies of Casimir forces in liquids are outlined in the following. Munday
et al. [29] consider 40 µm PS bead coated with Au layer in front of a Au plate in ethanol. They show a
maximum Casimir force of approximately 800 pN at less than 30 nm from the plate, that decays at 10 pN at
100 nm from the plate. Munday et al., [30] consider 40 µm PS bead coated with Au layer in front of a silica
or Au plate in bromobenzene. They show attractive or repulsive Casimir forces, whose maximum values are
150 pN at 20 nm from the plate, decaying at 1 pN at approximately 100 nm from the plate. Le Cunuder
et al. [31] used a 75 microns PS bead Au coated in front of an Au plate in N2 atmosphere and in ethanol:
in the first case, the measured Casimir force is approximately 150 pN at 100 nm from the surface, while in
ethanol they confirm the result of Ref. [29] measuring a larger Casimir force (1400 pN), but with a larger
bead. Finally, L.B. Pires et al. [32] measured the Casimir force between two PS beads having radii R1=2
µm and R2=11 µm in water. The maximum Casimir force is between 5 and 10 fN at a distance between
400 nm and 500 nm, but vanishes before reaching 1mm.

We now compare these results with our particles. In the case of the Ag ellipsoid, we can consider the
equivalent sphere, which should have approximately a radius of 28 nm. In this case a linear scaling [33] of
the Casimir force with the particle size (from 40 µm to 30 nm) should give a value slightly lower than 0.8
pN if we consider a metallic surface and Ref. [29], or even less if we consider Ref. [30]. As shown in Fig. 4f
of our paper, the total force on the Ag ellipsoid in front of Ag or ENZ is approx. 0.2 nN, so we can safely
neglect the Casimir force contribution. In the case of the 20 nm core-shell particle, the Casimir force should
be, according to Ref. [29], 0.4 pN or even less (0.08 pN if we consider Ref. [30]). As shown in Fig. 4e of the
paper, the total force is in the pN range, so we could neglect the Casimir contribution, as in the Ag ellipsoid
case, but with a slightly larger error. In the case of the 20 nm dielectric bead, we can refer to Ref. [32],
giving a Casimir force (scaling the force with the particle size) between 0.05 and 0.1 fN, the latter in the
best case. Again, the total force we obtain (Fig. 2a) for a 20 nm dielectric bead in water in front of Ag or
ENZ surfaces is in the fN range, so we think that also in this case the Casimir force contribution could be
neglected.
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[5] O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and
manipulation of nanostructures,” Nature Nanotechnology, vol. 8, pp. 807–819, 2013.
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