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Nonreciprocity, symmetry constraints, and magnetochirality
In condensed matters, nonreciprocity refers to the spatial dependence of physical quantities. A prototypical example of
nonreciprocal transport is a diode effect which refers to highly direction-selective electron transport in systems with a lack of
spatial inversion center. Until recently, nonreciprocity was thought to be a transport phenomenon associated with dissipative
materials. For instance, in conventional semiconductors, where resistance is the nonreciprocal quantity, nonreciprocity refers to
charge transport that is sensitive to the polarity of current or bias potential. Such nonreciprocal charge transport leads to a diode
effect in a spatially asymmetric pn junction1, 2, in which, spatial asymmetry of the junction is associated with electron-hole
asymmetry across the contact of n- and p-type semiconductors.

In modern quantum condensed matter physics, in addition to electron-hole asymmetric junctions, nonreciprocal charge
transport can also be induced in spatially symmetric devices, in which transport is direction-selective when space-inversion
and/or time-reversal symmetry are broken. Space-inversion symmetry is either intrinsically broken or can be broken by applying
an electric field externally. Similarly, time-reversal symmetry can be broken either by applying an external magnetic field or
through intrinsic magnetization, leading to an observation of field-free SDE3–9. Here, it is highlighted how the nonreciprocity
of supercurrent associates with the nonreciprocal behavior of physical quantities characterizing current-voltage (I-V) and
current-phase relation (CPR), e.g., resistance and inductance respectively.

Nonreciprocity of supercurrent
In 1996, before even prediction/observation of nonreciprocity in normal (semi)conductors by Rikken et al.10, 11, V. M. Edel-
stein12 proposed nonreciprocity in the critical supercurrent. Followed by his earlier work characterizing Cooper pairing in
noncentrosymmetric superconductors13 and describing magnetoelectric effects in polar superconductors14, V. M. Edelstein12

proposed that if the mixed product (rrr×BBB) · ĵjj is non-vanishing in polar superconductors, then the magnitude of the critical
current jc(B) depends on the sign of this mixed product, i.e., the critical current appears to be different for two opposite
directions. That is, the nonreciprocity of supercurrent can be characterized by the magnetic field-dependent critical current as

jc(B) = jc(0)[1+ γ j(rrr×BBB) · ĵjj] (1)

Here r is the unit vector along the polar axis, ĵjj is the unit vector along the supercurrent, γ j is the coefficient of magnetochiral
anisotropy (MCA), and B is an in-plane magnetic field. The exact expression for the observable (coefficient of supercurrent
MCA) γ j, derived by employing GL theory for a film of polar superconductor and showing its dependence on the coherence
length, Fermi energy, SOI energy, and the upper critical field, etc., can be found in the reference12.

From resistance to supercurrent
Rikken et al.10, 11 generalized Onsager’s reciprocal theorem to the nonlinear regime and gave a heuristic argument for
nonreciprocity and MCA in two-dimensional chiral10 and polar diffusive11 conductors. In their seminal proposal of MCA in
polar diffusive (semi)conductors, Rikken et al.11 suggested that nonreciprocal nonlinear resistive response, characterized by the
directional I-V characteristics, can be described by a current-dependent resistance R(I) as

R(I) = R0[1+βB2 + γR(BBB× rrr) · III] (2)



Here R, B, and I are the resistance, magnetic field, and electric current, respectively. The unit vector rrr represents the direction
along which mirror symmetry is broken. On the right-hand side, the first term is the resistance at zero magnetic fields, the
second term denotes the normal magnetoresistance, and the third term corresponds to the MCA. Such nonlinear nonreciprocal
resistive transport, caused by current-dependent resistance or nonlinear voltage-drop, can be detected by measuring the second
harmonic signal through lock-in techniques, further details are presented later in the Review.

Current-dependent resistance (Eq. 2) and the magnetic-field dependent critical current (Eq. 1) demonstrate that non-
reciprocity and MCA can be observed in (semi)conductors10, 11, 15–19 that allow resistive current transport as well as in
superconductors12, 14, 20–23 that display dissipationless supercurrent transport. So a question arises naturally: how nonreciprocity
can uniquely be defined in these two systems with completely contrasting transport behaviour? As pointed out by Rikken
et al.10, 11, when both inversion and time-reversal symmetries are broken, the finite MCA coefficient γ gives rise to different
resistance for electric currents traversing in different (opposite) directions. That is, MCA can be defined as the inequivalence of
R(+I) and R(−I). In (semi)conductors, resistances along opposite directions differ, i.e. R(+I) ̸= R(−I), but both R(+I) and
R(−I) normally take finite values. On the other hand, in superconductors, such a situation becomes more drastic: either one
of R(±I) remains finite while the other completely vanishes. With this consideration in superconductors, it becomes more
appropriate to define nonreciprocity in terms of (super)current. That is, nonreciprocity in superconductors means supercurrent
flows along one direction while normal current along the other(opposite). Observation of such a situation is more probable near
critical temperature Tc, i,e., in the fluctuation regime of metal-superconductor resistive transition, where the critical current is
different along opposite directions, i.e. Ic+ ̸= Ic−. Thus, if the current is tuned between Ic+ and Ic−, the system displays zero
resistance for the supercurrent but nonzero for the normal current.

