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Supplementary Information

Supplementary Note
While saliency maps are widely used to interpret image-based artificial intelligence systems [1–3], the reliability of these
approaches has been disputed by contemporary work, which observes that saliency maps explaining medical imaging
classifiers fail to localize medically relevant pathology [4]. However, this prior work did not disentangle whether (i) the
saliency maps fail to identify the features that are important for the classification models, or (ii) the saliency maps
faithfully identify the features that are important for the classification models, but the models do not depend on medically
relevant pathology. We hypothesised the latter, that attribution maps fail to localize relevant pathology because the
models they explain do not rely on relevant pathology [5].

To validate that the pixels selected by our saliency maps are truly important for the models they explain, we chose
100 images that our model predicted are COVID-19 negative, then masked and mean-imputed a subset of pixels. If
we selected these pixels at random, we would expect the models output to regress to the mean output (become more
positive) since the negative images become more like the mean image (which is predicted to be more positive than the
COVID-19 negative images). If the pixels identified by Expected Gradients are important for the model’s prediction,
we would anticipate that masking these pixels should make the model’s output more positive than masking randomly
selected pixels. When we mask the top 10% of pixels identified by EG as contributing to the negative prediction of the
model, we see that the model’s output is shifted to be significantly more negative than when we mask pixels selected at
random (Supplementary Fig. 5).

Supplementary Figures

Dataset I Dataset II
Combined CXR14 Cohen et al. Combined PadChest BIMCV-COVID

CXR #s 112,528 112,120 408 97,866 96,270 1,596
Patients, #s 31,067 30,805 262 64,954 63,939 1,015
Age, mean (std) 46.9 (16.8) 46.9 (16.8) 57.0 (16.4) 65.4 (20.1) 65.5 (20.1) 61.2 (16.0)
Sex, N women (%) 48,926 (43.5) 48,780 (43.5) 146 (35.8) 49,700 (50.8) 49,010 (50.9) 690 (43.2)
AP Images (%) 44,916 (39.9) 44,810 (40.0) 106 (26.0) 5,485 (5.6) 4,557 (4.7) 928 (58.1)
COVID + (%) 312 (0.2) 0 (0.0) 312 (76.5) 1,596 (1.6) 0 (0.0) 1,596 (100.0)
Non-COVID Pneumonia (%) 1,494 (1.3) 1,413 (1.3) 81 (19.9) 4,145 (4.2) 4,145 (4.3) 0 (0.0)

