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I. SUPPLEMENTARY METHODS
Supplementary Method 1. DFT and DFPT calculations

All density-functional theory (DFT) and density-functional perturbation theory (DFPT)
calculations of electronic and vibrational properties were carried out using the plane-wave
pseudopotential code QUANTUM EsPRESsO (QE) [I], scalar-relativistic optimized norm-
conserving Vanderbilt pseudopotentials (ONCV) [2], and the PBE-GGA exchange and cor-
relation functional [3]. The unit cell calculations are done in the fec primitive unit cell
with 10 atoms, a 12x12x12 k-grid, and a plane-wave cutoff energy of 80 Ry. The 2x2x2
supercell calculation were done on a 6x6x6 k-grid.

We set the electronic convergence threshold to 107!° Ry, and the phonon self-convergency
threshold to 10716, The relaxation thresholds for the BFGS steps were 10~7 Ry in total
energy and 107% Ry/qy for all force components. We verified the electronic convergence with
respect to a reference calculation with a 40x40x40 Monkhorst-Pack k-grid and a kinetic
energy cutoff of 300 Ry. With a 12x12x12 k-grid, a cutoff of 80 Ry, and a smearing of
0.01 Ry, the changes in total energy are well below 1 meV /atom. For the sake of simplicity,
we kept the 12x12x12 k-grid for all pressures, resulting in k spacings of |Ak| = 0.021 to
0.026-27 A~'. We verified the harmonic phonon convergence on the basis of the first optical
mode (77,) at I" with respect to a reference calculation with a 30x30x30 Monkhorst-Pack
k-grid, a kinetic energy cutoff of 300 Ry, and a phonon self-convergency threshold of 10718,
With the electronic parameters above and a phonon threshold of 107!, the changes in the
Ty, phonon frequencies are well below 0.1 meV.

Supplementary Method 2. SSCHA calculations

In the stochastic self-consistent harmonic approximation (SSCHA), the system of fully
anharmonic and interacting lattice vibrations is mapped onto auxiliary harmonic system in
a real space supercell [4-8], with trial density matrix pr ¢ with average atomic positions R,
and the dynamical matrix ® of the chosen supercell [8]. The free-energy functional is then
written as

Flpre] = Elpre| — TS[pr s, (1)

where T is the temperature, S is the entropy of the auxiliary harmonic system, and
Elprel = (K + Ea[R]);, , (2)

is the sum of the internal electronic and nuclear energies (kinetic energy K and Born-
Oppenheimer potential energy surface Fq[R|) evaluated as the expectation value of the
state described by the trial density matrix. The free energy JF is minimized iteratively with
respect to R and @, and the expectation values of observables are evaluated as Monte-Carlo

averages

(OR));, = (Z pj) >_PiO(R), (3)
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where O(R;) is an observable for a specific ionic configuration R; (individual), and p; a
weighting factor obtained via importance sampling during the minimization. The weights
are calculated as p; = pr.o(R;)/pr o (R;), and updated during the minimization as R and ®
change. A suitable ensemble (population) of N individuals for the Monte-Carlo summation
is drawn from the probability distribution prs¢/(R) = (R|pr’e/|R), where R’ and @ are
fixed for each population. The minimization on one population is stopped if it is no longer
sufficiently described by the new density matrix (quantified by the Kong-Liu ratio for the
effective sample size Neg = (3, p7)/(>_; pi)?) and a new population is drawn, or convergence
is achieved. For the first population, R’ and ®’ represent the initial guesses, for all others
the relaxed parameters of the previous population.