It can be understood how conductance varies while going from normal to a superconducting phase. The linear resistance
R0 is normally scaled by the Fermi energy EF , i.e., the kinetic energy of the electrons, while the MCA coefficient γ depends
upon the strength of SOI and the magnetic field. Correspondingly, nonlinear resistance induced by MCA may be treated as a
perturbation to R0. In the normal conducting phase, because the SOI energy (Esoi) and the Zeeman energy (µBB) is usually
much smaller (by many orders of magnitude) than EF , MCA coefficient γ → γN is typically very tiny, usually of the order of
∼ 10−3 to 10−2 T−1 A−1 in typical metals10, 16, 20. However, as the superconducting phase develops, superconducting transition
temperature Tc or the superconducting gap ∆sc appears as a new energy scale. That is, the energy scale in superconductors,
to which the strength of SOI has to be compared with, is a superconducting gap and not the Fermi energy. Since the energy
scale (∼meV) in the superconductors is much smaller than the Fermi energy (∼eV) in metals, the effects of SOI and Zeeman
energy greatly enhance in the superconducting phase20, 24. As a result, near the superconducting transition temperature T ≳ Tc,
the MCA coefficient becomes reasonably large25 and, thus, the paraconductivity26 above Tc becomes nonreciprocal. In
the superconducting fluctuation region, i.e. when T → Tc and the superconducting order parameter ∆sc develops, a sizable
enhancement in MCA coefficient γS is found (ref.20, 22, 24, 25) and robust non-reciprocal charge transport is demonstrated in
noncentrosymmetric superconductors20, 23. For instance, by employing GL theory for an Ising type superconductor MoS2,
R. Wakatsuki et al.20 showed that the ratio of MCA coefficients in the superconducting resistive region (γS) and the normal
resistive region (γN) is quite large

γS

γN
∼
(

EF

kBTc

)3

(3)

Such anomalous enhancement of the MCA coefficient, as it is associated with the energy scale difference between the supercon-
ducting gap and the Fermi energy, can be considered an intrinsic feature of both Rashba and Ising type noncentrosymmetric
superconductors24. However, mainly due to a gradual decrease in the linear resistance R0 during the metal-superconducting
transition, R0 remains larger (by orders of magnitude) than the nonlinear resistance in low-dimensional superconducting materi-
als such as MoS2 (ref.20), WS2 (ref.21) and Bi2Te3/FeTe (ref.22). As a result, the low rectification ratio in these superconducting
materials does not suffice for device implementation. In this regard, it motivated several research groups to search for exotic
materials and novel mechanisms/principles to enlarge the rectification effect and guide the design of efficient SDE.

From inductance to supercurrent
Nonreciprocity in the fluctuation regime of metal-superconductor resistive transition confines SDE to a narrow temperature
window near Tc. Baumgartner et al.27 pointed out that the temperature window in which MCA coefficient becomes sizeable
must be widened for a sustainable fabrication of devices showing SDE. To achieve this milestone, the authors demonstrated
supercurrent rectification in the superconducting phase, i.e., far below the transition temperature Tc. Since d.c. measurement
of resistance–current (R–I) curve is not viable at low temperatures, as the resistance vanishes, supercurrent response to an
alternating-current (a.c.) excitation is studied, which is described by its superfluid stiffness, and thus, can be detected through
kinetic inductance measurements.

If mirror symmetry is broken along an out-of-plane direction (êz), whereas the current I and magnetic field B are directed
in-plane, MCA or nonreciprocity for the superfluid can be described by an equation similar to that for the current-dependent
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resistance in polar superconductors (2), i.e.,

L(I) = L0[1+ γLêz(BBB× III)] (4)

Here resistance (R) is substituted for the kinetic inductance (L). The nonreciprocity in supercurrent could then be characterized
by a new observable, i.e., MCA coefficient γL, and can be quantified by measuring asymmetry in CPR. Further details on this
mechanism are presented later in the Review.

