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A On the Two Types of Black Box

Black box models of the first type are too complicated for a human to comprehend, and black box models of
the second type are proprietary. Some models are of both types. The consequences of these two types of black
box are different, but related. For instance, for a black box model that is complicated but not proprietary, we at
least know what variables it uses. We also know the model form and could use that to attempt to analyze the
different parts of the model. For a black box model that is proprietary but not complicated [we have evidence
that COMPAS is such a model, see Rudin et al., 2018], we may not even have access to query it in order to study
it. If a proprietary model is too sparse, there is a risk that it could be easily reverse-engineered, thus there is an
incentive to make proprietary models complicated in order to preserve their secrecy.

B Performance Comparisons

For most problems with meaningful structured covariates, machine learning algorithms tend to perform similarly,
with no algorithm clearly dominating the others. The variation due to tuning parameters of a single algorithm can
often be higher than the variation between algorithms. This lack of single dominating algorithm for structured
data is arguably why the field of machine learning focuses on applications like image and speech recognition,
whose data are represented in raw features (pixels, sound files); these are fields for which the choice of algorithm
impacts performance. Even for complex domains such as medical records, it has been reported in some studies
that logistic regression has identical performance to deep neural networks [e.g. Razavian et al., 2015].

If there is no dominating algorithm, the Rashomon Set argument discussed in the main text would suggest
that interpretable models might perform well.

Unfortunately the culture of publication within machine learning favors selective reporting of algorithms
on selectively chosen datasets. Papers are often rejected if small or no performance gains are reported between
algorithms. This encourages omission of accurate baselines for comparison, as well as omission of datasets
on which the method does not perform well, and encourages authors to poorly tune the parameters of baseline
methods, or equivalently, place more effort into tuning the parameters of the author’s own method. This creates
an illusion of large performance differences between algorithms, even when such performance differences do not
truly exist.

C Counterfactual Explanations

Some have argued that counterfactual explanations [e.g., see Wachter et al., 2018] are a way for black boxes
to provide useful information while preserving secrecy of the global model. Counterfactual explanations, also
called inverse classification, state a change in features that is sufficient (but not necessary) for the prediction
to switch to another class (e.g., “If you reduced your debt by $5000 and increased your savings by $50% then
you would have qualified for the loan you applied for”). In some situations, recourse is more important than
a standard counterfactual explanation; recourse is a special type of counterfactual explanation where the user
is able to take an action to reverse a decision [Ustun et al., 2019]. Here, the users must realistically be able to
adjust the features to change the decision (the counterfactual explanation cannot be “to change the decision you
must become five years younger" for instance).
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There are several problems with the argument that counterfactual explanations are sufficient. For loan
applications, for instance, we would want the counterfactual explanation to provide the lowest cost action for the
user to take, according to the user’s own cost metric. [See Chang et al., 2012, for an example of lowest-cost
counterfactual reasoning in product rankings]. In other words, let us say that there is more than one counterfactual
explanation available (e.g., the first explanation is “If you reduced your debt by $5000 and increased your savings
by $50% then you would have qualified for the loan you applied for” and the second explanation is “If you
had gotten a job that pays $500 more per week, then you would have qualified for the loan”). In that case, the
explanation shown to the user should be the easiest one for the user to actually accomplish. However, it is unclear
in advance which explanation would be easier for the user to accomplish. In the credit example, perhaps it is
easier for the user to save money rather than get a job or vice versa. In order to determine which explanation is
the lowest cost for the user, we would need to elicit cost information for the user, and that cost information is
generally very difficult to obtain; worse, the cost information could actually change as the user attempts to follow
the policy provided by the counterfactual explanation (e.g., it turns out to be harder than the user thought to get
a salary increase). For that reason it is unclear that counterfactual explanations would suffice alone for high
stakes decisions; interpretable models paired with recourse options would be better. Additionally, counterfactual
explanations of black boxes have many of the other pitfalls discussed throughout this paper.

D Interpretable Models that Provide Smaller-Than-Global Explanations

It is possible to create a global model (perhaps a complicated one) for which explanations for any given individual
are very sparse. In other words, even if the global model would take several pages of text to write, the prediction
for a given individual can be very simple to calculate (perhaps requiring only 1-2 conditions). Let us consider
the case of credit risk prediction. Assume we do not need to justify to the client why we would grant a loan, but
we would need to justify why we would deny a loan.

Let us consider a disjunctive normal form model, which is a collection of “or’s” of “and’s.” For instance,
the model might deny a loan if “(credit history too short AND at least one bad past trade) OR (at least 4 bad
past trades) OR (at least one recent delinquency AND high percentage of delinquent trades).” Even if we had
hundreds of conjunctions within the model, only one of these needs to be shown to the client; if any conjunction
is true, that conjunction is a defining reason why the client would be denied a loan. In other words, if the client
had “at least one recent delinquency AND high percentage of delinquent trades,” then regardless of any other
aspects of her credit history, she could be shown that simple explanation, and it would be a defining reason why
her loan application would be denied.

Disjunctive normal form models are well-studied, and are called by various names, such as “or’s of and’s,”
as well as “decision rules,” “rule sets” and “associative classifiers.” There has been substantial work in being
able to generate such models over the past few years so that the models are globally interpretable, not just locally
interpretable (meaning that the global model consists of a small number of conjunctions) [e.g., see Dash et al.,
2018; Goh and Rudin, 2014; Rijnbeek and Kors, 2010; Su et al., 2016; Wang et al., 2017].

There are many other types of models that would provide smaller-than-global explanations. For instance,
falling rule lists [Chen and Rudin, 2018; Wang and Rudin, 2015] provide shorter explanations for the decisions
that are most important. For instance, a falling rule list for predicting patient mortality would use few logical
conditions to categorize whether a patient is in a high-risk group, but use several additional logical conditions to
determine which low-risk group a patient falls into.

E Algorithm Stability

A common criticism of decision trees is that they are not stable, meaning that small changes in the training data
lead to completely different trees, giving no guidance as to which tree to choose. In fact, the same problem
can happen in linear models when there are highly correlated features. This can happen even in basic least
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squares, where correlations between features can lead to very different models having precisely the same levels
of performance. When there are correlated features, the lack of stability happens with most algorithms that are
not strongly regularized.

I hypothesize this instability in the learning algorithm could be a side-effect of the Rashomon effect mentioned
in the main text – that there are many different almost-equally good predictive models. Adding regularization to
an algorithm increases stability, but also limits flexibility of the user to choose which element of the Rashomon
set would be more desirable.

For applications where the models are purely predictive and not causal (e.g., in criminal recidivism where
we use age and prior criminal history to predict future crime), there is no assumption that the model represents
how outcomes are actually generated. The importance of the variables in the model does not reflect a causal
relationship between the variables and the outcomes. Thus, without additional guidance from the domain expert,
there is no way to proceed further to choose a single “best model” among the set of models that perform similarly.
As discussed above, regularization can act as this additional input.

I view the lack of algorithmic stability as an advantage rather than a disadvantage. If the lack of stability is
indeed caused by a large Rashomon effect, it means that domain experts can add more constraints to the model
to customize it without losing accuracy.

In other words, while many people criticize methods such as decision trees for not being stable, I view that
as a strength of interpretability for decision trees. If there are many equally accurate trees, the domain expert can
pick the one that is the most interpretable.

Note that not all researchers working in interpretability agree with this general sentiment about the advantages
of instability [Murdoch et al., 2019].
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