Supplementary Table 1 | Summary characteristics of our two main datasets (multi-source and single-source), as well
as the summary characteristics of the data sources that are combined to yield these datasets.
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Supplementary Fig. 1 | (Caption next page.)
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Supplementary Fig. 1 | (Previous page.) Evolution of metrics that monitor the artificial neural network
training process. Training curves are shown for each of 5 random train/validation/test splits of the datasets. During
the training procedure, the model is progressively optimized to decrease the training loss, for which we chose the binary
cross entropy. The validation loss monitors the same metric on a subset of the training radiographs that is held-out
from the optimization process (and that is also entirely separate from testing data). Increases in the validation loss
may indicate that the model has overfit the training data, i.e., the model has memorized the training data rather than
learning general principles that apply to new radiographs, such as those in the validation set. To prevent overfitting, we
save models when they achieve a maximum in the area under the receiver operating characteristic curve (ROC-AUC)
for COVID-19 classification in the held-out validation set, and we use these models for all subsequent analysis. All
models were trained for a total of 30 epochs, which was sufficient to attain a maximum in the ROC-AUC of COVID-19
classification. Note that to permit visualization of the maximum in the ROC-AUC of COVID-19 detection, the plots that
visualize this quantity feature variable y-axis scales.
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Supplementary Fig. 2 | Generalization performance of models that were specifically designed in previous
studies for detection of COVID-19 in chest radiographs as well as additional “off-the-shelf” architectures.
Generalization performance is examined by comparing the performance of each model on held out test data from the
same source as the training data (internal) to its performance on test data from new hospitals (external), where we
use receiver-operating characteristic (ROC) curves to quantify performance. The architectures designed specifically
for detection of COVID-19 in radiographs include CV19-Net6, COVID-Net7, and DarkCovidNet8. The additional
“off-the-shelf” models include ResNeXT9 and MobileNet10. The “augmented DenseNet-121” is the same as our primary
DenseNet-121 model with the addition of the data augmentation scheme from CV19-Net; it therefore represents an
intermediate between our primary model and CV19-Net, which is an ensemble of twenty of the “augmented DenseNet-121”
models, and it is provided to disentangle the effects of the CV19-Net data augmentation scheme from the effects of
ensembling. For example, while the data-augmented DenseNet-121 provides a small but insignificant improvement in
external test set performance over the same network without data augmentation for one of the two datasets (panel b,
external test set AUC of 0.76 ± 0.04 vs. 0.79 ± 0.03 before and after data augmentation, respectively, when trained
on dataset I, p = 0.22, U = 6 using two-tailed Mann-Whitney U -test; external test set AUC of 0.70 ± 0.05 vs 0.69 ±
0.05 before and after data augmentation, respectively, when trained on dataset II, p = 1.0, U = 13 using two-tailed
Mann-Whitney U -test), we find no evidence of significant improvement between the ensembled and single DenseNet-121
models for either dataset (panels a and b, external test set AUC of 0.79 ± 0.04 vs. 0.80 ± 0.02 before and after ensembling,
respectively, when trained on dataset I, p = 0.5476, U = 16 using two-tailed Mann-Whitney U -test; external test set
AUC 0.69 ± 0.05 vs. 0.69 ± 0.04 before and after ensembling, respectively, when trained on dataset II, p = 0.84, U =
11 using two-tailed Mann-Whitney U -test). Inset values indicate area under the ROC curve (AUC, mean ± standard
deviation, n=5).
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Supplementary Fig. 3 | Generalization performance of models with lower capacity or reduced label
information, as measured by receiver-operating characteristic (ROC) curves. The first two rows correspond
to models in which the capacity to overfit, which has been implicated in learning of spurious associations [11], has been
reduced. The logistic regression with deep features comprises a neural network with the DenseNet-121 architecture that
was trained on the ImageNet dataset to derive a set of of 1024 general image features, i.e. those output by the penultimate
layer of the network, which were used as inputs for a logistic regression; the weights of the neural network were held fixed
during training of the logistic regression. The AlexNet models follow the original AlexNet model architecture [12] but with
the final 1000-class classification head replaced by a 15-class classification head, corresponding to the 14 ChestX-ray14
labels plus an additional label for COVID-19. The final row represents models with an identical architecture and training
scheme to those in the main text, except with only a single output corresponding to presence/absence of COVID-19. Red
and teal numbers indicate area under the ROC curves (AUC, mean ± standard deviation, n=5).

5



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.995 ± 0.003
0.70 ± 0.05

0.973 ± 0.008
0.74 ± 0.07

Training data

Test data
Dataset I
Dataset II

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Molecular assays
(Dataset II)

Radiological findings
(Dataset II)

External:
Internal:

AUC

External:
Internal:

