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Supplementary Note S1: Traversal-based optimization for the optimal swarm distribution planning18

Since unstructured environments cannot be described by an explicit model, the distribution planning method should be19

model-free to the working environment. Moreover, the two parameters, i.e., the swarm shape ratio Rs and swarm orientation20

angle αs, are coupled with each other to determine the optimal swarm distribution. As a result, analytical methods are not21

applicable for solving Eq. (1) to obtain the optimal swarm distribution on the next trajectory point, and thus the traversal-based22

optimization should be used for this purpose. In this approach, to solve Eq. (1), a traversal process is executed for all the23

candidate combinations of Rs and αs. There are five candidates for Rs: 2, 3, 4, 5, 6, and αs has ninety-one candidates, ranging24

from -45◦ to 45◦ with an increasing step of 1◦. The average distance between the swarm and the obstacles is computed25

by averaging the distances of 360 boundary points of the swarm to the obstacle region. After the traversal process with26

w1 = w2 = 0.5, the optimal swarm distribution can be obtained for the next trajectory point. However, as shown in Fig. 2(d),27

the time consumed by the traversal-based optimization is too long to be used for real-time planning. Therefore, our solution is28

to train deep neural networks (DNNs) to imitate the optimal solutions of the traversal-based optimization, which would have29

both the real-time feature and the optimal planning performance. After learning with extensive environment morphologies, the30

DL-based method would have sufficient robustness to unknown environments, as validated in Supplementary Video 1.31
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Supplementary Note S2: DNN training and application processes32

For the environment-adaptive microrobot swarm navigation, a large dataset is required for the DNN training, but there is33

no public dataset for direct use. On the other hand, manual creation and acquisition of a large real environment dataset are34

difficult and time-consuming, due to which the DNNs cannot be conveniently re-trained for new environments. Therefore, we35

propose to tailor a simulation engine to generate a large dataset for DNN training. To make this DL-based method applicable36

for real environments, the DNN training and application processes are designed as follows (illustrated in Supplementary Fig.37

S1).38

In the training process, basic features of the real environment are manually extracted, after which the simulation engine39

generates a large dataset composed of these basic features and their combinations. In this work, the targeted environment is40

the vessel-like channel, whose basic features are: channel environments with varying diameters, branched channel environments,41

and open-sided environments with curved boundaries. Then, the training using 90% data of the large dataset makes the DNN42

have robustness to the differences/randomization between the training navigation scenarios and the real environment.43

In the application process, the feedback image is not directly used for planning. Before the feedback image is sent to the44

DNN, the swarm tracking and environment identification procedures (in Fig. 1b) should clearly segment the swarm and45

obstacle regions and remove noise so that the DNN will process the images similar to those in the training process. This image46

processing process can reduce the gap between the images in the simulation and the images captured by the imaging system.47
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Fig. S1. Illustration of the training and application processes of the proposed DL-based swarm distribution planning method.
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Fig. S2. Illustration of one hundred data scenarios used to train the DNN for swarm shape planing (SSP-DNN) and the DNN for swarm orientation planning (SOP-DNN). The
black and green colors mark the available navigation space and the obstacle space, respectively. The blue and red rectangles are the current minimum swarm bounding box
(MSBB) and the next trajectory point, respectively. The dataset for DNN training consists of 50 K such data with different working environment morphologies/swarm distribution
states.
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Supplementary Note S3: Study on the influence of the dataset size on the planning accuracy48

We further conducted a comparison study, in which different dataset sizes were used to train the two DNNs. Six datasets49

were formed, which contain 0%, 20%, 40%, 60%, 80%, and 100% of the total training dataset (90% of the 50 K training50

scenarios). After ten training epochs, we then used the evaluation dataset (the remaining 10% of the 50 K training scenarios)51

to test the accuracy of the two DNNs. The evaluation results are plotted in Supplementary Fig. S3. We can obtain that when52

increasing the dataset size, the planning accuracy is also enhanced.53

For the SSP-DNN, it converges faster than that of the SOP-DNN, and its accuracy increases from 85% to 90% when the54

dataset proportion is extended from 20% to 80%. More training data could lead to saturation.55

