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A Details of Molecular Datasets

Table 1 summarizes all the benchmarks used in our work. These benchmarks from MoleculeNet1 cover a wide variety
of molecular properties, including physiology (i.e., BBBP, Tox21, SIDER, ClinTox), biophysics (i.e., BACE, MUV, HIV),
physical chemistry (i.e., FreeSolv, Lipo, ESOL), and quantum mechanics (i.e., QM7, QM8, QM9). Also, numbers of data vary
significantly among the benchmarks, ranging from less than 1K to more than 130K. All benchmarks except QM9 are scaffold
split to train/validation/test sets by the ratio of 8/1/1, which provides a more challenging yet realistic setting. Random splitting
is implemented on QM9 following the settings in most related works2–4 for comparison. ROC-AUC is used as the metric for
classification tasks while RMSE and MAE are used for regression tasks.

Dataset # Molecules # Tasks Task type Metric Split

BBBP 2039 1 Classification ROC-AUC Scaffold
Tox21 7831 12 Classification ROC-AUC Scaffold
ClinTox 1478 2 Classification ROC-AUC Scaffold
HIV 41127 1 Classification ROC-AUC Scaffold
BACE 1513 1 Classification ROC-AUC Scaffold
SIDER 1427 27 Classification ROC-AUC Scaffold
MUV 93087 17 Classification ROC-AUC Scaffold

FreeSolv 642 1 Regression RMSE Scaffold
ESOL 1128 1 Regression RMSE Scaffold
Lipo 4200 1 Regression RMSE Scaffold
QM7 6830 1 Regression MAE Scaffold
QM8 21786 12 Regression MAE Scaffold
QM9 130829 8 Regression MAE Random

Table 1. Summary of all the benchmarks for molecular property predictions used in this work.

We follow Hu et al.5 to build a simple yet unambiguous set of node and bond features to embed the two-dimensional (2D)
molecular graph. RDKit is used to convert SMILES to a 2D graph and extract the features. The details of node and edge
features can be found in Table 2. When a node is masked, the atomic number is set to 119 and chirality to unspecified.

Feature type Feature name Range

Node feature Atomic number [1, 119]
Chirality {unspecified, tetrahedral CW, tetrahedral CCW, other}

Edge feature Bond type {single, double, triple, aromatic}
Bond direction {none, end-upright, end-downright}

Table 2. Node and edge features used in MolCLR.

2/9



B Detailed Results of QM9
Table 3 reports detailed results on QM9 database. The property name, unit, mean and std of test MAE for all the models
are included. Not surprisingly, SchNet2 and MGCN3 outperform the other models greatly. These two models successfully
develop interaction layers, which elaborately take quantum interactions into consideration as titles of both works indicate.
Besides, both models include 3D positional information as the input, which benefits quantum mechanics property predictions.
However, MolCLR pre-training is still demonstrated to be effective on this challenging benchmark. MolCLR shows better
prediction accuracy in 7 out 8 tasks among all the pre-training/self-supervised models. MolCLRGIN surpasses Hu et al.5 in all
the tasks, which also utilizes GIN as the encoder. Besides, in comparison to GCN and GIN trained via supervised learning,
MolCLRGCN and MolCLRGIN improve the performance on all the tasks within QM9. MolCLR also obtains lower test MAE
when set side-by-side with another supervised baseline, D-MPNN6.

Property εHOMO εLUMO ∆ε ZPVE µ α 〈R2〉 Cv
Unit eV eV eV eV D bohr3 bohr2 cal/mol K

RF 0.186±0.001 0.276±0.002 0.269±0.001 0.276±0.000 0.658±0.004 3.245±0.015 121.837±0.124 1.738±0.003
SVM 0.148±0.000 0.234±0.002 0.248±0.004 0.157±0.000 0.750±0.004 4.065±0.057 189.510±1.078 1.795±0.010
GCN7 0.115±0.010 0.133±0.007 0.174±0.013 0.075±0.018 0.532±0.015 1.495±0.338 43.325±15.140 0.514±0.209
GIN8 0.097±0.005 0.103±0.010 0.138±0.004 0.055±0.021 0.483±0.004 1.315±0.405 35.278±6.779 0.457±0.073
SchNet2 0.041±0.001 0.034±0.003 0.063±0.002 0.002±0.000 0.033±0.001 0.235±0.061 0.073±0.002 0.033±0.000
MGCN3 0.042±0.001 0.057±0.002 0.064±0.001 0.001±0.000 0.056±0.002 0.030±0.007 0.113±0.001 0.038±0.001
D-MPNN6 0.093±0.005 0.106±0.002 0.148±0.003 0.037±0.004 0.450±0.006 0.493±0.008 24.371±0.922 0.244±0.005

