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 A Shortcut learning across deep learning 
 Taken together, we have seen how shortcuts are based on dataset shortcut opportunities
 and discriminative feature learing that result in a failure to generalise as intended. We will
 now turn to specific application areas, and discover how this general pattern appears across
 Computer Vision, Natural Language Processing, Agent-based (Reinforcement) Learning
 and Fairness / algorithmic decision-making. While shortcut learning is certainly not lim-
 ited to these areas, they might be the most prominent ones where the problem has been
 observed. 

 
 Computer Vision To humans, for example, a photograph of a car still shows the same
 car even when the image is slightly transformed. To DNNs, in contrast, innocuous trans-
 formations can completely change predictions. This has been reported in various cases
 such as shifting the image by a few pixels [49], rotating the object [48], adding a bit of
 random noise or blur [108, 50, 71, 109] or (as discussed earlier) by changing background
 [9] or texture while keeping the shape intact [38] (see Figure 4 for examples). Some key
 problems in Computer Vision are linked to shortcut learning. For example, transferring
 model performance across datasets (domain transfer) is challenging because models often
 use domain-specific shortcut features, and shortcuts limit the usefulness of unsupervised
 representations [110]. Furthermore, adversarial examples are particularly tiny changes to
 an input image that completely derail model predictions [8] (an example is shown in Fig-
 ure 4). Invisible to the human eye, those changes modify highly predictive patterns that
 DNNs use to classify objects [34]. In this sense, adversarial examples—one of the most
 severe failure cases of neural networks—can at least partly be interpreted as a consequence
 of shortcut learning. 

 
 Natural Language Processing   The widely used language model BERT has been
 found to rely on superficial cue words. For instance, it learned that within a dataset of nat-
 ural language arguments, detecting the presence of “not” was sufficient to perform above
 chance in finding the correct line of argumentation. This strategy turned out to be very use-
 ful for drawing a conclusion without understanding the content of a sentence [15]. Natural
 Language Processing suffers from very similar problems as Computer Vision and other
 fields.  Shortcut learning starts from various dataset biases such as annotation artefacts
 [111, 52, 112, 113]. Feature combination crucially depends on shortcut features like word
 length [91, 114, 15, 115], and consequently leads to a severe lack of robustness such as
 an inability to generalise to more challenging test conditions [116, 117, 118, 119]. At-
 tempts like incorporating a certain degree of unsupervised training as employed in promi-
 nent language models like BERT [5] and GPT [120] did not resolve the problem of shortcut
 learning [15], even though it does improve few-shot generalisation [121]. 

 
 Agent-based (Reinforcement) Learning Instead of learning how to play Tetris, an
 algorithm simply learned to pause the game to evade losing [122]. Systems of Agent-based
 Learning are usually trained using Reinforcement Learning and related approaches such as
 evolutionary algorithms. In both cases, designing a good reward function is crucial, since
 a reward function measures how close a system is to solving the problem. However, they
 all too often contain unexpected shortcuts that allow for so-called reward hacking [123].
 The existence of loopholes exploited by machines that follow the letter (and not the spirit) 



 of the reward function highlight how difficult it is to design a shortcut-free reward function
 [98]. Reinforcement Learning is also a widely used method in Robotics, where there is a
 commonly observed generalisation or reality gap between simulated training environment
 and real-world use case.   This can be thought of as a consequence of narrow shortcut
 learning by adapting to specific details of the simulation. Introducing additional variation
 in colour, size, texture, lighting, etc. helps a lot in closing this gap [124, 125]. 

 
 Fairness & algorithmic decision-making Tasked to predict strong candidates on 758

 the basis of their résumés, a hiring tool developed by Amazon was found to be biased
 towards preferring men. The model, trained on previous human decisions, found gender 
 to be such a strong predictor that even removing applicant names would not help: The  7

 model always found a way around, for instance by inferring gender from all-woman college 
 names [13]. This exemplifies how some—but not all—problems of (un)fair algorithmic
 decision-making are linked to shortcut learning: Once a predictive feature is found by a
 model, even if it is just an artifact of the dataset, the model’s decision rule may depend
 entirely on the shortcut feature. When human biases are not only replicated, but worsened
 by a machine, this is referred to as bias amplification [126].  Other shortcut strategies
 include focusing on the majority group in a dataset while accepting high error rates for
 underrepresented groups [12, 127], which can amplify existing societal disparities and
 even create new ones over time [128]. In the dynamical setting a related problem is called
 disparity amplification [128], where sequential feedback loops may amplify a model’s
 reliance on a majority group. It should be emphasised, however, that fairness is an active
 research area of machine learning closely related to invariance learning that might be useful
 to quantify and overcome biases of both machine and human decision making. 