For the SOP-DNN, along with the increase of the dataset size, its planning accuracy increases. It is obtained that, the 80%56

dataset proportion (36 K data) leads to an average angle error smaller than 5 degrees which is sufficient for the navigation57

problem.58

Therefore, 80% dataset proportion (36 K data) would result in sufficient planning accuracy for both the two DNNs.59
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Fig. S3. Accuracy validation results when adopting different dataset sizes for training. The total training dataset contains 45 K navigation scenarios.
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Supplementary Note S4: Magnetic nanoparticles and experimental setup60

Fe3O4 nanoparticles with diameters around 400 nm are fabricated using the solvothermal method (1). A scanning electron61

microscopy image is shown in Supplementary Fig. S4a. The 3D dynamic magnetic fields for actuation are provided by a 3-axis62

Helmholtz electromagnetic coil setup, as illustrated in Supplementary Fig. S4b. The nanoparticle swarm and its working63

environment are observed by an optical microscope and fed back to a computer via a high-speed (45 fps) camera mounted64

on the microscope. Based on the proposed framework, control signals are generated by the programs coded by LabVIEW,65

Matlab, and Python, which are then sent to the amplifiers (ADS 50/5 4-Q-DC, Maxon, Inc.) to generate desired currents66

in coils. Computed by the field regulation principles in Methods, the oscillating field, rotating field, and 3D dynamic field67

required for the ribbon-like swarm (RS), vortex-like swarm (VS), and spreading swarm (SS) are ready to be produced. For68

experimental investigations, magnetic nanoparticle solutions (3 mg/mL) are added into an acrylic tank filled with deionized69

(DI) water. For long-distance navigation, a home-designed 2D motorized stage (MTS25-Z8, Thorlabs, Inc.) is used to adjust70

the field of view (FOV) of the microscope. Its control codes written by LabVIEW are also integrated into the overall program.71
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Fig. S4. a, The Fe3O4 nanoparticle with an average diameter of 400 nm. The yellow and red scale bars are 2 µm and 400 nm, respectively. b, The system setup used to
generate 3D dynamic fields for actuation of the magnetic nanoparticle swarm.
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Supplementary Note S5: Unique challenges of autonomous navigation of magnetic nanoparticle swarms72

Compared with swarm navigation of traditional large-scale robots, the autonomous navigation of such microrobot swarms73

has three unique challenges: (1) Unlike traditional robot swarms equipped with individual on-board sensors and actuators,74

nanoparticles in the swarm cannot be individually controlled, resulting in the under-actuation nature and thus the limited75

control degree-of-freedom. This fact brings challenges to the swarm distribution planning when navigating in unstructured76

environments; (2) Unlike traditional robot swarms whose dynamics can be precisely modeled for motion control, the motion77

of such microswarms is dominated by fluidic and particle-particle interaction forces that cannot be precisely modeled. This78

property brings challenges to the automated swarm motion and reconfiguration control; (3) Unlike the working environments of79

traditional robots that have public datasets for neural network training, there is no such dataset for microrobot swarms, which80

makes it challenging to realize the robust DL-based planning for the environment-adaptive microrobot swarm navigation that81

requires a large dataset.82
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Table S1. Pros and cons of the three configurations of the magnetic nanoparticle swarm

Configuration Pros Cons
Application

scenario

Ribbon-like swarm

(RS)

Fast generation process;

Fast deformation process;

Resilient to external disturbance.

Slower motion speed than VS.

Adaptive navigation;

Cargo unloading utilizing its

cyclic fluid flow.

Vortex-like swarm

(VS)
Faster motion speed than RS.

Slow deformation process;

Fragile to external disturbance.

Cargo loading and transport

utilizing its inward fluidic force.

