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Reporter Crosstalk test. We have tested the crosstalk to verify the lack of significant interference between 

four different fluorophores before the fluorescence kinetics experiment (Supplementary Fig. 1). We mixed 

four reporters together, and prepared four solutions. Then, we added corresponding trigger strands to 

activate one reporter only. As displayed in Supplementary Fig. 1c, each channel only responded to the signal 

strand that triggers the corresponding reporter. Little crosstalk was observed in 10 h, with only ~6% 

crosstalk between the channels of FAM and HEX, which was still neglectable. 

 
Supplementary Fig. 1| Crosstalk test among four reporters with distinct fluorophores. a, Fluorescence spectra (dotted 

curves: excitation spectra, solid curves: emission spectra) of FAM, HEX, ROX and Cy5.5. The inset table lists four sets of 

excitation and emission wavelengths that were determined to minimize the interference among different fluorophores. b, 

Four reporters with fluorophores FAM, HEX, ROX and Cy5.5, and four signal strands that can trigger the four reporters, 

respectively. c, Four parallel kinetics experiments to test the crosstalk among the four reporters. Four channels were set with 

the wavelengths listed in the inset table in Supplementary Fig. 1a. All four reporters were added to each of four cuvettes at 

the beginning of the experiment (t=0). Four signal strands were then added to four cuvettes separately (roughly t=25 mins). 

Matching colors were used to visualize corresponding trajectories and outputs.  

 

 

 

 

 

 

 

 

 

 

 

 

 



S1. Robustness of weight multiplications  

We have tested the DNA implementation of weight multiplication under different conditions, including the 

length of toehold domains (toehold A and toehold B), the length of stem domains (stem domain St), and the 

length of spacer domains (spacer domain Sp) (Supplementary Figs. 2 and 3). As shown in Supplementary 

Fig. 2c, we observed the linear relationship between the output signal of weighted multiplication and 

concentration of MWt (R2 > 0.98) for various domain lengths. Note that we used 15-nucleotide loop domain 

in initial experiments (Supplementary Figs. 2-4). We also verified the DNA implementation of weight 

multiplication with 13-nucleotide loop domain design (Supplementary Fig. 5). For the simplification of 

sequence design, we used 13-nucleotide loop domain for the rest experiments. Furthermore, we observed the 

linear relationship between the concentration of weight tuning molecule MWt and the output signal under 

different temperatures (25 ℃ and 20 ℃) (Supplementary Fig. 6) and molecular concentrations 

(Supplementary Fig. 7). These results lead to three main observations: First, switching function——weight 

substrate molecule NWt,Ii,j is OFF unless the addition of weight tuning molecule MWt. Second, the value of 

weights can be facilely regulated by the concentration of MWt without changing the components. Third, the 

sequence of weight tuning domains can be independently designed and only associated with the assignment 

of weights.  



 

Supplementary Fig. 2| The DNA implementation of weight multiplication under different conditions. a, The abstract 

schematic of the weight multiplication. b, The DNA implementation of weight multiplication, with 15-nucleotide loop 

domain. c, Kinetics experiments of different length of domains on the operation of the weight multiplication. The 

concentration of the weight substrate molecule NWt,Ii,j and input Xi are 2×, and the concentration of the reporter RepYj is 2×. 

The standard concentration is 50 nM (1× = 50 nM). 

 
 

 

Supplementary Fig. 3| Fluorescence kinetics data of the weight multiplication shown in Supplementary Fig. 2. All 

fluorescence kinetics data are shown over the course of 3600s.  



 
Supplementary Fig. 4| a, The abstract schematic of the weight multiplication. c, Kinetics experiments of the weight 

multiplication. The concentration of the weight tuning molecule MWt and input Xi are 2×, and the concentration of the 

reporter RepYj is 2×. The standard concentration is 50 nM (1× = 50 nM). 

 

 

 

Supplementary Fig. 5| The DNA implementation of weight multiplication. a, The abstract schematic of the weight 

multiplication. b, The DNA implementation of weight multiplication, with 13-nucleotide loop domain and 6-nucleotide 

toehold domain. c, Fluorescence kinetics data (left) and the steady state fluorescence response (right) of the weight 

multiplication. The concentration of weight substrate molecule NWt,Ii,j and input Xi are 2×, and the concentration of the 

reporter RepYj is 2×. The standard concentration is 50 nM (1× = 50 nM). 



