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Exhaustive FLAPS optimization results

Seed 1790954 1791103 1791104 1791105 1791106 1792508 1792509
rRMSD 0.85 0.70 0.88 0.63 0.84 0.64 0.79
rGDT -0.94 -0.84 -0.87 -0.68 -0.87 -0.74 -0.80
f min -2.34 -2.03 -1.79 -2.15 -1.99 -1.60 -1.78
f max 8.32 8.31 5.86 4.38 4.41 4.72 6.27

Best simulation in terms of OF
kc 2.170 e-10 1.073 e-10 3.339 e-11 6.654 e-11 5.080 e-11 1.493 e-09 5.869 e-11
T 13.19 10.36 28.82 10.47 11.05 13.60 14.65

RMSDmed �Å
�

2.1 2.1 2.2 2.2 2.2 2.9 2.2
GDTmed 70.59 69.96 69.22 69.44 69.44 64.81 69.22

Best simulation in terms of RMSDmed

RMSDmed �Å
�

2.1 2.1 2.2 2.1 2.1 2.2 2.1
f
�
RMSDmed� -2.03 -2.02 -1.73 -1.79 -1.55 -0.90 -1.45

kc 3.001 e-10 2.320 e-10 3.422 e-11 2.401 e-10 4.190 e-10 5.652 e-10 2.395 e-10
T 11.98 10.43 29.63 10.18 10.03 23.67 12.93

GDTmed 70.69 70.80 69.54 70.91 70.69 68.17 70.69
Best simulation in terms of GDTmed

GDTmed 70.69 70.80 69.54 70.91 70.69 68.17 70.69
f
�
GDTmed� -2.03 -2.02 -1.73 -1.79 -1.55 -1.08 -1.45

kc 3.001 e-10 2.320 e-10 3.422 e-11 2.401 e-10 4.190 e-10 6.429 e-10 2.395 e-10
T 11.98 10.43 29.63 10.18 10.03 20.89 12.93

RMSDmed �Å
�

2.1 2.1 2.2 2.1 2.1 2.2 2.1

Table S1. FLAPS optimization results for SAXS-guided holo-to-apo transition of LAO protein. OF, objective function f , rRMSD, Pearson correlation
of OF and RMSDmed, rGDT, Pearson correlation of OF and GDTmed, kc , bias weight, T , temperature, RMSDmed, median root-mean-square deviation,
GDTmed, median global distance test (total score).

Seed 1795691 1797335 1797338 1797339 1798723 1801054 1810891
rRMSD 0.58 0.33 0.40 0.41 0.49 0.03 0.42
rGDT -0.85 -0.61 -0.77 -0.76 -0.81 -0.32 -0.74
f min -1.42 -1.54 -1.20 -1.50 -1.57 -1.44 -1.62
f max 6.92 6.38 7.09 6.63 9.05 5.45 7.47

Best simulation in terms of OF
kc 1.969 e-09 1.283 e-09 1.858 e-09 1.810 e-09 1.970 e-09 8.218 e-10 1.819 e-09
T 16.90 10.02 10.17 10.28 10.56 10.51 10.09

RMSDmed �Å
�

2.8 3.1 2.9 2.9 2.8 3.3 2.9
GDTmed 63.20 62.38 63.67 63.55 63.78 60.63 63.55

Best simulation in terms of RMSDmed

RMSDmed �Å
�

2.6 2.6 2.6 2.6 2.6 2.7 2.6
f
�
RMSDmed� -1.19 -0.46 -0.59 -0.81 -1.21 2.15 -1.28

kc 2.910 e-09 2.996 e-09 3.477 e-09 2.488 e-09 3.213 e-09 3.311 e-09 3.419 e-09
T 12.40 16.32 12.02 15.51 10.52 31.12 10.01

GDTmed 63.20 62.97 63.20 63.09 63.44 62.38 63.32
Best simulation in terms of GDTmed

GDTmed 63.78 63.90 63.90 63.90 63.78 62.62 63.90
f
�
GDTmed� -1.28 -1.29 -1.17 -1.35 -1.57 -1.34 -1.59

kc 2.030 e-09 2.171 e-09 2.134 e-09 2.171 e-09 1.970 e-09 1.377 e-09 2.170 e-09
T 10.84 10.67 10.07 10.45 10.56 10.22 10.23