Spreading swarm

(SS)
Controllable spreading area

No gathering force

for collective navigation

Realizing the desired particle

distribution area/density in

targeted delivery/therapy
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Fig. S6. Experimental characterization of the deformation properties for the ribbon-like swarm (RS). a, Characterization of the transient deformation, including the elongation
and contraction processes. At first, the RS has a stable shape under actuation with a field ratio of 1.7. Then, the field ratio Rf is changed to 3.5 to trigger the swarm elongation.
After the elongation process is finished, Rf is changed back to 1.7 to trigger the swarm contraction process. The characterization result shows that the deformation process has
long time delay (> 10 s), and the elongation and contraction processes have different time delays. Different swarm sizes and field inputs will also have varying time delays. b,
Characterization of the steady-state relationship between the input field ratio and the output swarm shape ratio. At first, the RS has a stable shape under field ratio Rf = 2.
Then, the field ratio is increased by a step of 1 or 0.5 after the swarm reaches a steady state. The elongation process is finished till Rf = 8, after which Rf is decreased to
characterize the steady-state contraction process. Interestingly, the elongation and contraction deformation processes form a hysteresis-like loop. Every average swarm shape
ratio in the figure is calculated from five experiments.
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Fig. S7. Experimental characterization of the motion properties for the ribbon-like swarm (RS). β represents the intersection angle between the swarm orientation and the
translational motion direction. v is the translational motion speed. The motion speed is positively correlated to the field pitch angle, and the field pitch angle is fixed at 3.5◦ for
this experiment. Results show that swarms with larger shape ratios would have slower motion speed with the same β, and swarms with the same shape ratios would have
slower motion speed if with a larger β.
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Supplementary Note S6: Common failure cases in manual navigation83

As the magnetic nanoparticle swarm contains millions of nanoparticles that loosely interact with each other, there would be84

navigation failure, especially in complex environments, if inappropriate manual control actions happen. Herein, we illustrate85

five common failure cases in manual navigation, as shown in Fig. S8.86

In the first case (Fig. S8(a)), the RS has a relatively large shape ratio around 6. Meanwhile, the field orientation angle87

αf is suddenly changed by a large value of 90◦. Because the nanoparticle reorganization in the swarm cannot finish during88

such a sudden and large rotation motion, the swarm splits to several small swarms. As a result, the swarm stability, thus the89

collective navigation, is disrupted.90

In the second case (Fig. S8(b)) for the RS, wrong rotation direction control happens, and the swarm get contact with the91

obstacles. Owing to the strong interaction force between the swarm and the channel wall, the swarm is stuck on the contact92

position, causing failure of the navigation. Such undesired collisions with obstacles could also happen if the operator performs93

wrong translational motion control.94

In the third case (Fig. S8(c)) for the RS, the field pitch angle γf is suddenly set a too large value (e.g., 10◦), so that the95

swarm pattern becomes unstable. Besides, the low-frequency human control makes the correct motion control difficult. The96

two factors cause the swarm to lose particles, and the swarm collides with the channel wall.97

In the fourth case (Fig. S8(d)) for the RS, the swarm shape is not appropriately controlled. To pass through the narrow98

channel, the swarm should elongate its shape until there is no collision with the channel wall. Without doing so, the swarm99

with a too small shape ratio is stuck in the channel, and a large portion of nanoparticles is lost.100

In the fifth case (Fig. S8(e)) for the VS, the swarm shape is also not appropriately controlled. To pass through the narrow101

channel, the swarm should elongate its shape until there is no collision with the channel wall. Because the VS relies on the102

vortex fluidic force to assemble, it is very fragile to such collision. As shown, the VS splits to several small groups, which fails103

the collective navigation.104
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Fig. S8. Common failure cases in manual navigation due to (a) excessive rotation control; (b) wrong rotation direction control; (c) wrong field pitch angle control and
low-frequency motion direction control; and (d) wrong swarm shape control; (e) wrong swarm shape control for the VS.
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Supplementary Note S7: Navigation in curved environments with sharp turn and narrow channel using105

autonomy Level 3106

Here, we validate the navigation in curved environments with sharp turns and curved narrow channel environments. Since107

such environments are still composed of these features in the training dataset, i.e., channel environments with varying diameters,108

branched channel environments, open-sided environments with curved boundaries, the trained DNN would also work.109

For evaluation, we further conducted navigation simulations and experiments in highly curved space containing sharp110

turns. As illustrated in Supplementary Fig. S9(a), we first test the planning performance with 135◦ and 150◦ sharp turns via111

simulation, and the results indicate that the trained model works well. For experimental validation, we fabricated the curved112

environment with a 150◦ sharp turn via laser cutting. The navigation experiments are then conducted using autonomy Level 3.113