AUC

Supplementary Fig. 4 | Evaluation of the impact on generalization performance of concept shift, a change
in the classification task between the training and testing datasets. In addition to the learning of spurious
correlations that do not remain constant between datasets, generalization performance may also drop due to changes
in non-spurious correlations between datasets, including a shift in how the labels are generated. In particular, the
GitHub-COVID dataset [13], which consists largely of radiographs published in academic articles, may predominantly
feature COVID-19+ images with radiological evidence of COVID-19, while COVID-19 labels for the BIMCV-COVID-19+
dataset [14] may be derived from molecular assays (left panel), including reverse-transcription polymerase chain reaction
and serology, or from a radiologist’s assessment for radiological evidence of COVID-19 (right panel) in addition to
confirmation by molecular assays. Specifically, we defined “radiological evidence of COVID-19” as presence of COVID-19
or COVID-19 uncertain in the radiologist-derived labels of BIMCV-COVID-19+. In the event that poor generalization
performance is due to a shift from predicting presence of COVID-19, with or without radiological evidence, in the training
data, to predicting radiological evidence of COVID-19 in the test data, generalization performance would be expected to
increase substantially. Red and teal numbers indicate area under the ROC curves (AUC, mean ± standard deviation,
n=5).
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Supplementary Fig. 5 | Ablation tests to assess the importance of pixels that are highlighted by saliency
maps. a, Average image of COVID-19+ radiographs from dataset I, from which pixels are drawn to “ablate”, i.e., hide,
putatively important parts of individual radiographs in our experiment. b, Comparison of the change in an AI-based
COVID-19 classification model’s predictions when pixels are ablated based on their saliency map importance scores or by
random. For a randomly chosen subset of radiographs, the 10% of pixels with the highest magnitude expected gradients
(EG) scores were ablated by replacing those pixels with the corresponding pixels from the average COVID-19+ image,
and as a control, an equivalent number of pixels were replaced at random. Note that in both cases, the model’s predicted
log odds that the radiograph represents a COVID-19+ patient is expected to increase, since pixels are replaced with pixels
from the mean COVID-19+ image. The boxes mark the quartiles (25th, 50th, and 75th percentiles) of the distribution,
while the whiskers extend to show the minimum and maximum of the distribution (excluding outliers). Each boxplot
marks the 25th, 50th, The p-value is calculated by a two-sided Wilcoxon signed-rank test, n=100 (Siegel’s T statistic
= 7.69, p = 1.48× 10−14. c, Pairwise comparison of the change in the model’s predictions, to assess the superiority of
EG relative to random choice at determining important pixels. Since the potential for ablation to change the model’s
prediction varies from image to image, overlap in the distributions of “EG” and “random” in b does not imply that for
any given image random choice is superior to EG. If for any image a random choice of pixels were superior to EG at
determining important pixels, we would expect to observe values less than zero in the histogram, which shows image-level,
pairwise differences between EG and random choice.
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Supplementary Fig. 6 | Analysis of the frequency at which saliency maps highlight laterality markers as
important features. To assess the frequency, a random sample of 100 radiographs and their corresponding saliency
maps was chosen from each dataset, and each radiograph was manually categorized as (i) contains a laterality marker
that is highlighted by the saliency map, (ii) contains a laterality marker that is not highlighted by the saliency map, or
(iii) does not contain a laterality marker.
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Supplementary Fig. 7 | Saliency maps for 15 radiographs from the PadChest, BIMCV-COVID-19+, and
ChestX-ray14 repositories. Across the data sources, saliency maps highlight text tokens and laterality markers
(e.g., the first radiograph-saliency map pair in the first row of the PadChest examples, the second-to-last and last
radiograph-saliency map pairs in the third row of the PadChest examples, the first four radiograph-saliency map pairs in
the second row of the BIMCV examples, and all five radiograph-saliency map pairs in the third row of the ChestX-ray14
examples). For a version of this figure that includes example attributions for the GitHub-COVID repository, see our
GitHub repository at https://github.com/suinleelab/cxr_covid.
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Supplementary Fig. 8 | Examples images generated by a CycleGAN that was trained to alter COVID-
19 negative images from the ChestX-ray14 dataset to appear like COVID-19 positive images from the
GitHub-COVID dataset and vice versa. See our GitHub repository at https://github.com/suinleelab/cxr_
covid for a version of this figure that includes images from the GitHub-COVID repository.
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Supplementary Fig. 9 | Examples images generated by a CycleGAN that was trained to alter COVID-19
negative images from the PadCheset dataset to appear like COVID-19 positive images from the BIMCV-
COVID-19+ dataset and vice versa.
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Supplementary Fig. 10 | Evaluation of the extent to which features relied upon by the COVID-19 detection
models are altered by the CycleGAN, as measured by the drop in classification performance following
transformation by the CycleGAN. A CycleGAN that more reliably alters images such that they appear to the
classifier to be of the COVID-19 label opposite their original will achieve an area under the ROC curve (AUC) closer to
zero. Inset values indicate AUC (mean ± standard deviation, n=5).
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Supplementary Fig. 11 | Additional assessment of the importance of shoulder positioning to an AI model
for radiographic COVID-19 detection. The procedure to generate Figure 2d was replicated with a new radiograph;
i.e., a patch of the radiograph containing the patient’s clavicles was copied to the top corners of the image, and the
increase in the model’s predicted log odds of COVID-19 was compared to that produced by copying random image
patches of the same size (∆ = 5.42, empircal p-value = 7× 10−3 based on Monte Carlo substitution of random image
patches, n=1000) (see Methods Section 2.5).
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Supplementary Fig. 12 | Population-level analysis of importance of laterality markers and shoulder posi-
tioning. Each pair of dots corresponds to an radiograph sampled at random from the larger population, which enables
inference of our findings to the population level, despite the infeasibility of completing these experiments for the complete
dataset (Dataset II). In each pair, the red dot indicates the difference between the model’s predicted log odds of COVID-19
following a targeted intervention on the region of interest and the model’s predicted log odds of COVID-19 for the
original, unaltered image. The gray dot provides a negative control by repeating the intervention with 1000 random,
rather than targeted, image patches of the same size, and then taking the average over the resulting set of changes in the
model output. In the left panel, the targeted intervention is to replace the laterality marker on a radiograph from the
COVID-19+ repository with a laterality marker on a radiograph from the COVID-19− repository (top 10 radiographs) or
vice versa (bottom 10 radiographs), while the untargeted intervention is to swap random image patches of the same size.
In the experiments in the left panel, radiographs were sampled at random from the subset with laterality markers. In the
right panel, the targeted intervention is to copy the shoulder region of the radiograph and move it to the top of the image,
while the untargeted intervention is to copy a random region of the same dimensions as the targeted intervention and
move it to a random position. In the experiments in the right panel, radiographs were sampled at random from the full
set of images. Swapping of laterality markers between COVID-19+ and COVID-19− radiographs produces a significantly
greater change in model output than swapping random image patches (p=8.9 × 10−5, Siegel’s T statistic = 0.0, by
two-tailed Wilcoxon signed rank test, n=20 random radiographs), and similarly, movement of the shoulder regions to the
top of the radiograph produces a significantly greater change in model output than moving random image patches of the
same size (p=8.9 × 10−5, Siegel’s T statistic = 0.0 by two-tailed Wilcoxon signed rank test, n=20 random radiographs).
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Supplementary Fig. 13 | Evaluation of the extent to which image cropping mitigates shortcut learning.
For each dataset, models were trained before and after cropping to the center 75% of the radiograph, which removes
from the edge of radiographs the textual markers (red boxes) that may contribute to shortcut learning. Models were
then evaluated on an external test set, consisting of radiographs from a different hospital than the training data, to
evaluate the generalization performance. Cropping of images did not significantly improve generalization performance
based on a one-tailed signed-rank test, where the alternative hypothesis is that the median ROC-AUC of the model
trained on cropped images is greater than that trained on the original images (p=0.46 and p=0.60 for models trained on
datasets I and II, respectively, based on the Mann-Whitney U -test; corresponding test statistics are U=0.73 and U=0.52,
respectively ; n=5 independently trained models).

