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Supplementary Note 1: VF Detection with
Comparison Methods

1
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2 Supplementary Information

Fig. S1 VF detection results using the moving average as the score for change point detec-
tion. Annotated onsets for VF are given black crosses, and flagged detection of VF is given
by a red dot. The onset of VF is characterised by a persistent detection result (red).

Fig. S2 VF detection results using the moving standard deviation as the score for change
point detection. Annotated onsets for VF are given black crosses, and flagged detection of
VF is given by a red dot. The onset of VF is characterised by a persistent detection result
(red).



093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

Springer Nature 2021 LATEX template

Supplementary Information 3

Fig. S3 VF detection results using the moving permutation entropy as the score for change
point detection. Annotated onsets for VF are given black crosses, and flagged detection of
VF is given by a red dot. The onset of VF is characterised by a persistent detection result
(red).

Supplementary Note 2: Phase Coherence vs.
Non-Phase Coherence
Detection

Chaotic oscillators such as the Rössler system are distinct from periodic sys-
tems in that they do not exhibit an exact frequency [1]. Observation of the
power spectrum of chaotic signals reveals activations across the whole band
of considered frequencies. Phase coherence (PC) within a chaotic oscillator is
characterised by the presence of a well defined peak on the power spectrum.
An equivalent condition is that the phase of the signal changes monotonically
where the phase can be approximated from the signal using a Hilbert transform
[2]. This often corresponds to trajectories in phase space that rotate along a
collection of orbits around some central point [1]. Parallel trajectories on these
orbits have phases that are similar throughout the whole period of rotation.
In contrast, non-phase coherent (NPC) systems do not have a clearly defined
phase relationship over time.

The Rössler chaotic oscillator is one that exhibits both PC and NPC
dynamics at different bifurcation values (see Fig. S5) [2] with system equations
given by

ẋ = −y − z,

ẏ = x+ αy,

ż = z(x− c),
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p

pH

a)

b)

Fig. S4 Detection performance scores for each patient compared across four methods:
moving average (MA), moving standard deviation (MSTD), moving permutation entropy
(MPE), and surprise (S). (a) raw performance score p and (b) performance score adjusted
for successive detections.

where b = 0.4 and c = 8.5. The phase coherence of the system can be controlled
by the parameter α = 0.165 and α = 0.265 corresponding ot the PC and NPC
regimes respectively. This results in two similar attractors with structurally
different features. From Figure S5 the PC attractor is close to a subset of the
NPC regime. Hence, the attractor network approach that quantifies attractor
changes would be able to detect changes from PC to NPC but not the reverse.
This feature was used to test the attractor network approach in detecting
changes in attractor structure in phase space.

Here, the change point detection task is to identify when the signal changes
between the PC and NPC regime. To do this, an attractor network is trained
on data generated from a Rössler system operating in the PC regime. An
additional shorter length of training data of length 20000 was used to get
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a)

b)

c)

Fig. S5 Time series of the Rössler system operating in the (a) PC (α = 0.165) (blue) and
(b) NPC (α = 0.265) (red) regime. (c) The corresponding phase space reconstruction where
the attractor for the PC system (blue) is almost a subset of the NPC attractor (red).

the 95% cutoff value for S(t) operating on the original system. The test data
consisted of the simulated oscillator with a modulating bifurcation value α
switching between the PC α = 0.165 and NPC α = 0.265 regimes every 2000
steps. The resulting S(t) was used to evaluate E(t) and determine transition
points.

The results revealed that the attractor network method performed equally
well if not better than other simpler metrics (moving statistics, permutation
entropy) in providing distinct cutoffs for the change points transitions between
PC and NPC (see Fig. S6). However, we find that the converse problem of
detecting PC transitions using attractor networks trained on NPC was not
successful, whereas simpler metrics performed consistently. This difference in
performance can be attributed to the fact that the PC Rössler attractor is spa-
tially almost a subset of the NPC attractor (see Fig. S5) when discretised with
respect to some selected resolution ϵ. Whilst there exists differences between
the state space distributions of both attractors, S(t) aims to capture the sur-
prise of transition at a given point in time. Thus, such a method would be
limited to the resolution governed by δ and ϵ as defined in the Methods section.
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Fig. S6 Results of all change point algorithms for detecting transitions between NPC and
PC Rössler time series. From the top to bottom: Original time series, moving average, moving
standard deviation statistic, moving permutation entropy, and surprise scores S(t). Sliding
window lengths of 100 steps were used for calculating moving averages. Detections (red) are
made based on the exponential smoothed quantity E(t) with respect to a set cutoff E∗. Real
change points are given by vertical orange lines. All methods except the moving average
are able to detect change points. However, only the surprise score produces a persistent
classification of observations as abnormal.