Nonreciprocity in chiral conductors
In chiral conductors, finite MCA leads to a nonreciprocal transport when a component of the applied magnetic field is parallel
to the current, i.e., handed-selective resistance RD/L depends on the relative orientation of magnetic field and current as10:

RD/L(I) = R0[1+βB2 + γ
D/LBBB · III] (5)

where D/L denotes the right/left-handedness of chiral conductors and the parity reversal symmetry requires that γD =−γL,
i.e, such an MCA coefficient remains finite only for chiral conductors. The handed-selective nonreciprocal transport has
been observed in the normal chiral conductors, e.g., Bi helices10, carbon nanotubes15, 28, bulk organic conductors16, chiral
magnets29, 30, and elemental trigonal tellurium (t-Te)31, 32. Furthermore, finite handed-selective MCA has been observed in
chiral superconductors, e.g., Ru-Sr2RuO4 eutectic system33, 34 and WS2 nanotubes21.

Measuements of superconducting diode effect
Based on the working temperature, or a working regime of phase diagram representing metal-superconductor resistive transition,
observation of SDE can be classified into two main categories: (i) SDE based on the nonreciprocity of depairing critical current
near the superconducting transition temperature (T ≈ Tc), i.e., in the fluctuation regime of metal-superconductor resistive
transition, and (ii) SDE based on the nonreciprocity of supercurrent at sub-Kelvin temperatures (T ≪ Tc), i.e., deep in the
superconducting phase regime.

Magnetochiral anisotropy of the resistance
In the fluctuation regime of resistive transition close to Tc, SDE can be described by MCA of the resistance (γR → γS, as defined
in equation (2)), similar to that in semiconductors, and may be characterized by I-V curves. In this regime, the MCA coefficient
γS can be found by measuring the second harmonic signal in lock-in measurements. That is, for an ac current (Iin = I sinωt)
with an amplitude of I and a frequency of ω applied as input, the nonlinear voltage-drop and current-dependent resistance can
be derived from the nonlinear resistance term in equation (2) as:

V2ω(t) = γSBRω I2 sin2
ωt

=
1
2

γSBRω I2
[
1+ sin

(
2ωt − π

2

)]
R2ω =

1
2

γSBRω I

(6)

Here Rω corresponds to the current-independent linear resistance R0, while R2ω represents the second-order nonlinear resistance,
which is dependent on both the current and the magnetic field. Thus by measuring the first- (Rω ) and second-harmonic R2ω

sheet/junction resistances through 2ω voltage response, γS can be estimated as γS =
2R2ω

BIRω
.

However, such resistive measurements cannot realistically simulate the intrinsic SDE at temperatures well below Tc due to
no measurable resistance in this regime (R0 = 0). Thus, the efficiency of SDE is expected to be finite only at T ≈ Tc while
negligibly small both at temperatures well below Tc and above Tc (γN ≪ γS). For instance, as shown in Ref.35, MCA coefficient
γS shows a sharp increase in the fluctuation regime and reaches its maximal value γS ≃ 550 T−A− at Tc, however, γS remains
negligibly small at temperatures well below Tc. Though the observation seems to be at variance with the theoretical predictions
for intrinsic SDE36–39 and the temperature dependence of experimentally measured MCA in JJs27, 40, it is an expected outcome
of resistive measurements. On the other hand, as shown for JJs27, finite MCA coefficient γS ≃ 4.1× 106 T−A− observed
through resistive measurements near Tc ∼ 1.45 K is of the same order (namely, in the range of 106 T−A−) of the corresponding
MCA coefficient observed for the inductance (measured at T = 100 mK), γL ≃ 0.77×106 T−A−.

Magnetochiral anisotropy of the inductance
Unlike the fluctuation regime, where the nonreciprocity of depairing critical current is tied to the nonlinear resistance, the
nonreciprocity of sub-Kelvin supercurrent promises a fully superconducting/dissipationless nonreciprocal circuit element. Deep
in the sub-Kelvin superconducting regime of the phase diagram, i.e., far below the transition temperature where resistance is zero
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(so DC measurements are not feasible), supercurrent MCA and a corresponding SDE (supercurrent rectification/nonreciprocity)
are characterized rather by measuring kinetic (or Josephson) inductance (clearly with AC measurements). By measuring
Josephson inductance, nonreciprocal supercurrent can be linked to an asymmetry in the CPR, induced by the simultaneous
breaking of inversion and time-reversal symmetry such that B is not parallel to I, and the MCA coefficient (γL) for the
supercurrent can be directly derived from the equation (4).