HU. et.al5 0.116±0.000 0.118±0.000 0.161±0.001 0.083±0.001 0.543±0.001 1.725±0.008 55.418±0.291 0.705±0.012
N-Gram4 0.142±0.001 0.138±0.001 0.193±0.001 0.009±0.000 0.540±0.002 0.611±0.022 59.137±0.178 0.334±0.007
MolCLRGCN 0.104±0.000 0.110±0.001 0.149±0.001 0.045±0.004 0.507±0.002 0.644±0.053 26.600±0.257 0.259±0.011
MolCLRGIN 0.087±0.000 0.092±0.000 0.127±0.000 0.033±0.004 0.464±0.001 0.463±0.017 17.425±0.919 0.164±0.002

Table 3. Test MAE of different models for each property in QM9.
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C Investigation of Pre-training Datasets for MolCLR
MolCLR pre-training makes use of the large unlabeled molecular data. We also investigate whether pre-training on certain
dataset benefits molecular property predictions of its own. To this end, we conduct MolCLR pre-training on MUV and QM9
as shown in Table 4, since these are the two largest datasets in MoleculeNet1. Within the table, MolCLRPubChem denotes
MolCLR framework pre-trained on the ∼10M unlabeled molecules from PubChem9. MolCLRMUV and MolCLRQM9 indicates
pre-training on MUV and QM9, respectively. The training and fine-tuning follow the same setting reported in the main
manuscript. To avoid data leakage, we split the MUV and QM9 into train/validation/test by the ratio of 8:1:1 and only pre-train
the models on the training splits. When conducting fine-tuning on MUV, MolCLR pre-training on MUV improves the test
ROC-AUC by 15.4% and MolCLR pre-trained on QM9 also obtains a great improvement by 14.9% in comparison with no
pre-training. Not surprisingly, MolCLR pre-trained on the 10M dataset performs the best better as it benefits from larger
unlabeled molecular data. Similarly, on QM9, pre-training on MUV and QM9 decreases the test MAE by 1.553 and 2.010,
respectively. As expected, MolCLRPubChem achieves the larges improvement by 2.384 on QM9. Therefore, pre-training on the
dataset itself via MolCLR boosts the performance significantly. Also, the pre-trained model on one dataset can be directly
transferred to another and outperforms training from scratch.

Metric Supervised MolCLRMUV MolCLRQM9 MolCLRPubChem

MUV ROC-AUC (%) 71.8±2.5 87.2±2.1 86.7±2.8 88.6±2.2

QM9 MAE 4.741±0.912 3.188±0.441 2.731±0.019 2.357±0.118

Table 4. Comparison of MolCLR pre-training on different datasets. Test ROC-AUC (%) are reported for MUV and MAE for
QM9. Supervised indicates supervised learning with no pre-training. MolCLRMUV MolCLRQM9, and MolCLRPubChem denote
MolCLR pre-training on the MUV, QM9, and ∼10M PubChem, respectively.

We further probe the influence of the magnitude of pre-training datasets on MolCLR. Subsets of size 10K, 100K, and 1M
are randomly sampled from the whole ∼10M PubChem pre-training dataset. Figure 1(a) and Figure 1(b) report the test results
of different pre-training data size on HIV and ESOL databases. Pre-training dataset size 0 indicates supervised learning is
directly conducted without pre-training. As the number of data increases, the averaged test HIV ROC-AUC increases from 75.3
to 80.6. Similarly, the larger the dataset, the lower test RMSE on ESOL is observed. Also, even pre-training on a small dataset,
i.e., 10K molecules, GNN models gain obvious improvements in comparison to supervised learning. For example, pre-training
on 10K data improves ROC-AUC by 2.5% on HIV and decreases RMSE by 0.12 on ESOL. It is demonstrated that MolCLR
benefits from the large dataset, and therefore can be widely used for the huge unlabeled molecule data. On the other hand,
MolCLR pre-training on a small dataset still boosts the performance compared to supervised learning, which demonstrates the
effectiveness of the contrastive learning framework on molecule graphs.