 

Supplementary Fig. 6| Kinetics experiments of reaction temperature (a) 25 ℃ and (b) 20 ℃ on the operation of the 

weight multiplication shown in Supplementary Fig. 5a. Fluorescence kinetics data (left) and the steady state fluorescence 

response (right) of the weight multiplication. The concentration of weight substrate molecule NWt,Ii,j and input Xi are 2×, 

and the concentration of the reporter RepYj is 2×. The standard concentration is 50 nM (1× = 50 nM).  

 



 
Supplementary Fig. 7| Kinetics experiments of different concentrations on the operation of the weight multiplication 

shown in Supplementary Fig. 5a. (a-c) Fluorescence kinetics data (left) and the steady state fluorescence response (right) 

of the weight multiplication. The concentration of weight substrate molecule NWi,Ii,j and input Xi are 2 × , and the 

concentration of the reporter RepYj is 2×.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S2. Independent molecular weight multiplication systems  

For scaling up to large circuits, independent molecular weight multiplication systems must have negligible 

crosstalk. Two independent weight multiplication systems (𝑤ଵ𝑥ଵ and 𝑤ଶ𝑥ଶ) were designed and tested in the 

same solution (Supplementary Fig. 8a). First, the two inputs are encoded with two different DNA input 

strands (X1 and X2 in Supplementary Fig. 8b); the weight is encoded in the sequence of weight tuning 

domains (see green domains W1* and red domains W2* in Supplementary Fig. 8b). To complete the two 

multiplication, we then designed two weight substrate molecules (NW1,I1,Y1 and NW2,I2,Y2 in Supplementary 

Fig. 8b), which have different weight tuning domains corresponding to two weights, and have different 

recognition domains (I1* and I2*) to respond to different inputs (X1 and X2). The values of two weights 

𝑤ଵ and 𝑤ଶ are implemented by concentrations of two different weight tuning molecules MWt. Two distinct 

fluorescent reporters (FAM and ROX) were used to report corresponding outputs. As shown in 

Supplementary Fig. 8c, two fluorescence steady-state signals are linearly proportional to the concentration 

of MWt (MW1 and MW2). These results suggest that each appliance functions modularly, not affecting or being 

affected by the function of others.  

 



 

Supplementary Fig. 8| Two independent weight multiplication systems. a, The abstract schematic of two independent 

weight multiplication systems. b, The DNA implementation of two independent weight multiplication systems. c, 

Fluorescence kinetics data of two independent weight multiplication systems with different concentrations of MW1 and MW2. 

Concentrations of weight substrate molecules NWt,Ii,j and inputs Xi are 2×, and concentrations of reporters RepYj is 2×. The 

standard concentration is 50 nM (1× = 50 nM). 

 

Given that the sequence of weight tuning domains is independently designed and correlated with the 

assignment of weights, independent weight multiplication systems can thus be built with different weight 

tuning domain sequences design. As shown in Supplementary Fig. 9a, two independent weight 

multiplication systems that can interact with the same input X1 were designed and tested in the same 

solution. The weights are encoded in the sequence of weight tuning domains (see green domains W1* and 

red domains W2* in Supplementary Fig. 9b). To complete the two multiplication, we then designed two 

weight substrate molecules (NW1,I1,Y1 and NW2,I1,Y2 in Supplementary Fig. 8b), which have different weight 

tuning domains corresponding to two weights, but have the same recognition domains (I1*) to respond to 

one input (X1). The values of two weights w1 and w2 are determined by two different weight tuning 

molecules MWt. As shown in Supplementary Fig. 9c, two fluorescence steady-state signals were found to be 

linearly proportional to the concentration of MWt (MW1 and MW2). Collectively, these results suggest that the 



assignment of weights is only associated with the weight tuning domain sequences, wherein different 

assigned weights can be realized by simply changing sequences of the weight tuning domain. 

 

 

Supplementary Fig. 9| Two independent weight multiplication systems. a, The abstract schematic of two independent 

weight multiplication systems. b, The DNA implementation of two independent weight multiplication systems. c, 

Fluorescence kinetics data of two independent weight multiplication systems with different concentrations of weight tuning 

molecules MW1 and MW2. Concentrations of weight substrate molecules NWt,Ii,j and reporters RepYj are 2 × , and 

concentrations of input Xi is 4×. The standard concentration is 50 nM (1× = 50 nM).  

 

 

 

 

 

 

 



 
Supplementary Fig. 10| Summation can be implemented with a simple chemical reaction (listed in the left) and DNA 

strand displacement process (listed in the right). Different summation gates are designed to implement the summation, 

and weights with positive and negative values are implemented using different output sequence (for example, a, PIi,j and b, 

PIk,m).  
 