In DFPT, the phonon frequencies are obtained as the square root of the eigenvalues of
the Fourier transform of the real-space dynamical matrix

DDFPT — 1 82Ejel [R]
o VMM, OR,0R,

where Ry is the DFT minimum structure, and M; the atomic masses. Analogous to that, the
physical phonon frequencies within the SSCHA (that are in general not the auxiliary phonon
frequencies) are obtained as the square root of the eigenvalues of the Fourier transform of
the positional free-energy Hessian

: (4)
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evaluated at the positions Ry obtained at the end of the minimization. The second deriva-
tive of the free energy can be further written as
0?F
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and A is a fourth-order tensor containing the eigenvalues and eigenvectors of the auxiliary
system [9]. A comparison of the different contributions ®™ is shown in Supplementary
Fig. [§| for a 2x2x2 supercell. Calculating fourth-order corrections on larger supercells is
computationally unfeasible with our currently available resources. This calculation in an
n x n X n supercell requires 4D arrays with (3 - n3. < number of atoms in uc >)* elements.
For 10 atoms in the unit cell and n = 3, this yields 810* double-precision entries, for which
3.13TB of RAM are needed on a single shared-memory node.
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W, (6)

where

The forces F, and the stress tensor P, are obtained as
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where V. is the supercell volume, F the free energy functional, and £,4 the strain tensor [10].
The pressure is then obtained as p =) Paa/3.



Performed SSCHA calculations: In Supplementary Tab. [, we give a comprehensive
list of the methods, supercell sizes and number of individuals used in each calculation.

Supplementary Table 1: Details for performed SSCHA calculations: DFT pressure

p, structure relaxation enabled/disabled (i.e. update R true [T] /false [F]), supercell size

n x n x n with 10, 80, 270, and 640 atoms for n = 1,2, 3, 4, respectively, and number of
individuals in consecutive populations.

p/ GPa‘R method n populations and number of individuals total number
5 F DFT 2 100, 100, 100, 200, 500, 1000, 2000, 5000 9000
10 |F DFT 2 50, 100, 200, 500, 1000, 2000 3850

T DFT 2 50, 100, 100, 100, 200, 200, 500, 500, 1000, 2000 4750
T MTP 1 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20 000, 50 000, 100 000 188850
T MTP 2 250, 250, 250, 500, 1000, 2000, 5000, 10 000, 20 000, 50000 89250
T MTP 3 1000, 1000, 2000, 5000, 10000, 20 000, 50 000, 100 000 189 000
T MTP 4 2000, 5000, 10000, 20000, 50000, 100 000 187000
20 |T DFT 2 250,250, 250, 500, 1000, 2000, 5000, 10000 19250
T MTP 1 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20 000, 50 000, 100 000 188 850
T MTP 2 250, 250, 250, 250, 500, 1000, 2000, 5000, 10000, 20 000, 50000 89500
T MTP 3 1000, 2000, 5000, 10000, 20 000, 50 000, 100 000 188000
T MTP 4 2000, 5000, 10000, 20000, 50000, 100 000 187000
25 |T DFT 2 250, 250, 250, 500, 1000, 2000, 5000, 10000 19250
T MTP 1 50, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20 000, 50 000, 100 000 188900
T MTP 2 250, 250, 250, 500, 1000, 2000, 5000, 10 000, 20 000, 50000 89250
T MTP 3 1000, 2000, 5000, 10000, 20 000, 50 000, 100 000 188000
T MTP 4 2000, 5000, 10000, 20000, 50000, 100 000 187000
30 |T DFT 2 250,250, 250, 500, 1000, 2000, 5000, 10000 19250
T MTP 1 50, 50, 100, 200, 500, 1000, 2000, 5000, 10000 18900
T MTP 2 250, 250, 250, 500, 1000, 2000, 5000, 10 000, 20 000, 50 000 89250
T MTP 3 1000, 2000, 5000, 10000, 20 000, 50 000, 100 000 188000
T MTP 4 2000, 5000, 10000, 20000, 50000, 100 000 187000

Workflow for the DFT and MTP based SSCHA calculations: As initial values
for R and & we provided the harmonic dynamical matrices on a 2x2x2 g-grid for each
(DFT) pressure p. The SSCHA calculations consist of the following steps:

1. Create N individuals in a 2x2x2 supercell. We chose the starting N as roughly the
number of phonon modes in the supercell.
2. Calculate total energies, stresses and forces for all individuals.

3. Run minimization (and relaxation) until: (¢) the Kong-Liu ratio is below 0.2, or (i7)
it converges with a ratio of < 10~7 between the free energy gradient with respect to
the auxiliary dynamical matrix and its stochastic error.