RMSDmed �Å
�

2.8 2.8 2.8 2.8 2.8 3.0 2.8

Table S2. FLAPS optimization results for SAXS-guided open-to-closed transition of adenylate kinase. OF, objective function f , rRMSD, Pearson
correlation of OF and RMSDmed, rGDT, Pearson correlation of OF and GDTmed, kc , bias weight, T , temperature, RMSDmed, median root-mean-square
deviation, GDTmed, median global distance test (total score).
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Seed 1800990 1800994 1800995 1800996 1805228 1805229 1805230
rRMSD 0.78 0.88 0.83 0.84 0.69 0.87 0.59
rGDT -0.75 -0.86 -0.80 -0.81 -0.67 -0.88 -0.56
f min -1.33 -1.34 -1.27 -1.51 -1.82 -1.65 -1.58
f max 6.28 5.45 6.76 6.00 3.59 5.53 5.25

Best simulation in terms of OF
kc 1.035 e-09 1.245 e-09 9.913 e-10 9.194 e-10 6.466 e-10 1.252 e-09 7.810 e-10
T 10.25 10.53 10.46 10.01 10.74 10.90 13.23

RMSDmed �Å
�

2.2 2.0 2.2 2.2 2.3 2.0 2.2
GDTmed 67.02 69.33 66.91 66.81 65.44 69.33 66.17

Best simulation in terms of RMSDmed

RMSDmed �Å
�

2.0 2.0 2.0 2.0 2.0 2.0 2.0
f
�
RMSDmed� -1.13 -1.24 -1.02 -1.37 -1.50 -1.50 -0.82

kc 1.448 e-09 1.473 e-09 1.388 e-09 1.399 e-09 1.503 e-09 1.580 e-09 1.389 e-09
T 11.94 11.66 11.65 10.67 12.74 11.76 17.35

GDTmed 69.44 69.44 69.44 69.44 69.33 69.44 69.22
Best simulation in terms of GDTmed

GDTmed 69.44 69.44 69.44 69.44 69.33 69.44 69.44
f
�
GDTmed� -1.13 -1.25 -0.97 -1.48 -1.41 -1.50 -1.35

kc 1.448 e-09 1.285 e-09 1.328 e-09 1.070 e-09 1.386 e-09 1.580 e-09 1.160 e-09
T 11.94 12.62 13.65 10.92 16.06 11.76 12.35

RMSDmed �Å
�

2.0 2.0 2.0 2.0 2.0 2.0 2.0

Table S3. FLAPS optimization results for SAXS-guided apo-to-holo transition of LAO protein. OF, objective function f , rRMSD, Pearson correlation
of OF and RMSDmed, rGDT, Pearson correlation of OF and GDTmed, kc , bias weight, T , temperature, RMSDmed, median root-mean-square deviation,
GDTmed, median global distance test (total score).

Seed 1799347 1799348 1801030 1801031 1801032 1801033 1801034
rRMSD 0.41 0.65 0.79 0.62 0.65 0.71 0.56
rGDT 0.29 -0.15 -0.53 -0.17 -0.31 -0.29 -0.11
f min -1.86 -2.50 -1.98 -2.61 -1.84 -2.37 -1.49
f max 4.75 7.42 6.30 6.08 4.76 6.54 5.68

Best simulation in terms of OF
kc 1.071 e-10 3.888 e-11 6.902 e-11 4.917 e-11 3.563 e-11 6.541 e-11 3.634 e-10
T 26.58 41.99 11.82 37.45 45.43 15.06 10.53

RMSDmed �Å
�

4.4 4.4 4.3 4.4 4.4 4.3 4.2
GDTmed 43.11 45.33 45.44 44.27 44.57 45.44 43.46

Best simulation in terms of RMSDmed

RMSDmed �Å
�

3.5 3.5 3.5 3.6 3.6 3.5 3.4
f
�
RMSDmed� -0.36 -0.50 0.26 -0.38 -0.52 0.38 -1.00

kc 8.490 e-10 8.294 e-10 8.194 e-10 6.801 e-10 6.623 e-10 1.039 e-09 1.117 e-09
T 31.22 34.12 27.42 43.01 44.02 28.40 17.73

GDTmed 49.71 49.65 49.65 48.83 48.95 50.12 49.94
Best simulation in terms of GDTmed

GDTmed 50.23 49.65 50.47 50.81 50.59 50.35 51.17
f
�
GDTmed� 4.75 -0.50 -0.63 0.43 0.34 -0.11 -0.73

kc 3.122 e-11 8.294 e-10 3.134 e-11 2.229 e-11 5.289 e-09 3.515 e-10 2.163 e-09
T 22.77 34.12 13.00 42.58 27.35 30.33 13.43