(a) (b)

Figure 1. Results of MolCLR pre-training on different dataset sizes. (a) Test ROC-AUC (%) on HIV. (b) Test RMSE on
ESOL.
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D Visualization of MolCLR Representations
Besides, to illustrate the representations from the pre-trained MolCLR, we visualize the molecule features via t-SNE, where
molecules are from various databases and colored by corresponding property labels (Figure 2). Notice that all the features are
extracted directly from pre-trained MolCLR without fine-tuning. Namely, the model has no access to the molecular property
labels during training. Figure 2 shows molecules from SIDER10, FreeSolv11, QM812, 13, QM914. Features from pre-trained
MolCLR show clustering based on the labels, even without accessing labels during training. For instance, in Figure 2(d),
molecules are colored by the dipole moment µ . Molecules with relatively high µ (green and blue) are clustered on the bottom
right, whereas molecules with low µ (dark red) are clustered in the center of the plot. Similar clustering trends can also be
observed in other t-SNE visualizations in Figure 2.
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Figure 2. Two-dimensional t-SNE embedding of the molecular representations learned by our MolCLR pre-training. (a)
Molecules from SIDER database and color indicates whether the molecule causes hepatobiliary disorder side effect. (b)
Molecules from FreeSolv database and color indicates hydration free energy of each molecule. (c) Molecules from QM8
database and color indicates the electronic spectrum calculated from CC2 of each molecule. (d) Molecules from QM9 database
and color indicates the averaged electronic spectrum µ of each molecule.
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E More Results of Molecule Retrieval via MolCLR
In this section, more examples of molecule retrieval based on MolCLR-learned representations are shown in Figure 3. Nine
molecules that are closest to the query molecule in the MolCLR representation domain are listed with RDKFP and ECFP
similarities labeled. Notably, molecules with close MolCLR representations also have high FP similarities. Also, the selected
molecules share similar structures and functional groups. For instance, in Figure 3(a), all listed molecules share functional
groups like sulfonyl groups and nitrogen heterocycles. Also, in Figure 3(b), the first molecule at the second row is exactly the
same as the query molecule except for few carbon-carbon bonds. These examples further demonstrate that through contrastive
learning, MolCLR automatically learns chemically meaningful representations.
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ECFP: 0.576
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ECFP: 0.636

RDKFP: 0.837

ECFP: 0.688

(a)
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Figure 3. Three Query molecules (PubChem ID (a) 130187714 (b) 132175476 (c) 4862714) and 9 closest molecules for each
query molecule in MolCLR representation domain with RDKFP and ECFP similarities labeled.
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F Temperature in Contrastive Loss

The choice of the temperature parameter τ in NT-Xent loss15 impacts the performance of contrastive learning15. An appropriate
τ benefits the model to learn from hard negative samples. To investigate τ for molecule representation learning, we train
MolCLR with three different temperatures: 0.05, 0.1, and 0.5 as shown in Table 5. We report the averaged ROC-AUC (%)
over all the seven classification benchmarks using 25% subgraph removal as the augmentation strategy. It is demonstrated that
τ = 0.1 performs the best in the downstream molecular tasks. Therefore, we use τ = 0.1 as the temperature in the following
experiments.

Temperature (τ) 0.05 0.1 0.5

ROC-AUC (%) 76.8±1.2 80.2±1.3 78.4±1.7

Table 5. Influence of temperature τ in NT-Xent loss for MolCLR. Mean and standard deviation of all the seven classification
benchmarks are reported.
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G Fine-tuning Details
During fine-tuning for each downstream task, we randomly search the hyper-parameters to find the best performing setting on
the validation set and report the results on the test set. Table 6 lists the combinations of different hyper-parameters. Besides, we
also consider if cosine annealing learning rate decay16 improves the fine-tuning performance. In addition, we randomly pick
MolCLR-trained GNNs at different epoch as the initialization for fine-tuning.

Name Description Range

batch_size Input batch size {32, 128, 256}
lr Initial learning rate for MLP head {5×10−4, 10−3}
lr_base Initial learning rate for the pre-trained GNN base {5×10−5, 10−4, 2×10−4, 5×10−4}
dropout Dropout ratio for the GNN {0, 0.1, 0.3, 0.5}
n_layer Number of hidden layers in MLP {1, 2}
hidden_size Size of hidden layers in MLP {256}
activation Nonlinear activation function in MLP {ReLU17, Softplus18}

Table 6. Fine-tuning hyper-parameters for pre-trained MolCLR model.
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