4. Use the obtained auxiliary dynamical matrices as new starting point

5. Loop step 1-4 with a new population and the same N for case (i), or increase N for
case (i1)



6. Post-processing step: calculation of the positional free energy Hessian and convergence
check on the physical phonon frequencies.

Step 2 is done with DFT (QE) or MTPs (see Supplementary Tab. [1). The potentials for
the MTP cases were trained on 50 individuals in the 2x2x2 supercell randomly chosen
from all populations in the DFT case. We followed the same workflow for the higher su-
percell calculations, but instead of using the harmonic dynamical matrices on the higher
grid as an initial guess, we interpolated the final SSCHA auxiliary matrices of smaller
supercells to the desired larger supercell. We used the CELLCONSTRUCTOR [§] routine
cellconstructor.Phonons.Interpolate without support dynamical matrices in order to
start from the SSCHA relaxed structure and to speed up the convergence.

Supplementary Method 3. Anisotropic Migdal-Eliashberg (ME) equations

The Wannier interpolation of the electron-phonon (ep) matrix elements g, (k,q) onto
dense k- and g-grids, and the subsequent self-consistent solution of the fully anisotropic
ME equations were done in Epw [I1], 12] for the cases shown in Tab. III in the main
text. The ep matrix elements can be calculated by evaluating the expectation value
(Vmk+q] (8ql,vKS) - equ |¥nk), where ), is the electronic wavefunction for band n and
wavevector k, 0q,v¥® is the self-consistent first-order variation of the Kohn-Sham potential,
and eq, is the polarization vector for wave vector q, mode index v, and frequency wgq,. The
fully anisotropic Eliashberg function is then given as

o’F(nk,mK',w) = Ni Y _ |g4,, (k. K)|* 6(w — wqy), (9)

where k' = k + q and Ng is the DOS at the Fermi energy. The total ep coupling strength
A = AMw = 00) and the logarithmic average phonon frequency wi,, are obtained from the
Fermi-surface restricted Eliashberg function

?F(w) = N%% Z Z o F (nk, mk', w)6(eni)0(Emicr ), (10)

nm kk’

where ¢, is the electronic eigenvalue for 1, with respect to the the Fermi energy Ef, as

v *F (' 2 [ a?F(w)l
AMw) = 2/ dw'a—(M), and Wiog = €XP (—/ dww) ) (11)
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For the Wannier interpolation of the electronic band structure, we set a frozen window of ap-
proximately [-15eV, +5eV] around Er, using initial projections onto H s, Si s, p, d.2, d,2_,2,
and Ba p, d orbitals, giving a total of 22 Wannier functions for BaSiHg. For the calculation
of A, Wiog, and o*F, as well as for solving the ME equations, we used 6x6x6 coarse k— and
q-grids, interpolated onto 30x30x 30 fine grids. The ME equations are solved independently
for a discrete set of temperatures and approaching the critical temperature T, we used steps
of 2 K.

We calculated the harmonic dynamical matrices and the self-consistent first-order varia-
tion of the potential on a 6x6x6 g-grid, once for the structure with atomic positions defined



by x and once for Z, and used the files for cases standard and QI shown in Tab. III in
the main text. For case anh+ph-ph (SSCHA calculation with atomic positions fixed in z),
we replaced the DFPT harmonic matrices with the obtained positional free energy Hessian
matrices (interpolated from the 4 x4 x4 supercell to the 6x6x6 g-grid) and retained the po-
tential variation from the calculation in z. For case QI4+anh+ph-ph (SSCHA calculation
with relaxation and final atomic positions in &), we replaced the DFPT harmonic matrices
with the obtained positional free energy Hessian matrices (interpolated from the 4x4x4
supercell to the 6x6x6 qg-grid) and retained the potential variation from the calculation
in z. We note in passing, that a more rigorous treatment would require the replacement
of the polarization vectors eq,, as well as either the inclusion of the force term arising in
the DF(P)T description of the structure defined by , or an F-based description of the ep
matrix elements within the SSCHA, which are not implemented yet.