To validate the robustness of the trained model to different nanoparticle amounts in the swarm, we conducted two experiments114

with 0.75 µg and 2.0 µg nanoparticles. The experimental results are shown in Supplementary Fig. S9(b) and (c), respectively,115

indicating that the swarm distributions can be correctly planned during navigation, and the swarms successfully reached the116

manually given targeted positions. The navigation processes are included in Supplementary Video 7. Moreover, the results also117

show that the trained model has good robustness to different swarm sizes for navigation in such highly curved environments.118

We also conducted navigation simulations and experiments in curved narrow channel environments, whose results are119

illustrated in Supplementary Fig. S10. In this navigation environment, to pass the curved narrow channel, the swarm shape120

should be dramatically controlled together with the swarm direction. The navigation results indicates that the proposed121

DL-based swarm distribution planning method can correctly output swarm distributions in real time for such a challenging122

case. The navigation processes in simulations and experiments are included in Supplementary Video 7.123
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Fig. S9. Demonstration of Autonomy Level 3 in highly curved space with sharp turns. (a) Simulation results for environments with 135◦ and 150◦ sharp turns. (b) The
experimental navigation result for an RS containing 0.75 µg nanoparticles. (c) The experimental navigation result for an RS containing 2.0 µg nanoparticles.
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Supplementary Note S8: Method validation under ultrasound imaging and x-ray fluoroscopy124

For applications using medical imaging modalities, the quality of the feedback information would be much worse. In order to125

show the performance of the DL-based method in such cases, we further implemented ultrasound imaging and x-ray fluoroscopy126

for validation purposes.127

Regarding the ultrasound imaging, the developed system setup is shown in Supplementary Fig. S12(a). An EcoFlex tank128

is fabricated for containing the magnetic nanoparticle swarm and water. An ultrasound probe (Model: 16HL7) is used for129

imaging the swarm and the tank with a depth of 40 mm. An ultrasound processing system (Model:uSmart 3300 NexGen,130

Terason Inc.) then computes and generates the ultrasound images. We can see that there is much noise in the raw feedback131

image, which should be removed by the image processing procedure as shown in Supplementary Fig. S12(b). Also, the swarm132

and obstacle regions are segmented in this procedure. After that, the processed image is used for the trajectory planning and133

DL-based swarm distribution planning to make the swarm reach two targets, whose results are illustrated in Supplementary134

Video 12 and Supplementary Fig. S12(c). The results indicate that, although the segmented obstacles have irregular shapes135

due to ultrasound imaging, the DL-based method still works well thanks to the robustness obtained in the training process.136

Regarding the x-ray fluoroscopy, we chose a human placenta for the navigation environment because the placenta contains137

abundant blood vessels with branches that are suitable for justification of the DL-based method. The placenta was obtained138

under the permission of The Joint Chinese University of Hong Kong-New Territories East Cluster Clinical Research Ethics139

Committee (CREC Ref. No. 2020.384). The guideline of the placenta collection under the ethics approval is shown in the end140

of this Note. In this experiment, at first, a swarm of nanoparticles is injected into a vessel of a human placenta and gathered141

by a permanent magnet (Fig. S13(a)). Then, an x-ray fluoroscope (Model: Aritis Zeego, Siemens Inc) shown in Fig. S13(b) is142

adopted. The imaging result in Fig. S13(c) shows that the swarm and the vessels can be observed. After the same swarm and143

environment identification procedure for the ultrasound imaging, the processed image is used for validation of the trajectory144

and swarm distribution planning method. Results in Supplementary Video 12 and Fig. S13(e)(f) indicate that the DL-based145

method can correctly lead the swarm to navigate in the vessel to reach two targets.146

The two experiments preliminarily validate that the DL-based method is applicable for ultrasound imaging and x-ray147

fluoroscopy. Currently, since we cannot transmit the ultrasound image to the control system in real time and do not have the148

permission to integrate the entire system to the x-ray fluoroscope, the autonomous adaptive navigation guided by ultrasound or149

x-ray remains an important future work. Moreover, to deal with more complex images obtained by medical imaging modalities,150

