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Supplementary Note 1. Algorithms

Algorithm 1 Automatic Savitzky-Golay Filter
Input: X̃ ∈ Rn×m, dt.
Output: Savitzky-Golay optimally smoothed X and Ẋ.

1: determine lower and upper bounds of (odd) window length l:
lmin = 13,
lmax = max (13, min (n− (n− 1) mod 2, 101) );

2: build L = (lmin, . . . , lmax);
▷ v = degree of derivative

3: for j = 1, . . . ,m do
l∗ = argminL ∥SG(x̃j , o = 4, l = L, v = 0, dt)− x̃j∥22,
xj = SG(x̃j , o = 4, l = l∗, v = 0, dt),
ẋj = SG(x̃j , o = 4, l = l∗, v = 1, dt);

4: end for
5: consolidate X, Ẋ ∈ Rn×m with each xj and ẋj , respectively.
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Algorithm 2 Automatic Regression for Governing Equations (ARGOS)
Input: X ∈ Rn×m, ẋj ∈ Rn, d, α = 0.05.

▷ STEP ONE: Initial design matrix
1: p(0) =

(
m+d
d

)
;

2: create Θ(0)(X) ∈ Rn×p(0)

with basis functions up to order d of the columns of X;
▷ STEP TWO: Trim design matrix
▷ Variable selection with the lasso or adaptive lasso
▷ λ∗ : Optimal λ from 10-fold cross-validation
▷ lasso: w = 1
▷ adaptive lasso: w = ridge regression coefficients

3: β̂(0) = argmin
β

∥∥∥ẋj −Θ(0)(X)β
∥∥∥2
2
+ λ∗

p(0)∑
k=1

wk|βk|;

4: extract Θ(1)(X) to contain columns of Θ(0)(X) up to the largest order d(1) of the
selected variables in β̂(0);
▷ STEP THREE: Final point estimates
▷ Repeat sparse regression algorithm from STEP TWO

5: p(1) =
(
m+d(1)

d(1)

)
;

6: β̂(1) = argmin
β

∥∥∥ẋj −Θ(1)(X)β
∥∥∥2
2
+ λ∗

p(1)∑
k=1

wk|βk|;

▷ Apply threshold values
7: η = [10−8, 10−7, . . . , 101];
8: for i = 1, . . . , card(η) do

▷ Ordinary least squares regression (OLS) estimate after variable selection

β̂OLS[i] = argmin
βKi

∥∥∥ẋj −Θ
(1)
Ki

(X)βKi

∥∥∥2
2

where Ki = {k : |β̂(1)
k | ≥ ηi},

BICi = BIC(β̂OLS[i]);
9: end for

10: β̂ =
{
β̂OLS[i]

∣∣∣i : argmin(BIC)
}
;

▷ STEP FOUR: Bootstrap estimates for confidence intervals
▷ B = 2000 bootstrap samples

11: bootstrap Statements 6 – 10 to approximate confidence interval bounds: CIlo =
[Bα/2] and CIup = B − CIlo + 1;

12: construct bootstrap confidence intervals for β̂:
β̂k ∈

[
β̂

OLS{CIlo}
k , β̂

OLS{CIup}
k

]
, and 0 < β̂

OLS{CIlo}
k or 0 > β̂

OLS{CIup}
k .

Supplementary Note 2. Linear systems

A. Two-dimensional damped oscillator with linear dynamics
We examined the two-dimensional linear system as [1]

ẋ1 = −0.1x1 + 2x2,

ẋ2 = −2x1 − 0.1x2.
(S1)
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Table S1 Minimum number of observations (n) needed for each
method to obtain 80% accuracy in identifying governing equations of
dynamical systems. Top-performing algorithms are in red, and
three-dimensional systems have a shaded background.

