
Machine-learning-based dynamic-
importance sampling for adaptive
multiscale simulations

In the format provided by the
authors and unedited

Supplementary information

https://doi.org/10.1038/s42256-021-00327-w

Machine Learning Based
Dynamic-Importance Sampling

for Adaptive Multiscale Simulations

Harsh Bhatia,∗,† Timothy S. Carpenter,‡ Helgi I. Ingólfsson,‡ Gautham
Dharuman,‡ Piyush Karande,P Shusen Liu,† Tomas Oppelstrup,‡ Chris Neale,§

Felice C. Lightstone,‡ Brian Van Essen,† James N. Glosli,‡ and Peer-Timo Bremer†

†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
Livermore, USA

‡Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, USA
PComputational Engineering, Lawrence Livermore National Laboratory, Livermore, USA
§Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, USA

E-mail: hbhatia@llnl.gov

1

hbhatia@llnl.gov

1 Supplementary Information

1.1 DynIm Algorithm

Algorithm 1 outlines the functionality of DynIm, to further facilitate understanding and use of our
framework. The code and supporting examples and data are released under MIT license and can
be found on github: https://github.com/LLNL/dynim.

Algorithm 1 DynIm sampling algorithm.
1: procedure dynim.initialize(encoder)
2: dynim.encoder ← encoder . an ML encoder that satisfies the importance hypothesis
3: dynim.candidates ← [] . empty list for encoded candidates
4: dynim.selections ← [] . empty list for selections
5:
6: procedure dynim.add_candidates(list_of_candidates)
7: encoded_candidates ← dynim.encoder.encode(list_of_candidates)
8: dynim.candidates.append_all(encoded_candidates)
9:

10: procedure dynim.select_important_candidates(k)
11: ranks ← dynim.compute_importance(dynim.candidates)
12: dynim.candidates ← sort(dynim.candidates, key=ranks, reverse=True)
13: important_candidates ← dynim.candidates[:k] . top k candidates
14: dynim.candidates ← dynim.candidates[k:] . remaining candidates
15: dynim.selections.append_all(important_candidates)
16: return important_candidates
17:
18: procedure dynim.compute_importance(list_of_candidates)
19: ranks = []
20: for each c ∈ list_of_candidates do
21: knn = get_knn(c, target=dynim.selections, k=10)
22: ranks.append(mean(‖c − knn‖))
23: return ranks

2

1.2 Supplementary Figures

Figure 1 highlights a comparison between several autoencoder models developed and tested for this
work in order to choose the most suitable one, with respect to the dimensionality of the latent space
and the quality of reconstruction.

7 10 15 20
Latent Dimensions

0

3

6

9

12

M
ea

n
S

qu
ar

ed
 E

rr
or

×10
3

AE
VAE

7 10 15 20
Latent Dimensions

0

3

6

9

12

V
A

E
 L

os
s

0 200 400
Training Epochs

1

2

3

4

5

M
ea

n
S

qu
ar

ed
 E

rr
or

×10
3

Training
Validation

Figure 1: Identification of intrinsic dimension of data and search for a suitable model was performed
by exploring several AE and VAE models. The selected VAE model was chosen as a balance between
low dimensionality and reconstruction quality. Left: The mean squared error was used to assess the
reconstruction quality of all models – horizontal line indicates the chosen 15-D VAE model. Middle:
The VAE models were also evaluated on the VAE loss, which additionally accounts for similarity
to a normal distribution – horizontal line indicates the chosen model. Right: The training history
of the selected model indicates converged errors with no over-fitting.

3

	SpringerNature_NatMachIntell_327_ESM.pdf
	Supplementary Information
	DynIm Algorithm
	Supplementary Figures