 
 B     Beyond shortcut learning 
 A lack of out-of-distribution generalisation can be observed all across machine learning.
 Consequently, a significant fraction of machine learning research is concerned with over-
 coming shortcut learning, albeit not necessarily as a concerted effort. Here we highlight
 connections between different research areas. Note that an exhaustive list would be out of
 the scope for this work. Instead, we cover a diverse set of approaches we find promising,
 each providing a unique perspective on learning beyond shortcut learning. 
 Domain-specific prior knowledge Avoiding reliance on unintended cues can be achieved
 by designing architectures and data-augmentation strategies that discourage learning short-
 cut features. If the orientation of an object does not matter for its category, either data-
 augmentation or hard-coded rotation invariance [129] can be applied. This strategy can
 be applied to almost any well-understood transformation of the inputs and finds its proba-
 bly most general form in auto-augment as an augmentation strategy [130]. Extreme data-
 augmentation strategies are also the core ingredient of the most successful semi-supervised
 [131] and self-supervised learning approaches to date [132, 133]. 
 Adversarial examples and robustness Adversarial attacks are a powerful analysis tool for
 worst-case generalisation [8]. Adversarial examples can be understood as counterfactual
 explanations, since they are the smallest change to an input that produces a certain output.
 Achieving counterfactual explanations of predictions aligned with human intention makes
 the ultimate goals of adversarial robustness tightly coupled to causality research in machine
 learning [134]. Adversarially robust models are somewhat more aligned with humans and 



 

 show promising generalisation abilities [135, 136]. While adversarial attacks test model
 performance on model-dependent worst-case noise, a related line of research focuses on
 model-independent noise like image corruptions [108, 71]. Irrespective of the type of at-
 tack (e.g., adversarial attacks, image degradations or other out-of-distribution tests), model
 robustness is best assessed by a broad range of tests. In order to prevent models from tak-
 ing a narrow defence strategy that does not generalise, evolving and adaptive tests may be
 necessary [137]. 
 Domain adaptation, -generalisation and -randomisation These areas are explicitly con-
 cerned with out-of-distribution generalisation. Usually, multiple distributions are observed 
 during training time and the model is supposed to generalise to a new distribution at test 
 time. Under certain assumptions the intended (or even causal) solution can be learned from 
 multiple domains and environments [138, 39, 100]. In robotics, domain randomisation (set- 
 ting certain simulation parameters randomly during training) is a very successful approach 
 for learning policies that generalise to similar situations in the real-world [124]. 
 

 Fairness Fairness research aims at making machine decisions “fair” according to a cer- 
 tain definition [139].  Individual fairness aims at treating similar individuals similarly
 while group fairness aims at treating subgroups no different than the rest of the population 
 [140, 141]. Fairness is closely linked to generalisation and causality [142]. Sensitive group
 membership can be viewed as a domain indicator: Just like machine decisions should not
 typically be influenced by changing the domain of the data, they also should not be biased
 against minority groups. 
 Meta-learning Meta-learning seeks to learn how to learn. An intermediate goal is to learn
 representations that can adapt quickly to new conditions [143, 144, 145]. This ability is
 connected to the identification of causal graphs [146, 147] since learning causal features
 allows for small changes when changing environments. 
 Generative modelling and disentanglement Learning to generate the observed data forces
 a neural network to model every variation in the training data. By itself, however, this does
 not necessarily lead to representations useful for downstream tasks [148], let alone out-
 of-distribution generalisation. Research on disentanglement addresses this shortcoming by
 learning generative models with well-structured latent representations [149]. The goal is
 to recover the true generating factors of the data distribution from observations [150] by
 identifying independent causal mechanisms [134]. 