RMSDmed �Å
�

4.9 3.5 4.9 4.9 5.3 4.0 3.5

Table S4. FLAPS optimization results for SAXS-guided closed-to-open transition of adenylate kinase. OF, objective function f , rRMSD, Pearson
correlation of OF and RMSDmed, rGDT, Pearson correlation of OF and GDTmed, kc , bias weight, T , temperature, RMSDmed, median root-mean-square
deviation, GDTmed, median global distance test (total score).
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Analyzing swarm convergence
In the context of PSO, convergence can refer to (i) the sequential convergence of solutions, i.e., all particles have reached a
particular and possibly (but not necessarily) optimal position, or (ii) convergence of either the personal bests or the global best
to a local optimum, independent of the swarm’s behavior as a whole. We consider the first convergence concept. Analyzing
sequential convergence has issued guidelines for selecting PSO parameters that presumably cause the particles to converge to
some point in the search space19. A common view is that the swarm varies between exploration and exploitation, which involves
adapting the algorithm and its parameters to properly balance these behaviors. This is important to avoid early entrapment in
local optima yet allow for a reasonable convergence rate. A primary focus of past research thus was increasing the algorithm’s
adaptability by making it more complex. However, it is still not clear how the swarm’s behavior affects the actual optimization
performance, in particular for dynamic environments. This renders the opposite approach, i.e., implementing PSO setups that
perform well regardless of how the swarm’s behavior is to be interpreted, equally valid. Inspired by Occam’s razor, this view is
based on the principle that PSO should be simplified to the greatest possible extent without compromising its performance. As
a metaheuristic, PSO can only be proven correct in the sense of demonstrating its efficacy empirically by a finite number of
computational experiments. This poses the risk of making errors in its description and implementation. Simplifying PSO was
first suggested by Kennedy in 199717. The concept has been studied more extensively26, 59, where the optimization performance
was found to improve across different problems and the parameters were easier to tune.

Following the “simplifying PSO” paradigm, FLAPS rests on a slim PSO core with only few parameters. In the velocity
update, cognitive and social influence have random components limited by their associated acceleration coefficients f1 and f2
(see Algorithm 1). This randomness keeps the particles from moving directly toward global and personal best. It facilitates
exploration of new solutions near the current best positions and diversifies the particles for more effective searches. We find
that further diversity enhancement is not needed for the presented application. Supplementary Figs. S1, S2, S3, and S4 show
the swarm in the current OF topology after each generation. For all protein systems, the swarm converged to a stable topology
and contracted around a functional parameter combination. We calculated a relative swarm spread with respect to the swarm’s
initial state,

SwS =
std(normT )+ std

�
normkc

�

SwS0
, (5)

after each generation (Supplementary Figs. S1, S2, S3, and S4, bottom left). std(x) is the standard deviation of quantity x,
normx is the min-max scaled quantity (x�min x)/(max x�min x), and SwS0 is the absolute initial swarm spread. Starting
from a value of 1 by definition, the swarm spread significantly dropped down in the first two to five generations. Depending on
the system, it stabilized at fractions of 0.2 to 0.4 of each initial swarm spread with a tendency to further decrease.

In addition, we considered the Euclidean distance of the current normalized global best from that of each previous generation
(Supplementary Figs. S1, S2, S3, and S4, bottom right). This gbest fluctuation minimized clearly for only one of the considered
systems (Supplementary Fig. S3). As different parameter combinations can equally yield useful results in physico-empirical
structure-based models, this is no surprise. Many factors influence the convergence behavior and performance of particle-swarm
based algorithms, including selection of the acceleration coefficients, velocity clamping, and the swarm’s communication
network. As a metaheuristic that implements a form of stochastic optimization, PSO is not guaranteed to find the globally
optimal solution. It rather is a practical strategy that guides the optimization process in order to efficiently explore the search
space and find near-optimal solutions. While built on the “simplifying PSO” paradigm, FLAPS can easily be complemented by
concepts such as inertia weight18 and swarm constriction19, diversity increasing mechanisms, or flexible termination criteria
based on, e.g, the swarm spread or the global best’s fluctuation. If desired, the communication pattern can also be adapted
towards local geometrical or social topologies.
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Figure S1. Swarm convergence for SAXS-guided holo-to-apo transition of lysine-, arginine-, ornithine-binding protein (seed 1790954). Top:

