Supplementary information

Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin

In the format provided by the authors and unedited

Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin

Luca Massari^{1,2,3,8}, Giulia Fransvea^{1,2,4,5,8}, Jessica D'Abbraccio^{1,2}, Mariangela Filosa^{1,2,3}, Giuseppe Terruso^{1,2,3}, Andrea Aliperta^{1,2,5}, Giacomo D'Alesio^{1,2}, Martina Zaltieri^{1,2,3,4,6}, Emiliano Schena⁶, Eduardo Palermo⁴, Edoardo Sinibaldi⁷, Calogero Maria Oddo^{1,2}.

¹The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy

²Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy

³Department of Linguistics and Comparative Cultural Studies, Ca' Foscari University of Venice, Dorsoduro 3246, 30123 Venezia, Italy

⁴Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy

⁵ARTES 4.0 Competence Center on Advanced Robotics and enabling digital TEchnologies and Systems, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy

⁶Research Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy

⁷Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy

⁸These authors contributed equally: Luca Massari, Giulia Fransvea

Corresponding authors: calogero.oddo@santannapisa.it and edoardo.sinibaldi@iit.it

Supplementary Videos

Supplementary Video 1 | Example experimental testing of artificial skin sensitivity with Von Frey hairs.

Supplementary Video 2 | Raw wavelength variations of FBG transducers due to pressure applied throughout the sensitive skin.

Supplementary Video 3 | Real-time force intensity and contact localization while indenting the skin in the test set with a mechatronic platform.

Supplementary Video 4 | Demonstration of skin ability to decode force intensity and contact location in real-time while touching the sensorized patch via the experimenter own finger.

Supplementary Video 5 | Demonstration of collaborative behaviours that could be implemented by a robot arm endowed with the developed sensitive skin while interacting with humans.