S3. The DNA implementation of multiply-accumulate operation 

Three-input multiply-accumulate (MAC) operation  𝑦 ൌ 𝑤ଵ𝑥ଵ  𝑤ଶ𝑥ଶ  𝑤ଷ𝑥ଷ can be implemented at a 

molecular level (Supplementary Fig. 11a). Three different weight tuning molecules MWt with different 

sequences of weight tuning domains were used to set the value of weights, while the same output sequence 

of the intermediate species PIi,j was designed to sum up weighted inputs (Supplementary Fig. 11b). As shown 

in Supplementary Fig. 11c, the output signal y was proportional to the weight assigned to each input, 

suggesting that the circuit was performed correctly. Taking these results together, we believe this summation 

operation can accurately determine the weighted sums from the same neuron. 



 

Supplementary Fig. 11| The DNA implementation of three-input MAC operation. a, The abstract schematic of three-

input MAC operation. b, The DNA implementation of three-input MAC operation. c, Fluorescence kinetics data of three-

input MAC operation with different concentrations of weight tuning molecules MW1, MW2 and MW3. Concentrations of 

weight substrate molecules NWt,Ii,j and inputs Xi are 2×, and concentration of the reporter RepYj is 6×. The standard 

concentration is 50 nM (1× = 50 nM).  

 

 

S4. The DNA implementation of convolution operation 

 

Supplementary Fig. 12| The DNA implementation of convolution operation of a 2×2 input pattern using a 2×1 kernel. 
The DNA circuit consists of four weight substrate molecules NWt,Ii,j, two weight tuning molecules MWt, two summation 

gates Sdj,k, and two reporter RepYi. Four inputs are encoded in the sequence of recognition domain Ii, in which each 1 or 0 

corresponded to the presence or absence of an input strand Xi. Two shared weights were encoded in the sequence of two 

weight tuning domains (green domain W1* and red domain W2*), in which two weight tuning molecules MW1 and MW2 can 

be used to activate four weight substrate molecules (NW1,I1,5, NW1,I2,6, NW2,I3,5, and NW2,I4,6). Note that NW1,I1,5 and NW1,I2,6 

have the same weight tuning domain W1*, while NW2,I3,5 and NW2,I4,6 have the same weight tuning domain W2*. 



 

 

Supplementary Fig. 13| The detailed stepwise convolution operation of a 2×2 input pattern using a 2×1 kernel. Left: 

Abstract schematic diagram of a MAC operation with one input. Right: Stepwise illustration of the mechanism of 

components interaction from an Input to a reporter. Arrows indicate flows of the reactions.  



 

 

Supplementary Fig. 14| Characterization of convolution with ten different input patterns after 3 h. The value of weights 

determined from convolution kernel is 0.8× (blue dot) and 0.2× (gray dot), respectively. The blue and red histograms correspond 

to the fluorescence kinetic outputs of  𝑦ଵ and  𝑦ଶ , respectively. Blue dots indicate that the weight  𝑤ଵ that is multiply with 

corresponding input (X1 or X2), while gray dots indicate that the weight 𝑤ଶ that is multiply with corresponding input (X3 or X4). 

 
 
 
 
 
 
 
 
 
 
 



S5. A DNA-based ConvNet for one of two rotated molecular patterns recognition 

 
Supplementary Fig. 15| Determination of two input patterns. a, The symbols were rescaled to a 12×12 grid. The bits 

whose grid pixel value were larger than a threshold was set to 1, while the remaining bits were set to 0. Then binary input 

patterns of ‘fire’ and ‘earth’ were obtained. b, The number of 1s in each input pattern. The number of 1s in the ‘fire’ input 

pattern is mostly between 15 and 35, while the number of 1s in the ‘earth’ input pattern is mostly between 25 and 40. 

 

One desirable feature of the molecular weight multiplication is switching function, which in theory can 

improve the interference robustness of the DNA molecular network. This allows DNA circuits to be able to 

switch a specific reaction pathway in the convolution layer when exposed to a specific pattern. A 

quantitative model has been proposed to verify the interference robustness of DNA reaction network 

(Supplementary Fig. 16). It assumes crosstalk is unavoidable, that is, non-specific displacement may occur 

when two different domains hybridize to their respective complements in the DNA reaction network (the 

reaction rate constant for single strand and non-target complex is Kd, and set as 2×103). 

