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Quantum gate noise characterization

The examples in the main text have demonstrated the
surprising power of randomized measurements (RM), and
the closely related idea of randomly applying unitary gates.
Here, we dive a little deeper in the direction of applying
random unitaries, and we consider what happens when
random unitary gates are used throughout a quantum
circuit.

Randomized dynamics were originally suggested as a
way to decouple unwanted interactions from an environ-
ment and to put noise into a standard form known as
a Pauli channel [1–3]. Moreover, all that is required to
achieve this noise projection is the ability to insert ran-
dom Pauli gates (or π-pulses) into a quantum circuit. A
Pauli channel is any quantum channel whose Kraus oper-
ators are the Pauli matrices, and where the operator sum
is weighted by a probability distribution. Thus, many
common channels such as depolarizing noise, dephasing
noise, and bit-flip noise are Pauli channels, as are some
more complicated correlated noise channels across multi-
ple qubits. Non-examples include amplitude damping or
coherent over-rotation errors.

Pauli channels are a natural class of noise channels
because their stochastic nature makes it easy to report
a single figure of merit, an error rate, to a given noise
process. They also enjoy a central role in the theory
of quantum error correction because local Pauli noise
can be efficiently simulated when surrounding quantum
circuits are comprised solely of Clifford gates. Lastly, the
Pauli channel error rates in a quantum device provide an
important metric for progress towards fault tolerance.

These considerations have motivated a research effort
to use random unitary dynamics to simplify the noise in
a quantum gate and to enable efficient characterization of
noise by reducing the problem to estimating Pauli error
rates. The literature on noise characterization is already
the subject of entire review articles [4, 5], so we necessarily
limit the scope of our discussion.

The quintessential method for estimating average error
rates in few-qubit quantum systems is called randomized
benchmarking (RB) [6, 7]. In RB, sequences of random
Clifford gates of varying length are applied to the initial
state |0⟩⊗n. At the end of the circuit, the inverse Clifford

circuit is computed, compiled, and applied, then the state
is measured in the computational basis. If the circuit had
no noise, then one would always measure the 0 outcome,
but owing to noise in the system the probability of 0
decays exponentially in the length of the circuit. Suppose
that the noise on each Clifford gate is identical, Markovian,
time-stationary noise. Then it can be shown [8] that the
slope of this decay curve estimates the average error rate
ravg between the noise E and the ideal gate U , defined as

ravg = 1−
∫

dψ⟨ψ|U†E(|ψ⟩⟨ψ|)U |ψ⟩ ,

where the integral is taken over the uniform Haar measure.
Fitting to an exponential decay by using sequences of
varying lengths achieves two goals: first, it decouples the
noise in the state preparations and measurements from
the noise in the gates, improving the accuracy of gate
error estimates; second, the long sequences also improve
the precision of the estimates by amplifying small gate
errors into a signal that is observable with a reasonable
amount of sampling. These strengths have made the RB
method the de facto standard for experimental estimation
of error rates in one- or two-qubit experiments.

The success of RB has spawned numerous modifications
to improve and extend the method. Two early ideas in this
direction were interleaved RB (IRB) [9] and simultaneous
RB (SRB) [10]. In IRB, standard RB is first performed to
get a baseline average error rate estimate r0. Then new
random circuits are sampled by systematically appending
to each random gate the same fixed Clifford gate U . This
new experiment will generally give a worse average error
rate r, and then the ratio r/r0 provides an estimate of the
average error rate of U . In this way, IRB allows one to
estimate gate-specific average error rates. SRB works in
a similar comparative manner. In SRB, the baseline error
rate is estimated by doing RB on a composite system, and
this baseline r is compared to RB done simultaneously on
the constituent subsystems. This facilitates estimation of
crosstalk error rates and correlated errors, which can be
especially detrimental for fault tolerance. Finally, several
variants have been proposed to extract just the average
error rate ravg (or related parameters) in larger-scale
circuits than is possible with standard RB [11, 12].

As mentioned above, randomized dynamics can be used
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to ensure that the noise affecting a quantum computa-
tion is of the form of a Pauli channel [1–3]. This idea
was further developed into a scheme called randomized
compiling [13], which improves over naive schemes by
reducing circuit depth slightly and comes with a perturba-
tive error analysis. These ideas have been demonstrated
experimentally in superconducting qubits [14, 15].

The experimental success of these methods justifies the
efforts to estimate the Pauli noise on individual gates
or rounds of gates in a quantum circuit [16–24]. Two
notable experiments in this space are a trapped ions
experiment [17] that estimated the average noise on a 10-

qubit Mølmer-Sørensen gate, and an experiment [19] that
estimated all of the locally Clifford-averaged Pauli error
rates in a 14-qubit transmon device. These methods have
recently been put into an overarching framework called
ACES (for Averaged Circuit Eigenvalue Sampling) [24].
ACES has been shown numerically to scale to at least
100 qubits, and offers a promising avenue for scalable
Pauli noise estimation in large-scale quantum devices.
Similar in spirit are the shadow sequences introduced in
Ref. [25], whereas Refs. [26] provide channel generaliza-
tions of classical shadows that can help to capture any
type of quantum channel.
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