Coulomb effects are included in the ME equations via the Morel-Anderson pseudopoten-
tial p* = 0.10, as used and described in Ref. [13].



II. SUPPLEMENTARY NOTES

Supplementary Note 1. Structural parameters

The unit-cell calculations are done in the Fm3dm phase (space group 225) in the fec
primitive unit cell with lattice parameter a. Si occupies the Wyckoff position 4a (0, 0, 0),
Ba the 4b (1/2, 1/2, 1/2), and the H atoms the 32f (x,z,z). The lattice parameter a and
the Wyckoff parameter x are shown in Supplementary Figure [1| over the pressure range from
0 GPa to 100 GPa.
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Supplementary Figure 1: Structural parameters for BaSiHg within DFT and
SSCHA: a Lattice parameter (circles) and equation-of-state fit (solid line) over pressure
calculated within DFT (blue) and SSCHA (red). b Hydrogen Wyckoff parameter (z).

We fitted the Birch—-Murnaghan equation of state
W E g o\ 3
0 0 0
— | == — ] -1 12
() - () (@) )

for the fec unit-cell volumes V(p) and the lattice parameters a(p) (related via V = a®/4)
shown in Supplementary Fig. [I} and obtained the fit parameters

3By

p(V) = 5

{1+§(Bg—4)

Boprr = 39.4 GPa, B ppr = 4.3, (Vorr = 83.6 A” fixed from DFT)

and
Bosscia = 29.2 GPa, Bjsscia = 5.0, Vosscra = 88.3A°,

where By is the bulk modulus, and B its the derivative with respect to pressure.

7



Supplementary Note 2. MTP validation

In Supplementary Fig. 2] we show the MTP validation and RMSEs for the 2x2x2 su-
percell and all individuals from the DFT calculations listed in Supplementary Table [1] at
all studied pressures. The overall trend in the predicted forces captures the DFT data very
well, and outliers cluster around structures with usually very large force components.

150 150 150 150
A = Eppr — Evirp A = Eprr — Ene A = Eper — Byt A = Eper — Enire
N = 4750 N = 19250 N = 19250 . N = 19250
B RMSE(A) = 0.58 meV /atom B RMSE(A) = 0.54 meV /atom - RMSE(A) = 0.58 meV /atom - RMSE(A) = 0.55 meV /atom
= 125 max(|A]). = 3.19meV /atom = 125} max(|A]). = 2.63meV/atom = 195} max(|A) =5.48meV/atom = 125} max(|A[). = 18.97meV/atom
3 3 3 p 3 p
= k] = =
= > = =
] 2 ] 2
=100 Z 100 Z 100 Z 100
S 5 5 5
| I | ]
o & o o
S5 75 S5 E 7
S g S S
50 50 50 50
50 7 100 125 150 50 7 100 125 150 50 7 100 125 150 50 7 100 125 150
Eppr — Eyer / meV - atom™ Eppr — Eret /meV - atom™ Eppr — Erer / meV - atom™ Eppr — Eret /meV - atom™
15 15 15 15
A = Fprr — Fure A = Fprr — Fare A = Fprr — Fure A = Fprr — Fure
N = 1140000 (= 3 - 80 - 4750) N = 4620000 (= 3- 80 - 19250) N = 4620000 (= 3 - 80 - 19250) N = 4620000 (= 3- 80 - 19250)
10 RMSE(A) = = 49.7meV/A 10} RMSE(A) = 47.0meV/A 10 RMSE(A) = = 51.6meV/A . 10} RMSE(A) = 50.3meV/A
max(|A]) = 3574.8meV/A max(|A) = 2092.7meV/A y max(|A[) = 9725.7meV/A 5 max(|A]) = 18897.8meV/A
5 5 - 5 3
- < < <
= = = =
z z z z
~ 0 — 0 ~ 0 — 0
€ < € <
5 5 5 5
10 10 10 10
15 15 -15 15
15 100 5 0 5 10 15 215 100 5 0 5 10 15 15 <10 5 0 5 10 15 15 100 -5 0 5 10 15
For /eV/A Forr /eV/A Fr /eV/A Forr /eV/A
10 10 10 10
35 FAii = giiprr — GiguTe 35 b Aii = GiipET — Tiine 35 Qi = giipFr — GiguTe 35 }Aii = giipFT — iimTe
0 (= 3 - 4750) N = 0 (= 3-19250) N = 57750 (= 3-19250) N = 0 (= 3-19250)
30 =0.3GPa 30 PRMSE(A;;) = 0.4GPa 30 FRMSE(A;;) = 0.4GPa g 30 PRMSE(A;) = 0.4GPa
max(|A;]) = 1.9GPa max(|A;]) = 1.5GPa max(|A;]) = 2.2GPa max(|A;]) = 3.3GPa
25 25 25 25
&£ 20 & 20 £ 20 £ 20
O < <) O
~ 15 ~ 15 ~ 15 ~ 15
g 10 g 10 g 10 g 10
5 5 5 5
o Ay = yprEr — Tae 0 Ay = ~ gap 0 Ay = gyprEr — Tyae 0 Ay = 001 — Ty
N = 14250 (= 3-4750) N/ =5 = 3-19250) N = 57750 (= 3-19250) N = 57750 (= 3-19250)
5 RMSE(A;;) = 0.1GPa 5 RMSE(A,;) = 0.1GPa 5 RMSE(A;;) = 0.1GPa 5 RMSE(A,;) = 0.2GPa
max(|A;[) = 0.6GPa max(|A;[) = 0.7GPa max(|A;) = 1.6GPa max(|A;[) = 2.7GPa
10 -10 -10 -10
S0 5 0 5 10 15 20 25 30 35 40 S0 5 0 5 10 15 20 25 30 35 40 S0 5 0 5 10 15 20 25 30 35 40 210 5 0 5 10 15 20 25 30 35 40
oprr / GPa oprr / GPa oprr / GPa oprr / GPa