System Algorithm n

Two-dimensional linear
ARGOS-Lasso 102.6 (399)
ARGOS-Adaptive Lasso 102.6 (399)
SINDy with AIC 103.3 (1996)

ARGOS-Lasso 102.9 (795)
ARGOS-Adaptive Lasso 103.2 (1585)Three-dimensional linear
SINDy with AIC NA

Two-dimensional cubic
ARGOS-Lasso 103.2 (1585)
SINDy with AIC 103.3 (1996)
ARGOS-Adaptive Lasso 104.1 (12590)

Lotka-Volterra
ARGOS-Adaptive Lasso 103.2 (1585)
SINDy with AIC 103.2 (1585)
ARGOS-Lasso 103.3 (1996)

ARGOS-Adaptive Lasso 102.9 (795)
ARGOS-Lasso 103.2 (1585)Rossler
SINDy with AIC 103.2 (1585)

ARGOS-Adaptive Lasso 103.8 (6310)
ARGOS-Lasso 103.9 (7944)Lorenz
SINDy with AIC NA

Van der Pol
ARGOS-Adaptive Lasso 102.9 (795)
SINDy with AIC 102.9 (795)
ARGOS-Lasso 103.0 (1000)

Duffing
ARGOS-Lasso 102.6 (399)
SINDy with AIC 102.9 (795)
ARGOS-Adaptive Lasso 103.0 (1000)

For x1(t) and x2(t), we generated a random uniform distribution of 100 values between
[10−1, 103].

In Fig. S1, we observe the performance of our approach and SINDy with AIC in
discovering the two-dimensional damped oscillator with linear dynamics. We found
that with less than 300 observations and low SNR, our method identified overly sparse
models and struggled to represent the underlying equations of the system accurately.
As the length of the time series n increased and the data became less contaminated
with noise, however, the performance of our method improved in extracting the true
terms. Conversely, SINDy with AIC demonstrated a tendency to produce dense mod-
els, which contained numerous erroneous variables, particularly with less than 1000
observations and low to medium SNR.
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Table S2 Minimum signal-to-noise ratio (SNR) tolerated by
each method to achieve 80% accuracy in identifying the
governing equations of the dynamical systems. Top-performing
algorithms are in red, and three-dimensional systems have a
shaded background.

System Algorithm SNR

Two-dimensional linear
ARGOS-Lasso 25
ARGOS-Adaptive Lasso 25
SINDy with AIC 37

ARGOS-Lasso 31
ARGOS-Adaptive Lasso 40Three-dimensional linear
SINDy with AIC ∞

Two-dimensional cubic
ARGOS-Lasso 43
SINDy with AIC 46
ARGOS-Adaptive Lasso NA

Lotka-Volterra
ARGOS-Adaptive Lasso 16
SINDy with AIC 22
ARGOS-Lasso 28

ARGOS-Adaptive Lasso 31
ARGOS-Lasso 34Rossler
SINDy with AIC NA

ARGOS-Adaptive Lasso 46
ARGOS-Lasso 55Lorenz
SINDy with AIC ∞

Van der Pol
SINDy with AIC 16
ARGOS-Adaptive Lasso 19
ARGOS-Lasso 25

Duffing
ARGOS-Lasso 28
ARGOS-Adaptive Lasso 28
SINDy with AIC 34

B. Three-dimensional linear system
We evaluated a three-dimensional system [1]:

ẋ1 = −0.1x1 + 2x2,

ẋ2 = −2x1 − 0.1x2,

ẋ3 = −0.3x3.

(S2)

For x1(t), x2(t), and x3(t), we again developed a random uniform distribution
containing 100 values between [10−1, 103].

Figure S2 demonstrates the efficacy of employing the lasso within our framework, as
the method more consistently identified the three-dimensional linear system than the
other two algorithms studied here. With greater than 1000 observations and medium
SNR, our approach accurately represented these simple dynamics. We also found that,
with low SNR and less than 300 observations, our method discovered models that were
overly sparse and did not fully represent the dynamics, while SINDy with AIC often
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Fig. S1 Frequency of identified variables for the two-dimensional damped oscillator with
linear dynamics across algorithms. Colors correspond to each governing equation; filled boxes
indicate correctly identified variables, while white boxes denote erroneous terms. Panels show the
frequency of identified variables for data sets with (a) increasing time-series length n (signal-to-noise
ratio (SNR) = 49 dB), and (b) SNR (n = 5000). Purple-bordered regions demarcate model discovery
above 80%.

failed to discover a parsimonious representation of the system by identifying dense
models with superfluous terms.

