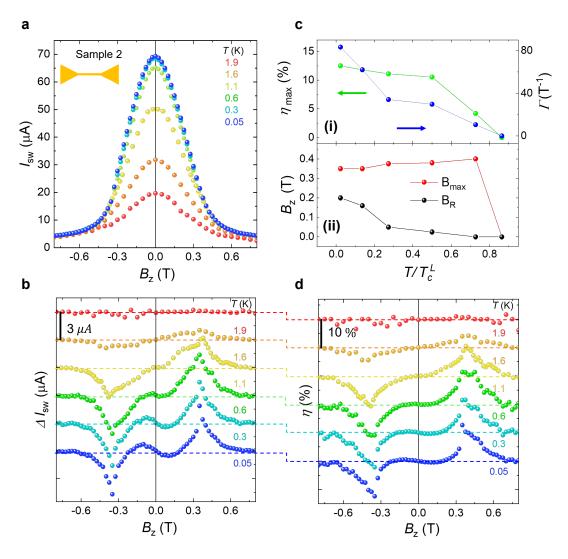
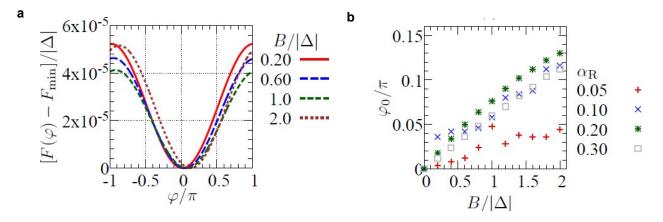
Sign reversal diode effect in superconducting Dayem nanobridges


Daniel Margineda,
1,4,* Alessandro Crippa,¹ Elia Strambini,¹ Yuri Fukaya,² Maria Teresa Mercaldo,³ Mario Cuoco,² and Francesco Giazotto^{1,†}

¹NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127, Pisa, Italy ²SPIN-CNR, I-84084 Fisciano (SA), Italy


³Dipartimento di Fisica "E. R. Caianiello", Università di Salerno, I-84084 Fisciano (SA), Italy ⁴present address: CIC nanoGUNE BRTA, E-20018 Donostia-San Sebastin, Spain.

^{*} d.margineda@nanogune.eu

 $^{^\}dagger$ francesco.giazotto@sns.it

Supplementary Figure 1. Diode effect in a second long Dayem bridge. a, Magnetic field dependence of the switching current I_{sw}^+ for positive bias current at selected temperatures. b, ΔI_{sw} , for the given temperatures. Compared with the device results presented in the main manuscript, the sign reversal of the rectification occurs at lower fields and vanishes at lower temperatures $T \simeq 0.6$ K, while the rectification peak at B_{max} remains unaffected by temperature up to to $T \simeq 1.6$ K. c, Rectification parameters: $\eta_{max} \equiv (\eta_{max}(B_z > 0) + \eta_{max}(B_z < 0))/2$ (green dots), field-to-rectification efficiency transfer function Γ (blue dots) (i), B_{max} (red dots) and B_R (black dots) magnetic fields (ii) versus normalized temperature. T_c^L denotes the critical temperature of the long bridge. η_{max} is the rectification value of the low-field peak at B_{max} . d $\eta(B_z)$ for selected bath temperatures marked by dashed lines in panel b. Curves are vertically offset for clarity.

Supplementary Figure 2. Free energy of a weak link in the presence of an out-of-plane magnetic field yielding an anomalous phase shift. a Free energy F as a function of the phase difference φ for a SS'S weak link forming a slab with w < l for selected B-field values. We assume that both Rashba and Dresselhaus interactions are not negligible due to the mirror symmetry breaking at grain boundaries and slab interfaces. For the calculations, we choose a representative amplitude of the Rashba and Dresselhaus interactions ($\alpha_{\rm R} = \alpha_{\rm D} = 0.2t$), where t is the hopping amplitude that sets the kinetic energy scale. The anomalous phase φ_0 is given by the free energy minima. For clarity, we use $F_{\rm min}$ as an offset value of the energy for each free energy evaluated. **b**, Anomalous phase φ_0 as a function of the applied magnetic field B (in units of superconducting gap amplitude Δ) for different strengths of $\alpha_{\rm R}(=\alpha_{\rm D})$, in t units). The value of φ_0 is extracted as in **a**. We set the chemical potential as $\mu = 0.005 t$. The anomalous phase scales almost linearly with the magnetic field, reaching an amplitude of about 0.1π when $B \sim \Delta$.