Supplementary Note 3: Quantifying Gradual
Transitions

Contrasting with the detection of abrupt changes in the time series, the attrac-
tor network approach was used to see if the surprise metric S(t) could be
used to quantify gradual changes in a system. To test this, we analyse the
Chua dynamical system that is known to contain two disjoint scroll-shaped
attractors,

ẋ = −(y − x+ z),

ẏ = −α(x− y − f(y),

ż = βx+ γz,

f(y) = ay3 + by,
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a)

b)

c)

Fig. S7 (a) The calculated average surprise for each 50 step window corresponding to a
given value of α with (b) containing the corresponding bifurcation diagram of the system.
Blue and red represent the two disjoint scroll attractors which eventually merge at α ≈ 19.05.
(c) The two disjoint scrolls attractors corresponding to the same bifurcation diagram at
α = 17.

where (β, γ, a, b) = (53.612186,−0.75087096, 0.03755,−0.84154). For increas-
ing values of α ∈ (17, 20), the system undergoes a gradual transition from
the single scroll to double scroll regime [3]. During the transition, two disjoint
scrolls in the Chua attractor gradually merge and undergo a crisis resulting in
a single double scroll attractor. Input data from the single scroll Chua system
(α = 17) with the dt = 0.1 and 25000 time steps was used to construct the
attractor network. To simulate the transition, the same Chua system was inte-
grated in 1000 segments of 50 timesteps with each segment corresponding to
a slight increase in α in the interval [17, 20]. The endpoint of each segment is
fed as initial conditions for the integration of the next interval to ensure con-
tinuity in the time series. Finally, the first component of the test time series is
delay embedded and used for calculating S(t).

The resulting profile showing average surprise for each window S̄(α) was
found to correspond closely with the various regions in the bifurcation dia-
gram (see Fig. S7). In the single scroll regime with two separate attractors
(α ≈ [17, 17.95]), S̄(α) shows relatively consistent volatile behaviour. The
final double scroll regime α ≈ [19.05, 20] is also reflected in more disor-
dered and larger amplitude variations. We also note that the periodic regimes
(α ≈ [17.3, 17.4] ∪ [17.95, 19.05]) are also tracked well where S̄(α) displays a
consistent pseudoperiodic behaviour. Additionally, S̄(α) shows a positive cor-
relation with increasing deviation from the original trained value of α = 17.
The relatively gradual increase in surprise with increasing perturbation of the
bifurcation parameter suggests that the attractor network may be sensitive in
measuring the magnitude of change in a given system.
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Supplementary Note 4: Nonlinear Change
Point Detection

In this section, we provide additional comparisons between the attractor
network approach and two nonlinear time series analysis methods from recur-
rence quantification analysis. Recurrence quantification analysis is a method
that aims to track spatial recurrences of a given trajectory in phase space [4].
Given a multivariate time series x⃗(t) ∈ Rm of length L, a recurrence matrix R
is a L× L square matrix with entries given by

Rij =

{
1 , ∥x⃗(i)− x⃗(j)∥ < ϵ

0 , otherwise
, (S1)

where ϵ is a size scale parameter typically selected such that a proportion
r of the entries in L are non-zero. The constant r is commonly termed the
recurrence rate.

Broadly speaking, a dynamical system’s trajectories may be partially repre-
sented by the observed recurrences of its trajectories. Recurrence quantification
analysis (RQA) aims to identify measures and properties from R for the pur-
pose of time series analysis. In the context of change point detection, we
compare the attractor network approach with two recent RQA-based methods:
quadrant scan (QS) and modularity scan (MOD). For the interested reader,
we refer to the work by [5] and [6] for further detail on these methods.

We employ a sliding window approach of length 100 and calculate both
QS and MOD measures alongside moving average, moving standard deviation,
permutation entropy and surprise for change point detection in two cases: (1)
Chua AAFS and (2) Rössler PC vs. NPC. The results are provided in Figures
S8 and S9.

The recurrence plot measures, QS and MOD, performed similarly and were
able to detect change points effectively in both test cases. These measures
are only defined across the length of a target sliding window. As they are
unsupervised methods, quadrant and modularity scan are only able to detect
the transitions between normal and unhealthy (and vice versa). Regardless, we
find that both nonlinear methods perform similarly to the attractor network
approach and outperform moving statistics measures when detecting the onset
of regime changes. This result in unsurprising as both approaches, attractor
networks and RQA, track changes in the vector field in phase space. In the
former, this achieved by evaluating transition probabilities between discretised
regions, whereas the former uses the frequency of recurrences.
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Fig. S8 Change point detection for differentiating between Chua single scroll dynamics and
amplitude adjusted Fourier surrogates. Shown: (a) original time series, detection results for
(b) moving average, (c) moving standard deviation, (d) permutation entropy, (e) surprise,
(f) quadrant scan (QS) and (g) modularity scan (MOD).
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Fig. S9 Change point detection for differentiating between PC and NPC Rössler. Shown:
(a) original time series, detection results for (b) moving average, (c) moving standard devia-
tion, (d) permutation entropy, (e) surprise, (f) quadrant scan (QS) and (g) modularity scan
(MOD).
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