This mechanism can be understood from a semiquantitative model27, 41, 42 in which Josephson inductance can be derived
from the CPR relation I = Ic0 f (ϕ) (where f is a 2ϕ-periodic function) and second Josephson equation ϕ̇ = 2πV/Φ0 (where
Φ0 = h/(2e) is the magnetic flux quantum) as

L(I) =
V
dI
dt

=
V

dI
dϕ

ϕ̇
=

Φ0

2πIc0
d f (ϕ)

dϕ

=
Φ0

2π

[
dI(ϕ)

dϕ

]−1

(7)

It shows that Josephson inductance is a convenient probe to study CPR symmetry by investigating the effects of space-
inversion/time-reversal symmetry breaking on the CPR. Let’s assume a JJ configuration in which electric current is flowing
along the x-direction, while inversion and time-reversal symmetry is broken by applying out-of-plane electric field E = Ezẑ and
in-plane magnetic field BBBip = Bxx̂+Byŷ, respectively.

Equation (7) shows that L(I) is inversely proportional to the derivative of the CPR, therefore, the minimum of Josephson
inductance occurs at the inflection-point of the CPR. In the absence of an in-plane magnetic field component along the
y-direction (By = 0), CPR remains symmetric around inflection-point appearing at zero-phase, that is (i,ϕ) = (0,0). As a result,
the minimum inductance occurs at zero-current, around which L(I) appears to be symmetric. On the other hand, in the presence
of an in-plane magnetic field component along y-direction (By ̸= 0), CPR becomes asymmetric around inflection-point (i∗,ϕ∗),
mainly associated with the broken Kramers degeneracy between the oppositely polarized spin components of Andreev bound
states (ABS) leading to a finite-momentum pairing. As a result, the current dependence of the Josephson inductance L(I) also
become asymmetric and the minimum of L(I) appears at some finite current i∗, corresponding to the shifted inflection point
(i∗,ϕ∗) in the CPR. Such a pronounced asymmetry in the skewed CPR and, thus, in the Josephson inductance L(I), signals the
supercurrent MCA (as defined in equation (4)) and hence supercurrent SDE. Further details on inductive measurements and the
nonreciprocity in the Josephson inductance/current can be found in the Ref.27, where it is explicitly observed that the value of
γL, obtained from inductive measurements performed at T = 100 mK, far below the transition temperature (Tc ∼ 1.45 K), is of
the same order as that of γS calculated for resistive measurements at Tc.

Fulde–Ferrell–Larkin–Ovchinnikov state
In the field of conventional superconductivity, following from the fact that Cooper pairing is formed between Kramers partners
and the most known conventional superconductors are characterized by the Bardeen–Cooper–Schrieffer (BCS) theory43, the
presence of time-reversal symmetry is a key ingredient and the preserved Kramers degeneracy is the fundamental reason/criterion
that stabilizes superconducting phase in so many systems at sufficiently low temperatures44–46. Thus, due to electron pair
breaking, such a conventional superconducting state with a spin-singlet pairing is suppressed or destroyed by time-reversal
symmetry breaking perturbations ¯ as a consequence of applied magnetic field, doped magnetic impurities, proximity-induced
magnetization, or intrinsic magnetic instability leading to spontaneous magnetization.

On the other hand, beyond the conventional BCS paradigm, unconventional superconductivity allows coexistence of more
exotic superconducting order parameters with magnetism. For instance, as predicted independently by Peter Fulde and Richard
Ferrell (FF)47 and Anatoly Larkin and Yuri Ovchinnikov (LO)48, magnetic fields can give rise to a superconducting state with
FF-type order parameter ∆(x) = ∆eiqx and/or spatially inhomogeneous LO-type pair potential ∆(x) = ∆cosqx. The underlying
physical mechanism of the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state47, 48, owning to the opposite energy-shift in the
electronic spin bands, induces non-zero centre-of-mass momentum of Cooper pairs and leads to a spatially-modulated order
parameter. The FF state ubiquitously exists in noncentrosymmetric superconductors and is particularly known as the helical
superconductivity49–61.

The FFLO states, and/or the implications of the helical superconductivity, have been obtained in heavy-fermion supercon-
ductors CeCoIn5

62–64, organic superconductors65, pure single crystals of FeSe66, 67, thin films of Pb60 and doped SrTiO3
68,

a heavy-fermion Kondo superlattice69, 70, and a three-dimensional topological insulator Bi2Se3
71. While the existence of

FFLO-like states is well-established in proximity-coupled superconductors and ferromagnets72, the experimental observation of
FFLO states has been reported in nonmagnetic superconductors by applying external magnetic fields62, 63 as well as intrinsic
ferromagnetic superconductors73–79.
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