DL-based segmentation methods (2, 3) should also be further studied for accurate and reliable environment segmentation.151

Guideline of the placenta collection under ethics approval152

Before recruiting tissue donors and collecting the placenta, ethics approval from The Joint Chinese University of Hong Kong153

– New Territories East Cluster Clinical Research Ethics Committee (The Joint CUHK-NTEC CREC) is required. The Joint154

CUHK-NTEC CREC was established by The Chinese University of Hong Kong (CUHK) and Hong Kong Hospital Authority155

New Territories East Cluster (NTEC) in accordance with its terms of reference for overseeing research involving human subjects156

undertaken by and/or conducted in the premises owned, managed and/or controlled by CUHK and/or NTEC, and/or involving157

patients and/or staff thereof as human subjects in such clinical studies. The research project and study protocol are reviewed158

by the Joint CUHK-NTEC CREC before approval.159

In our project, we obtained the ethics approval from The Joint CUHK-NTEC CREC (Ref. No. 2020.384). The details of160

the placenta collection are as follows:161

Women fulfilling the inclusion and exclusion criteria (listed below) were recruited from the Department of Obstetrics and162

Gyanecology, Prince of Wales Hospital. All potential subjects were given a detailed explanation and their permission was163

obtained before they were recruited into the study. A written consent form was signed by the participants. The participants164

can withdraw from the research without any repercussions. The placenta was collected after donor’s delivery only with their165

signed informed consent form. On the day of labour, the placenta was collected by the doctors and shipped on dry ice to the166

laboratory for experiments immediately after birth.167

Inclusion Criteria168

i Healthy pregnant women at 20-45 years of age of any ethnic origin, giving childbirth with natural delivery or Caesarean169
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sections after 37-42 weeks of gestation;170

ii Singleton pregnancy;171

iii Healthy as determined by laboratory results, physical exam and medical history;172

iv Participant able to give voluntary, written, informed consent to participate in the study.173

Exclusion Criteria174

i Abnormal prenatal development (e.g. intrauterine growth restriction);175

ii Early preterm birth < 37 weeks;176

iii Verbal confirmation of hypercholesterolemia;177

iv Family history of stroke or vascular disease;178

v Type I or Type II diabetes and gestational diabetes;179

vi Cancer, except skin cancers completely excised with no chemotherapy or radiation with a follow up that is negative;180

vii Clinically significant abnormal laboratory results at screening;181

viii Any other active or unstable medical condition;182

ix History of liver disease;183

x History of hypertension (including pre-clampsia).184
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(Model:uSmart 3300 NexGen, Terason Inc.) is adopted. (b) The swarm and environment identification procedures before sending the image to the DNN. (c) The trajectory
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Fig. S14. The fuzzy logic controller for tuning Kp(t) in the swarm shape control. a, The membership function for input variables v(Rs(t)) and c(Rs(t)). b, The membership
function for the output Kp(t). c, The fuzzy logic rules for the controller. d, The resulting control relationship for tuning Kp(t) based on the current swarm states v(Rs(t)) and
c(Rs(t)).
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Fig. S15. The fuzzy logic controller for tuning Ki(t) in the swarm shape control. a, The membership function for input variable v(Rs(t)). b, The membership function for input
variable c(Rs(t)). c, The membership function for the output Ki(t). d, The fuzzy logic rules for the controller. e, The resulting control relationship for tuning Ki(t) based on
the current swarm states v(Rs(t)) and c(Rs(t)).
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Fig. S16. The fuzzy logic controller for tuning αlmt(t) in the swarm orientation control. a, The membership function for input variable v(Rs(t)). b, The membership function
for input variable Rs(t). c, The membership function for the output αlmt(t). d, The fuzzy logic rules for the controller. e, The resulting control relationship for tuning αlmt(t)
based on the current swarm states v(Rs(t)) and Rs(t).
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Supplementary Note S9: Performance comparisons of trajectory planning algorithms185