Dynamically evolving objective-function topology after each generation. The current global best position, gbest, and the swarm’s centroid are marked. kc , bias
weight, T , temperature. Bottom: Evolution of swarm spread SwS (left) and gbest fluctuation (right) during the FLAPS optimization.
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Figure S2. Swarm convergence for SAXS-guided open-to-closed transition of adenylate kinase (seed 1795691). Top: Dynamically evolving
objective-function topology after each generation. The current global best position, gbest, and the swarm’s centroid are marked. kc , bias weight, T , temperature.
Bottom: Evolution of swarm spread SwS (left) and gbest fluctuation (right) during the FLAPS optimization.
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Figure S3. Swarm convergence for SAXS-guided apo-to-holo transition of lysine-, arginine-, ornithine-binding protein (seed 1800994). Top:

Dynamically evolving objective-function topology after each generation. The current global best position, gbest, and the swarm’s centroid are marked. kc , bias
weight, T , temperature. Bottom: Evolution of swarm spread SwS (left) and gbest fluctuation (right) during the FLAPS optimization.
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Figure S4. Swarm convergence for SAXS-guided closed-to-open transition of adenylate kinase (seed 1801030). Top: Dynamically evolving
objective-function topology after each generation. The current global best position, gbest, and the swarm’s centroid are marked. kc , bias weight, T , temperature.
Bottom: Evolution of swarm spread SwS (left) and gbest fluctuation (right) during the FLAPS optimization.
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Comparison to grid search
We performed comparative grid-search optimizations for the presented protein systems. In swarm-based approaches like
FLAPS, each generation depends on the particles’ positions and fitnesses attained in the previous generation (see velocity
update in Algorithm 1). This recursive dependency limits the intrinsic parallelizability of such algorithms. In contrast, a grid
search is perfectly parallel, which hinders a direct speed-up comparison. To ensure comparability of the two approaches,
we considered nkc ⇥ nT = 15⇥ 10 = 150 equidistant grid points within �11  log10

�
kc
�
 �8 and 10  T  90. Such a

grid equates to the sample size and computational demands of the presented FLAPS optimizations. Grid search does not
include prior information about the optimization task. Hence, it lacks an intrinsic quality measure to rank different parameter
combinations in terms of their performance. The best solutions must be manually identified from the set of evaluated grid points
using independently defined quality criteria. PSO implements an intrinsic quality measure in form of the objective function that
is key in selecting the parameter combinations to be tested during the optimization process.

We employed the flexible objective function in equation (2) to evaluate the simulated ensemble of protein structures at each
grid point. As anticipated, the grid searches yielded several acceptable or even equally functional MD parameter combinations
as FLAPS (see Table S5). As proteins are intrinsically dynamic, we are interested in conformational ensembles rather than in
single static structures. A PSO search guided by the collective experience of all particles cooperating in a swarm will always
yield an overall greater proportion of usable parameter combinations, i.e., meaningful simulations and thus molecular structures,
than an exhaustive grid search on a predefined set of parameter combinations. While PSO tends to remember and return
to promising regions in the search space, a grid search always takes the risk of evaluating a significant number of ill-suited
parameter combinations that would be dismissed on the basis of the swarm’s experience.

To illustrate the advantages of a swarm-based approach over classical grid search, we considered the distributions of the
simulations’ median global distance test, GDTmed, in each grid-search and FLAPS optimization. The distributions are shown in
Supplementary Figs. S5 to S12. For all systems, we find the FLAPS distribution to be shifted to higher GDTs compared to the
grid search, indicating an overall greater proportion of accurate structural ensembles in FLAPS. In addition, we calculated the
fraction of simulations with a median GDT equal to or greater than GDTmax

75 = 0.75 max
�
GDTmed� for each optimization run,

which was consistently larger in FLAPS.

System LAO ha ADK oc LAO ah ADK co

Best simulation in terms of OF
f min -2.60 -2.14 -2.24 -2.74
kc 4.394 e-11 1.390 e-09 8.483 e-10 7.197 e-11
T 10.00 10.00 10.00 10.00