BIMCV-COVID-19+BIMCV-COVID-19−

Supplementary Fig. 14 | Average images of the BIMCV-COVID-19− and BIMCV-COVID-19+ reposito-
ries. Note consistency in the laterality markers, shoulder positioning, and radiopacity of image borders.
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Supplementary Fig. 15 | Evaluation of the generalization performance of models trained on dataset III,
via ROC curves. Models are evaluated on both an internal test set (new, held-out examples from the same data source
as the training radiographs), and an external test set (radiographs from a new hospital system). Inset numbers indicate
the area under the ROC curves (AUC, mean ± standard deviation), where larger area corresponds to higher performance.
The difference between internal and external test set performance is the generalization gap.
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Supplementary Fig. 16 | Evaluation of the extent to which improved training data mitigates shortcut
learning, evaluated by comparison of saliency maps for models trained on dataset II and dataset III. For
a set of images randomly chosen from the BIMCV-COVID-19+ repository, saliency maps were generated for models
trained on Dataset II and models trained on Dataset III, which we expect to contain fewer image factors that spuriously
enable COVID-19 positive and COVID-19 negative radiographs to be distinguished. As a basic validation, a model that
focuses less on shortcuts would be expected to exhibit saliency maps with increased emphasis on the lung fields and
decreased emphasis on the image edges; radiographs for which we judged, on this basis, that the model exhibits less
dependence on shortcuts when trained on dataset III than dataset II are marked with a check mark, while radiographs
that exhibit greater dependence are marked with an "x". The saliency maps of the two radiographs (out of 21) that
did not show improvement exhibit increased attention toward a gastric bubble (black boxes, row two) and a medical
device (black boxes; row 5, column 1). While gastrointestinal symptoms are sometimes associated with COVID-1915, we
were unable to identify reports of an association between gastric bubbles and COVID-19, and therefore judged that this
factor likely represents a spurious confound. We additionally annotate an example in which the model exhibits increased
attention toward relevant factors (black boxes; row 5, column 2), namely a decrease in attention toward the region above
the patient’s left shoulder, and an increase in attention toward the left perihilar region.
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Supplementary Fig. 17 | Comparison of expected gradients saliency maps generated from varied refer-
ence distributions, which provide the baseline radiographs from which the expected gradients algorithm
integrates.
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