For collective microrobot swarm navigation, there are four requirements on the trajectory planning method: (1) the planning186

method should be applicable for unstructured environments; (2) the planned trajectory points should have a near-uniform187

distribution, because a constant distance between the swarm and the next trajectory point is used in the DNN training; (3)188

a distance between the obstacles and the swarm trajectory points should be ensured to let the swarm pass through; (4) the189

planning time should be sufficiently short for real-time use.190

To check if traditional methods fulfill the specific requirements for the microrobot swarm navigation, we further conducted a191

comparison study, implementing the traditional A*, traditional RRT*, and the method designed in this work. The comparison192

results are illustrated in Fig. S17, which show that the A* algorithm has too long execution time (3.5 s) to be used in real193

time, because it explores all the neighbor positions. In addition, as A* does not consider a distance to the obstacle, it does194

not fulfill the third requirement either. Regarding the RRT*, it explores the environment with arbitrary exploration steps to195

ensure a fast speed for real-time use. However, in turn, the obtained trajectory distribution is highly nonuniform, making it196

against the second requirement. Besides, it does not consider the distance to the obstacle either. By contrast, the planning197

method designed in this work satisfies all the four requirements.198
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Fig. S17. Comparisons of three trajectory planning methods. (a) Traditional A* method, which takes 3.5 s. (b) Traditional RRT* method, which takes 0.55 s. (c) The designed
method in this work, which takes 0.36 s.
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Supplementary Note S10: Detailed algorithms for the autonomous trajectory planning199

This part gives the algorithms used inMethods: Autonomous trajectory planning, including UniExpand(T, E , Pg,vlead, Dsc),200

RandExpand(T, E , Pg, Dsc), FindNeighbor(vi,T, Rnear), ChooseParent(vi,T, Inear), ReWire(vi,T, Inear(k)), ExtractTra(T,vreach, Pg),201

and SafeDist(Ttrajecotry, E , Dsf).202

To fulfill the four specific requirements for microrobot swarm navigation, we made three major modifications: (1) to make the203

planned trajectory points have a near-uniform distribution, we designed a tree expanding algorithm-UniExpand(T, E , Pg,vlead, Dsc)204

that can expanding the tree uniformly; (2) to ensure a distance between the obstacles and the trajectory points, we designed205

the algorithm SafeDist(Ttrajecotry, E , Dsf) to optimize the positions of the preliminarily obtained trajectory points; (e) to206

make the planning time sufficiently short for real-time use, unlike the RRT* that has a random exploration direction, in our207

algorithm, the exploration direction with the smallest cost defined by Equation (13) is selected for tree expanding.208

Algorithm 1 The UniExpand(T, E , Pg,vlead, Dsc) algorithm. Collision(a, E) returns 0 if there is no collision between point a
and the environment E . Mod(a, b) returns the remainder after division of a by b. Length(a) returns the element number of a.

1: Input: T, E , Pg,vlead, Dsc.
2: Vtemp = []; Flag = []
3: dpre = Atan2d(vlead.y −T(lead− 1).y,vlead.x−T(lead− 1).x)/45
4: for k = (dpre − 2) to (dpre + 2) do
5: if Mod(k, 2) 6= 0 then
6: vcan.x = vlead.x+

√
2 ·Dsc · cos(k · 45)

7: vcan.y = vlead.y +
√

2 ·Dsc · sin(k · 45)
8: else
9: vcan.x = vlead.x+Dsc · cos(k · 45)

10: vcan.y = vlead.y +Dsc · sin(k · 45)
11: end if
12: if Collision(vcan, E) == 0 then
13: vcan.cost =

√
(vcan.x− xg)2 + (vcan.y − yg)2

14: if vcan.cost < vlead.cost then
15: vlead.cost = vcan.cost
16: Vtemp = [Vtemp,vcan];
17: for n = 1 to Length(T)− 1 do
18: if