Supplementary Note 3. Nonlinear systems

A. Two-dimensional damped oscillator with cubic dynamics
We examined a two-dimensional system with cubic dynamics as [1]

ẋ1 = −0.1x3
1 + 2x3

2,

ẋ2 = −2x3
1 − 0.1x3

2.
(S3)

For x1(t) and x2(t), we generated a random uniform distribution containing 100 values
between [−2, 2].
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Fig. S2 Frequency of identified variables for the three-dimensional linear system across
algorithms. Colors correspond to each governing equation; filled boxes indicate correctly identified
variables, while white boxes denote erroneous terms. Panels show the frequency of identified variables
for data sets with (a) increasing time-series length n (signal-to-noise ratio (SNR) = 49 dB), and (b)
SNR (n = 5000). Purple-bordered regions demarcate model discovery above 80%.

Figure S3 further demonstrates the effectiveness of the lasso algorithm for iden-
tifying the two-dimensional damped harmonic oscillator with cubic dynamics. Here,
SINDy with AIC performed model discovery with similar accuracy to our approach,
while both the lasso and SINDy with AIC ultimately outperformed the adaptive lasso.

B. Lotka-Volterra system
The Lotka-Volterra system is described by two first-order nonlinear differential
equations commonly used to depict the interaction dynamics between two species
in biological systems, with one being the predator and the other the prey [2]. The
predator-prey equations are represented as

ẋ1 = αx1 − ζx1x2,

ẋ2 = δx1x2 − γx2,
(S4)
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Fig. S3 Frequency of identified variables for the two-dimensional damped oscillator with
cubic dynamics across algorithms. Colors correspond to each governing equation; filled boxes
indicate correctly identified variables, while white boxes denote erroneous terms. Panels show the
frequency of identified variables for data sets with (a) increasing time-series length n (signal-to-noise
ratio (SNR) = 49 dB), and (b) SNR (n = 5000). Purple-bordered regions demarcate model discovery
above 80%.

where α = 1 represents the prey birth rate and δ = −1 is the predator death rate,
and ζ = −1 and γ = 1 are the interaction parameters [3]. Since the population cannot
be negative, we used a random uniform distribution with 100 positive values between
[1, 10] for the initial conditions of both x1(t) and x2(t).

Figure S4 illustrates that, as n and SNR increased, we most consistently identified
the true governing terms of the equations using the adaptive lasso within our frame-
work. In contrast, SINDy with AIC tended to discover numerous erroneous terms when
data contained fewer than 3000 observations and low SNR.
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Fig. S4 Frequency of identified variables for the Lotka-Volterra system across algo-
rithms. Colors correspond to each governing equation; filled boxes indicate correctly identified
variables, while white boxes denote erroneous terms. Panels show the frequency of identified variables
for data sets with (a) increasing time-series length n (signal-to-noise ratio (SNR) = 49 dB), and (b)
SNR (n = 5000). Purple-bordered regions demarcate model discovery above 80%.

C. Rossler system
We examined the Rossler system, a three-dimensional chaotic system represented as

ẋ1 = −x2 − x3,

ẋ2 = x1 + ax2,

ẋ3 = b+ x3(x1 − c),

(S5)

where a = 0.2, b = 0.2, and c = 5.7 [4]. For x1(t), x2(t), and x3(t), we generated a
random uniform distribution containing 100 values between [−10, 10], [−10, 10], and
[0, 20].

Figure S5 demonstrates the effectiveness of our approach in accurately represent-
ing the Rossler system, provided that sufficient data is available. Here, our method
consistently identified the underlying dynamics while SINDy with AIC failed to sur-
pass 80% success for any SNR value, emphasizing the limitations of the sequential
thresholding procedure.
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Fig. S5 Frequency of identified variables for the Rossler system across algorithms. Colors
correspond to each governing equation; filled boxes indicate correctly identified variables, while white
boxes denote erroneous terms. Panels show the frequency of identified variables for data sets with
(a) increasing time-series length n (signal-to-noise ratio (SNR) = 49 dB), and (b) SNR (n = 5000).
Purple-bordered regions demarcate model discovery above 80%.