(a) 10GPa (b) 20GPa (c) 25GPa (d) 30GPa

Supplementary Figure 2: MTP validation: energy (E), force components (F), and stress
tensor components o calculated with MTPs for all individuals generated in the DFT
SSCHA calculations plotted versus the corresponding DFT values. The energies are
plotted with respect to the DFT total energy of the undisplaced structure E.. at the

indicated pressure. The diagonal elements of the stress tensor o;; are plotted in blue, the

off-diagonal elements o;.; in green. The solid black line indicates the exact correlation
between MTP and DFT values and serves as a guide to the eye.

In Supplementary Fig. [3] we compare the SSCHA phonon dispersion obtained from DFT
and MTPs in 2x2x2 supercells for all studied pressures.
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Supplementary Figure 3: MTP validation in SSCHA: SSCHA phonon dispersions
obtained in the 2x2x2 supercell using DFT (blue solid lines) and MTPs (red dashed lines)
in populations with the same number of individuals at a p = 10 GPa, b 20 GPa, ¢ 25 GPa,

and d 30 GPa. popp (popwm) is the population number for the DET (MTP) case that has
the indicated number of individuals N. The squares, diamonds, and triangles mark the
slowly-converging modes Th, and Ay, at I', and E; at X. See Supplementary Fig. [6 for the
convergence with respect to populations.

Supplementary Note 3. Summing the force constants of different contributions

The dotted phonon dispersions in Fig. 5c in the main text are obtained from the force
constant matrix Csum = Charm +ACq1+ACann /phph, Where Cyarm is the force constant matrix
for harmonic phonons of structure x in the 4x4x4 supercell, and ACq; and ACunp /phph are
obtained as the difference between Cqr, Cann/phph and Charm, i.€.

ACQ[ == CQI - C'halrm (13)
AC(amh/phph = C’anh/phph - Charm- (14>

Caqr and Cynn/pnpn are the force constant matrices in the 4x4 x4 supercell used to create the
dotted dispersions in Fig. 5a and b in the main text.