 
 C Method details of toy  example 
 The code to reproduce our toy example (Figure 2) is available from https://github.com/rgeirhos/ 
 shortcut-perspective.  Two  easily  distinguishable  shapes  (star  and  moon)  were  placed  on a 
 200 200 dimensional 2D canvas. The training set is constructed out of 4000 images, where 2000 
 contain a star shape and 2000 a moon shape. The star shape is randomly placed in the top right and
 bottom left quarters of the canvas, whereas the moon shape is randomly placed in the top left and
 bottom right quarters of the canvas. At test time the setup is nearly identical, 1000 images with a
 star and 1000 images with a moon are presented. However, this time the position of star and moon
 shapes are randomised over the full canvas, i.e. in test images stars and moons can appear at any
 location. 
 We train two classifiers on this dataset: a fully connected network as well as a convolutional 
 network. The classifiers are trained for five epochs with a batch size of 100 on the training set and 



 
 
 
 
 
 
 

evaluated on the test set. The training objective is standard crossentropy loss and the optimizer is 
Adam with a learning rate of 0.00001, β1 = 0.9, β2 = 0.999 and ε = 1e − 08. The fully connected 
network was a three-layer ReLU MLP (multilayer perceptron) with 1024 units in each layer and 
two output units corresponding to the two target classes. It reaches 100% accuracy at training time 
and approximately chance-level accuracy at test time (51.0%). The convolutional network had three 
convolutional layers with 128 channels, a stride of 2 and filter size of 5 × 5 interleaved with ReLU 
nonlinearities, followed by a global average pooling and a linear layer mapping the 128 outputs to 
the logits. It reaches 100% accuracy on train and test set. 

 
D     Image rights & attribution 
Figure 1 consists of four images from different sources. The first image from the left was taken 
from [14] with permission of the author. The second image from the left was generated by our- 
selves. The third image from the left is from ref. [17]. It was released under the CC BY 4.0 license 
as stated here: https://journals.plos.org/plosmedicine/article?id=10.1371/jour-
nal.pmed.1002683 and adapted by us from Figure 2B of the corresponding publication. The 
image on the right is Figure 1 from ref. [118].   It was released under CC BY 4.0 license      as stated 
here: https://www.aclweb.org/anthology/D17-1215/(at the bottom) and retrieved by us 
from. 

The image from Section “Dataset shortcut opportunities” was adapted from Figure 1 of ref. [9] 
with permission from the authors (image cropped from original figure by us). The image from Sec- 
tion “Decision rule (shortcuts from discriminative learning)” was adapted from Figure 1 of ref. [38] 
with permission from the authors (image cropped from original figure by us). The image from 
Section “Generalisation reveals shortcuts” was adapted from Figure 1 of ref. [45] with permission 
from the authors (image cropped from original figure by us). 

Figure 4 consists of a number of images from different sources. The first author of the corre- 
sponding publication is mentioned in the figure for identification. The images from ref. [8] were 
released under the CC BY 3.0 license as stated here: https://arxiv.org/abs/1312.6199 and 
adapted by us from Figure 5a of the corresponding publication (images cropped from original fig- 
ure by us). The images from ref. [50] were adapted from Figure 1 of the corresponding paper with 
permission from the authors (images cropped from original figure by us). The images from ref. [48] 
were adapted from Figure 1 of the corresponding paper with permission from the authors (images 
cropped from original figure by us).  The images from ref. [38] were adapted from Figure 1 of  the 
corresponding paper with permission from the authors (images cropped from original figure by us). 
The images from ref. [41] were adapted from Figure 1 of the corresponding paper with per- mission 
from the authors (images cropped from original figure by us). The images from ref. [36] were 
adapted from Figure 5 of the corresponding paper with permission from the authors (images 
cropped from original figure by us). The images from ref. [9] were adapted from Figure 1 of the 
corresponding paper with permission from the authors (images cropped from original figure by us). 
The images from ref. [45] were adapted from Figure 1 and Figure 2 of the corresponding paper 
with permission from the authors (images cropped from original figures by us).
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