D. Lorenz system
We examined the Lorenz chaotic system, a low-dimensional nonlinear structure orig-
inally a simple model for atmospheric convection. The Lorenz systems are modeled
using the following equations:

ẋ1 = σ(x2 − x1),

ẋ2 = x1(ρ− x3)− x2,

ẋ3 = x1x2 − ζx3,

(S6)

with the values of the original parameters σ = 10, ρ = 28, and ζ = 8/3 [1]. For x1(t),
x2(t), and x3(t), we developed a random uniform distribution containing 100 values
between [−15, 15], [−15, 15], and [10, 40]. The Results section provides more detail
regarding each method’s performance in discovering the Lorenz system.
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Fig. S6 Distribution of the Optimal Thresholding Parameter η∗ Under Various Con-
ditions for the Lorenz system. Boxplots display distributions of η∗ from 100 initial conditions,
optimized using a BIC-selected grid of thresholds. Whiskers extending from each box show 1.5 times
the interquartile range. Data points beyond the end of the whiskers are outlying points. Colors denote
governing equations for data sets with increasing (a) time-series length n (signal-to-noise ratio (SNR)
= 49 dB), and (b) SNR (n = 5000).

E. Van der Pol oscillator
We examined the Van der Pol oscillator, introduced in 1922 as a nonlinear circuit
model with a triode tube, represented as

ẋ1 = x2,

ẋ2 = µ(1− x2
1)x2 − x1,

(S7)

where µ = 1.2 controls the nonlinear damping level of the system [5]. For x1(t) and
x2(t), we developed a random uniform distribution containing 100 values between
[−4, 4].

Figure S8 further illustrates the tendencies of each algorithm when faced with a
limited number of observations and low SNR. Under these conditions, our method
developed overly sparse models, while SINDy with AIC produced dense models that
did not accurately represent the Van der Pol oscillator. However, as n and SNR
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x̃j for a single instance of the Lorenz system with time-series length n = 5000 as the signal-to-noise
ratio (SNR) increases. The lines show exponential fits.

increased, our approach demonstrated a marked improvement in accurately discovering
the underlying equations of the oscillator.

F. Duffing oscillator
We examined the Duffing oscillator as an alternative cubic nonlinear system that
can represent chaos. The Duffing oscillator models a spring-damper-mass system that
contains a spring with a restoring force of f(ζ) = −κζ − ϵζ3, where ϵ > 0 represents
a hard spring [5]. However, when ϵ < 0, it represents a soft spring and is given by

ζ̈1 + γζ̇ + (κ+ ϵζ2)ζ = 0. (S8)

We converted x = ζ and y = ζ̇ and transformed Eq. (S8) to

ẋ1 = x2,

ẋ2 = −γx2 − κx1 − ϵx3
1.

(S9)

Here, we used parameter values for which the Duffing oscillator does not represent
chaotic behavior: κ = 1, γ = 0.1, and ϵ = 5 [5]. For x1(t) and x2(t), we developed a
random uniform distribution containing 100 values between [−2, 2], [−6, 6].

Figure S9 shows that our method consistently represented the Duffing oscillator
with high accuracy as n and SNR increased. In this example, with less than 1000
observations and low SNR, our approach developed overly sparse models that inade-
quately captured the dynamics of the system, while SINDy with AIC again developed
dense models that misrepresented the dynamics.
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Fig. S8 Frequency of identified variables for the Van der Pol oscillator across algorithms.
Colors correspond to each governing equation; filled boxes indicate correctly identified variables,
while white boxes denote erroneous terms. Panels show the frequency of identified variables for data
sets with (a) increasing time-series length n (signal-to-noise ratio (SNR) = 49 dB), and (b) SNR
(n = 5000). Purple-bordered regions demarcate model discovery above 80%.
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Fig. S9 Frequency of identified variables for the Duffing oscillator across algorithms.
Colors correspond to each governing equation; filled boxes indicate correctly identified variables,
while white boxes denote erroneous terms. Panels show the frequency of identified variables for data
sets with (a) increasing time-series length n (signal-to-noise ratio (SNR) = 49 dB), and (b) SNR
(n = 5000). Purple-bordered regions demarcate model discovery above 80%.
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Supplementary Note 4. Interplay between Data Size,
Dictionary Matrix, and Noise Level

The results highlight an intricate relationship between the number of given data, the
size of the dictionary matrix, and the noise level. Theoretically, as the number of
observations increases, our method can handle more variables in the design matrix
while still successfully identifying the underlying system. However, our results show
that, with minimal observations and a large number of predictors, our method cannot
uncover the underlying system.

Regarding noise levels, our observations suggest that, as expected, increased noise
tends to obscure the advantages brought by a larger data set, and this problem
becomes more challenging with more variables in the design matrix. However, with
sufficient data and low to medium noise levels, our method automatically discovers
the underlying equations from data, as shown in Fig. 2 of the main text.
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