√
(vcan.x−T(n).x)2 + (vcan.y −T(n).y)2 < Dsc then

19: Flag(Length(Vtemp)) = 0
20: Break for
21: else
22: Flag(Length(Vtemp)) = 1
23: end if
24: end for
25: end if
26: end if
27: end for
28: if Length(Flag) == 0 then
29: return vcan = void
30: else
31: for m = 1 to Length(Flag) do
32: j = Length(Flag)−m+ 1
33: if Flag(j) == 1 then
34: vcan.x = Vtemp(j).x; vcan.y = Vtemp(j).y; vcan.cost = Vtemp(j).cost;
35: Break for
36: end if
37: end for
38: end if
39: Output: vcan.x,vcan.y,vcan.cost =0
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Algorithm 2 The RandExpand(T, E , Pg, Dsc) algorithm. Collision(a, E) returns 0 if there is no collision between point a
and the environment E . Rand(a) returns a random number between 0 and a. MinIndex(a) returns the index of the minimum
element in a. Round(a) returns the nearest integer of a.

1: Input: T, E , Pg, Dsc.
2: while t < Inf do
3: Dtemp = []
4: prand.x = Rand(1) · Ex /* Ex is the width of E in x direction */
5: prand.y = Rand(1) · Ey /* Ey is the width of E in y direction */
6: for i = 1 to Length(T) do
7: Dtemp(i) =

√
(prand.x−T(i).x)2 + (prand.y −T(i).y)2

8: end for
9: l = MinIndex(Dtemp)

10: dpre = Atan2d(prand.y −T(l).y,prand.x−T(l).x)/45
11: dpre = Round(dpre)
12: if Mod(dpre, 2) 6= 0 then
13: vcan.x = T(l).x+

√
2 ·Dsc · cos(dpre · 45)

14: vcan.y = T(l).y +
√

2 ·Dsc · sin(dpre · 45)
15: else
16: vcan.x = T(l).x+Dsc · cos(dpre · 45)
17: vcan.y = T(l).y +Dsc · sin(dpre · 45)
18: end if
19: if Collision(vcan, E) == 0 then
20: vcan.cost =

√
(vcan.x− xg)2 + (vcan.y − yg)2

21: Break while
22: end if
23: end while
24: Output: vcan.x,vcan.y,vcan.cost =0
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Algorithm 3 The FindNeighbor(vi,T, Rnear) algorithm.
1: Input: vi, T, Rnear.
2: Inear = []; k = 1
3: for j = 1 to i− 1 do
4: dtest =

√
(vi.x−T(j).x)2 + (vi.y −T(j).y)2

5: if dtest ≤ Rnear then
6: Inear(k) = j
7: k = k + 1
8: end if
9: end for

10: Output: Inear =0
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Algorithm 4 The ChooseParent(vi,T, Inear) algorithm.
1: Input: vi, T, Inear.
2: Dtemp = 0
3: for j = 1 to Length(Inear) do
4: dcu =

√
(vi.x−T(j).x)2 + (vi.y −T(j).y)2 + T(j).cucost

5: if dcu ≤ Dtemp then
6: Dtemp = dcu
7: vi.parent = j
8: vi.cucost = dcu
9: end if

10: end for
11: Output: vi.parent, vi.cucost =0
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Algorithm 5 The ReWire(vi,T, Inear(k)) algorithm.
1: Input: vi, T, Inear(k).
2: dcu =

√
(vi.x−T(Inear(k)).x)2 + (vi.y −T(Inear(k)).y)2 + vi.cucost

3: if dcu ≤ T(Inear(k)).cucost then
4: T(Inear(k)).parent = i
5: T(Inear(k)).cucost = dcu
6: end if
7: Output: T(Inear(k)).parent, T(Inear(k)).cucost =0
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Algorithm 6 The ExtractTra(T,vi, Pg) algorithm. Flip(a) reverses the order of the elements in a.
1: Input: T, vi, Pg
2: Ttrajecotry(1).x = xg; Ttrajecotry(1).y = yg; Ttrajecotry(1).parent = i
3: w = 2
4: while T(i).parent 6= 1 do
5: Ttrajecotry(w) = T(T(i).parent)
6: w = w + 1
7: i = T(i).parent
8: end while
9: Ttrajecotry(w).x = xg; Ttrajecotry(w).y = yg