Supplementary Note 4. Computational costs of the harmonic ZPE analysis

The harmonic analysis is about 50 to 100 times faster than the SSCHA evaluation for
BaSiHs. As shown in Supplementary Fig. [6|a,f,k,b, convergence for the atomic positions is
achieved with populations 4 and 5, corresponding to a total of ~1500-2000 DFT calculations
in a 2x2x2 supercell with 80 atoms (cf. Supplementary Table , each of which takes
about 10 CPUh, adding up to 15000-20 000 CPUh. In order to obtain a total energy curve
from harmonic theory, we performed 10-20 DFPT calculations in the unit cell (10 atoms)
employing 2x2x2 g-grids, each of which takes about 20 CPUh, in total about 200-400 CPUh.



III. SUPPLEMENTARY FIGURES
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Supplementary Figure 4: Convergence of the free energy with respect to supercell
size: a-d as a function of minimization steps at p = 10, 20, 25 and 30 GPa, e-h the
converged (last) value of the free energy as a function of the supercell size. The value
obtained in the 1x1x1 supercell (unit cell) is shown as text. The free energy is plotted as
difference to the DF(P)T harmonic value AF = F — (Eq(x) + ES3™(x)), where F if the
SSCHA free energy, x defines the DFT relaxed atomic positions.

10



——MTP 2x2x2 MTP 3x3x3 MTP 4x4x4| |——MTP 2x2x2 MTP 3x3x3 MTP 4x4x4

200

_’:”_L/,_——’—\ji\ = I
i B e | — =

fiw / meV

&\ —/}ﬂ |\!=> | e 7
—F /P”# a - — -

0

200

— MTP 2x2x2 MTP 3x3x3 MTP 4x4x4| |=——MTP 2x2x2 MTP 3x3x3 MTP 4x4x4

hw / meV

Supplementary Figure 5: Convergence of the phonon dispersions with respect to
supercell size: SSCHA phonon dispersions including third-order terms for n x n x n
supercells with n = 2,3, 4 (blue, red, and ochre lines respectively) obtained using MTPs. a
10 GPa, b 20 GPa,c 25 GPa, and d 30 GPa. The imaginary frequencies close to I' on the
path I' — X for n = 3,4 in ¢ and d, and additionally on L — I' in b are an artifact of the
interpolation. All frequencies at q vectors commensurate with the corresponding supercell
are positive. The imaginary region becomes smaller with increasing n, which suggests that
this issue can be solved by using even higher supercells. However, the needed
computational cost in terms of time and memory goes beyond the scope of this work.
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Supplementary Figure 6: Convergence of structural parameters and physical

phonon frequencies: a-e 7, p, and phonon frequencies for the 75, and A,, mode at T,
and for the £/, mode at X at 10 GPa, f-j at 20 GPa, k-o at 25 GPa, p-t at 30 GPa. The

plotted quantities are obtained at the end of the SSCHA minimization for each population.

The phonon frequencies are obtained from the positional free energy Hessian including the

third order terms. The calculations are done in n x n x n supercells (DFT results for n = 2
in blue, MTP results for n = 2,3,4 in red, ochre and purple, respectively.)
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Supplementary Figure 7: Dynamical (in)stability as a function of pressure: SSCHA
phonon frequency of the 75, mode at I' over SSCHA pressure p. The values correspond to
the 4x4x4 supercell calculation with MTPs.
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Supplementary Figure 8: SSCHA phonon dispersions in different levels of
approximation: SSCHA phonon dispersions at a 10 GPa, b 20 GPa, ¢ 25 GPa, and d
30 GPa including only the second order (®®) solid ochre lines), second and third second
order terms (®®), solid blue lines), or all terms (dashed red line) in the positional free
energy Hessian in Supplementary eq. (6). ®® correspond to the SSCHA auxiliary
frequencies. The inclusion of the fourth order terms ®® (dashed red line) introduces only
minor changes in the phonon frequencies compared to the inclusion of the third order
terms (solid blue line), with maximum differences in higher modes in the order of 1 meV.
The shown dispersions are obtained in 2x2x2 supercell within the SSCHA calculations
with DET for the population number (pop) and number of individuals (N) indicated in
the panels.
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Supplementary Figure 9: Electronic total energy, ZPE and resulting total energy
as a function of H-Si distance for a 10 GPa, b 20 GPa, and ¢ 30 GPa. A detailed
description and the data for 25 GPa can be found in Fig. 4 in the main text.
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Supplementary Figure 10: Electronic total energy, ZPE and total energy for