RMSDmed �Å
�

2.2 3.0 2.2 4.3
GDTmed 69.70 62.62 66.49 45.44

Best simulation in terms of RMSDmed

RMSDmed �Å
�

2.1 2.6 2.0 3.5
f
�
RMSDmed� -2.24 -1.66 -2.11 -1.36

kc 3.162 e-10 3.728 e-09 1.390 e-09 1.390 e-09
T 10.00 10.00 10.00 10.00

GDTmed 70.91 63.20 69.33 50.00
Best simulation in terms of GDTmed

GDTmed 70.91 63.78 69.33 50.47
f
�
GDTmed� -2.24 -2.03 -2.11 -1.97

kc 3.162 e-10 2.276 e-09 1.390 e-09 4.394 e-11
T 10.00 10.00 10.00 10.00

RMSDmed �Å
�

2.1 2.7 2.0 4.9

Table S5. Grid-search optimization results. LAO ha, holo-to-apo transition of lysine-, arginine-, ornithine-binding protein, ADK oc, open-to-closed
transition of adenylate kinase, LAO ah, apo-to-holo transition of lysine-, arginine-, ornithine-binding protein, ADK co, closed-to-open transition of adenylate
kinase, OF, objective function f , kc , bias weight, T , temperature, RMSDmed, median root-mean-square deviation, GDTmed, median global distance test (total
score).
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Figure S5. Grid-search optimization for SAXS-guided holo-to-apo transition of lysine-, arginine-, ornithine-binding protein. Top: Final topologies
of objective function (OF, left) and median global distance test (GDT, right). The global best position according to the OF, gbest, and the best position according
to the median GDT are marked. Bottom: Frequency distributions of OF (left) and median GDT (right). 73 % of all simulations had a median GDT greater than
GDTmax

75 = 0.75 max
�
GDTmed�.
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Figure S6. FLAPS optimization for SAXS-guided holo-to-apo transition of lysine-, arginine-, ornithine-binding protein. Top: Final topologies of
objective function (OF, left) and median global distance test (GDT, right). The global best position according to the OF, gbest, and the best position according to
the median GDT are marked. Bottom: Frequency distributions of OF (left) and median GDT (right). 99 % of all simulations had a median GDT greater than
GDTmax

75 = 0.75 max
�
GDTmed�.
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Figure S7. Grid-search optimization for SAXS-guided open-to-closed transition of adenylate kinase. Top: Final topologies of objective function (OF,
left) and median global distance test (GDT, right). The global best position according to the OF, gbest, and the best position according to the median GDT are
marked. Bottom: Frequency distributions of OF (left) and median GDT (right). 83 % of all simulations had a median GDT greater than
GDTmax

75 = 0.75 max
�
GDTmed�.
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Figure S8. FLAPS optimization for SAXS-guided open-to-closed transition of adenylate kinase. Top: Final topologies of objective function (OF, left)
and median global distance test (GDT, right). The global best position according to the OF, gbest, and the best position according to the median GDT are
marked. Bottom: Frequency distributions of OF (left) and median GDT (right). 99 % of all simulations had a median GDT greater than
GDTmax

75 = 0.75 max
�
GDTmed�.
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Figure S9. Grid-search optimization for SAXS-guided apo-to-holo transition of lysine-, arginine-, ornithine-binding protein. Top: Final topologies
of objective function (OF, left) and median global distance test (GDT, right). The global best position according to the OF, gbest, and the best position according
to the median GDT are marked. Bottom: Frequency distributions of OF (left) and median GDT (right). 59 % of all simulations had a median GDT greater than
GDTmax

75 = 0.75 max
�
GDTmed�.
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Figure S10. FLAPS optimization for SAXS-guided apo-to-holo transition of lysine-, arginine-, ornithine-binding protein. Top: Final topologies of
objective function (OF, left) and median global distance test (GDT, right). The global best position according to the OF, gbest, and the best position according to
the median GDT are marked. Bottom: Frequency distributions of OF (left) and median GDT (right). 98 % of all simulations had a median GDT greater than
GDTmax

75 = 0.75 max
�
GDTmed�.
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Figure S11. Grid-search optimization for SAXS-guided closed-to-open transition of adenylate kinase. Top: Final topologies of objective function
(OF, left) and median global distance test (GDT, right). The global best position according to the OF, gbest, and the best position according to the median GDT
are marked. Bottom: Frequency distributions of OF (left) and median GDT (right). 78 % of all simulations had a median GDT greater than
GDTmax

75 = 0.75 max
�
GDTmed�.
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Figure S12. FLAPS optimization for SAXS-guided closed-to-open transition of adenylate kinase. Top: Final topologies of objective function (OF, left)
and median global distance test (GDT, right). The global best position according to the OF, gbest, and the best position according to the median GDT are
marked. Bottom: Frequency distributions of OF (left) and median GDT (right). 89 % of all simulations had a median GDT greater than
GDTmax

75 = 0.75 max
�
GDTmed�.
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MPI.COMM_WORLD

N blocks, i.e. swarm of N particles

1 simulator

n – 1workers

inter communicator

block with
n processors

intra communicator

...

Figure S13. Simulator-worker parallelization scheme used for FLAPS in Hyppopy. The available compute resources comprising a given number of
processors are divided into blocks, each of which corresponds to one particle in the swarm. Within one block, the simulation itself runs on a single core, while
the other cores process the generated frames in the trajectory on the fly.
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