10: Ttrajecotry = Flip(Ttrajecotry)
11: Output: Ttrajecotry =0
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Algorithm 7 The SafeDist(Ttrajecotry, E , Dsf) algorithm. MinIndex(a) returns the index of the minimum element in a.
1: Input: Ttrajecotry, E , Dsf
2: for i = 2 to Length(Ttrajecotry)− 1 do
3: for r = 1 to 5 do
4: for η = 1 to 18 do
5: xser = Ttrajecotry(i).x+ (r − 1) · 0.3 ·Dsf · cos(20 · η)
6: yser = Ttrajecotry(i).y + (r − 1) · 0.3 ·Dsf · sin(20 · η)
7: D1 =

√
(xser −Ttrajecotry(i− 1).x)2 + (yser −Ttrajecotry(i− 1).y)2

8: D2 =
√

(xser −Ttrajecotry(i+ 1).x)2 + (yser −Ttrajecotry(i+ 1).y)2

9: Dser(η) = D1 +D2
10: ncollision = 0
11: for k = 1 to 18 do
12: xeva = xser.x+Dsf · cos(20 · k)
13: yeva = xser.y +Dsf · sin(20 · k)
14: if Collision(a, E) 6= 0 then
15: ncollision = ncollision + 1
16: end if
17: end for
18: Ncollision(η) = ncollision
19: Cost(η) = 3000 ·Ncollision(η) + 2 ·Dser(η) + 5 ·Abs(D1 −D2) /*the cost function to optimize the position of

the updated trajectory point*/
20: end for
21: l = MinIndex(Cost)
22: L(r) = l
23: C(r) = Cost(l)
24: end for
25: rglobal = MinIndex(C)
26: ηglobal = L(rglobal)
27: Ttrajecotry(i).x = Ttrajecotry(i).x+ (rglobal − 1) · 0.3 ·Dsf · cos(20 · ηglobal)
28: Ttrajecotry(i).y = Ttrajecotry(i).y + (rglobal − 1) · 0.3 ·Dsf · sin(20 · ηglobal)
29: end for
30: Output: Ttrajecotry =0
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Fig. S18. Illustration of the autonomous trajectory planning results for different environment morphologies. a, A circular obstacle with a trajectory planning time of 0.1 s. b, An
irregular obstacle with a trajectory planning time of 0.15 s. c, An environment with the channel morphology with a trajectory planning time of 0.13 s. It is validated that the
method works appropriately for different environment morphologies. The short computation time fulfills the requirement for real-time swarm navigation.
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Movie S1. The robustness validation of the DNN-based swarm distribution planning method for different209

environment morphologies, and the comparison of computation time between this method and the traversal-210

based optimization method.211

Movie S2. Experimental demonstration of the three swarm configurations and the transformations among212

them.213

Movie S3. Experimental demonstration of the translational motion and rotational motion of the ribbon-like214

swarm (RS).215

Movie S4. Experimental comparisons between manual navigation (autonomy Level 0) and automated control216

(autonomy Level 1).217

Movie S5. Experimental demonstration of autonomy Level 2, where two sets of experiments with different218

swarm sizes were conducted to assess the intelligence of the DNN-based swarm distribution planning method.219

Movie S6. Experimental demonstration of autonomy Level 3, where a swarm of magnetic nanorobots accom-220

plished the delivery task to a targeted region in a channel environment.221

Movie S7. Experimental demonstration of autonomy Level 3, where the reconfigurable magnetic nanorobot222

swarm navigated in highly curved space with a 150◦ sharp turn and in a curved narrow channel environment.223

Movie S8. Experimental demonstration of autonomy Level 3, where the reconfigurable magnetic nanorobot224

swarm executed the cooperative micromanipulation task in confined space.225

Movie S9. Experimental demonstration of the fully autonomous environment exploration using the magnetic226

nanorobot swarm in an unknown channel environment (autonomy Level 4).227

Movie S10. Experimental demonstration of the fully autonomous targeted delivery to a region under dynamic228

obstacles (autonomy Level 4).229

Movie S11. Transfer the autonomy framework to the elliptical vortex-like magnetic nanoparticle swarm.230

Movie S12. Method Validation under ultrasound imaging and x-ray fluoroscopy.231
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