LaBHg as a function of H-B distance for a 50 GPa, b 75 GPa, and ¢ 100 GPa. The black
crosses mark calculations with imaginary harmonic phonon frequencies. Among these, we

find a maximum of two non-degenerate modes per H-B distance in the BZ which we

exclude in the ZPE calculation. The harmonic total energy minima in a, b, and c are at
dup = 1.435, 1.408 and 1.381 A, respectively, which is in very good agreement with the
values obtained within SSCHA and reported in Ref. [14].
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Supplementary Figure 11: Phonon convergence in the total energy minimum
structure: Harmonic phonon dispersions for various k-grids and smearing values in
BaSiHg at 25 GPa with a H-Si distance dy.g; = 1.633 A, corresponding to the total energy
minimum shown in Fig. 4 in the main text. The coloured solid lines represent different
nk X ng X ny k-grids, where ny = 16, 20, 24, 28, 32. The panels a, b, and ¢ show the
calculations for smearing values o = 0.010, 0.005, and 0.001 Ry. The zero-point energies
Eyp for each setting are indicated in the legend. The dashed lines represent the phonon
dispersion corresponding to the settings used in the main text (ny, = 12, 0 = 0.010 Ry,
Ezp = 159.2meV /atom). Apart from some changes in three modes at I' (Tb,, E,, and A,
which we already identified as particularly hard to converge and strongly non-parabolic),
these convergence studies demonstrate that the phonon dispersions and zero-point energies
in BaSiHg are in general very robust with respect to k-grid density and smearing
parameter.
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Supplementary Figure 12: Force convergence in the total energy minimum
structure: Absolute value of the DFT force components on the H atoms |Fi,|
(v = z,y, z) for the different numerical settings described in Supplementary Fig. .
a Overview including coarse grids down to ny = 2. The dashed line marks the
computational settings in the main text. b Detail region indicated by the box in a.
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Supplementary Figure 13: SSCHA phonon dispersions without relaxation at a
5 GPa and b 10 GPa.The atomic positions are fixed to the DFT relaxed value x. The
shown dispersions are obtained in 2x2x2 supercells within the SSCHA calculations with
DFT for the population number (pop) and number of individuals (N) indicated in the
panels. The SSCHA pressure is indicated by p.
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Supplementary Figure 14: Eliashberg spectral functions: Eliashberg spectral functions
a?F(w) (shaded areas) and cumulative ep coupling A(w) (solid lines) for the cases shown in
Tab. III in the main text. The harmonic (standard) quantities are plotted in black as a

reference in each panel.
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Supplementary Figure 15: Convergence of the SSCHA minimization in the 2x2x2

supercell with DFT calculations at 25 GPa with respect to minimization steps

—~

alternating

colours represent different populations): a SSCHA free energy F =+ the stochastic error as
errorbars, b Kong-Liu effective sample size Nqg times population size N, ¢ modulus of the
free energy gradient with respect to the auxiliary force constants (solid lines) and the
corresponding stochastic error (dashed lines), d modulus of the free energy gradient with
respect to the mean atomic positions R (SSCHA total force, solid lines) and the
corresponding stochastic error (dashed lines), and e SSCHA auxiliary frequencies

(eigenvalues of ®).
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Supplementary Figure 16: VCNEB calculations showing the effects of including
zero-point energies (ZPE) on the enthalpy barriers. The black lines show the calculations
without ZPE (as reported in our previous work in Ref. [13]) and the red lines results of
calculations where ZPE corrections have been included for selected structures. The dashed
lines denote the determined barrier height. Note: As the intermediate structures within
VCNEB may not always correspond to local minima of the potential energy surface
imaginary phonon modes can appear, which, for a rough estimate of the size of ZPE, have
been neglected.
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