In the quantitative model, we gradually scale up the network (network 1 and network 2) by cascading 

the weight multiplication in parallel and in series (Supplementary Fig. 16a, b). We investigated the signal 

loss of network 1 with all and partial activated reaction pathway in the presence of inputs; we also 



investigated the signal leakage of network 2 with all and partial activated reaction pathway in the absence of 

inputs. As shown in Supplementary Fig. 16b, the reaction rate constant for single strand and non-target 

complex is Kd and Kl for networks that were all activated and partially activated, respectively. For partial 

activation, weight substrate molecule Ni is inactivated, resulting in only zero-toehold strand displacements 

with the non-specifically target domains. Two networks were simulated in Visual DSD1, in which the 

embedded stochastic simulator yields the concentration trajectories of two outputs, using corresponding rate 

constants Km, Kd and Kl. As shown in Supplementary Fig. 16c, we found that the signal loss of network 1 in 

the presence of inputs was only about 20% when the cascading layer is 5 (i=5, n=5) with partial activated 

reaction pathway. However, the signal loss of network 1 was up to 54% when the cascading layer is 5 (i=5, 

n=5) with all activated reaction pathway. In addition, we found that the signal leakage of network 2 in the 

absence of inputs was still about 0% when the cascading layer is 5 (i=5, n=5) with partial activated reaction 

pathway, while the signal leakage of network 2 was up to 15% when the cascading layer is i=2 and n=4 with 

all activated reaction pathway. These results revealed that activating a specific set of wires in the reaction 

network could yield a better anti-interference behavior. 

 



 

Supplementary Fig. 16| A quantitative model has been proposed to verify the interference robustness by Visual DSD. 

a, The network can be scaled up by cascading the weight multiplication in parallel and in series. b, The model definition. 

The desired reaction rate between the target domains Km=1.5×105 M-1s-1, the reaction rate between non-target strands Kd = 

2×103 M-1s-1, and the reaction rate of zero-toehold strand displacement Kl=1 M-1s-1. In panels a and b, the quantities MWi 

and NWi,Ii,j have been shortened to Mi and Ni for the sake of brevity. c, The standard signals of two outputs with increasing 

circuit layers. Two networks were simulated in Visual DSD, the embedded stochastic simulator plots the concentration 

trajectories of two outputs, using corresponding rate constants Km, Kd and Kl.  

 

 

 
Supplementary Fig. 17| Fluorescence kinetic experiments to characterize the recognition behavior of ‘fire’ (red 

curves) and ‘earth’ (blue curves) with rotation angle from 0° to 360° with the DNA-based ConvNet.  

 



S6. A DNA-based ConvNet for one of eight molecular patterns recognition 

 

Supplementary Fig. 18| Determination of eight input patterns. a, The symbols were rescaled to a 12×12 grid. The bits 

whose grid pixel value were larger than a threshold were set to 1, while the remaining bits were set to 0. Then, the binary 

input patterns of eight oracles were obtained. b, The number of 1s in each input pattern. The number of 1s in the ‘fire’ input 

pattern is mostly between 20 and 35. The number of 1s in the ‘earth’ input pattern is mostly between 35 and 40. The number 

of 1s in the ‘tree’ input pattern is mostly between 18 and 23. The number of 1s in the ‘water’ input pattern is mostly between 

28 and 35. The number of 1s in the ‘sky’ input pattern is mostly between 15 and 25. The number of 1s in the ‘air’ input 

pattern is mostly between 25 and 35. The number of 1s in the ‘human’ input pattern is mostly between 14 and 18. The 

number of 1s in the ‘life’ input pattern is mostly between 25 and 37. 



 

Supplementary Fig. 19| The ConvNet for one of eight molecular patterns recognition. a, Circuit diagram for 

recognizing eight distinct patterns. b, Performance of the ConvNet in silico for the reference dataset with eight oracles. c, 

The radar map of the accuracy of the ConvNet. where 90.0%, 91.3%, 98.7%, 91.3%, 92.2%, 96.2%, 93.9%, and 95.4% of 

‘fire’, ‘earth’, ‘tree’, ‘water’, ‘sky’, ‘gas’, ‘human’ and ‘life’ were recognized correctly in theory. 

 

 

 

 

 

 

 

 

 



 

Supplementary Fig. 20| a, Example binary inputs with each 1 and 0 corresponding to the presence and absence of an input 

strand, respectively. The concentration of each input strand is 200 nM. b, The DNA implementation of the convolution 

kernel. The concentration of each weight substrate molecule (for example, 98 nM for the 11th pixel) was determined by the 

weight value of the convolution kernel. c, The shared convolution kernel reacts with each receptive region to implement the 

weight multiplication. The value of each pixel in each receptive region was used to determine concentrations of each weight 
substrate molecule. Because of the shared convolution kernel, the sequence of weight tuning domain (green region) of 

weight species is the same for each pixel that interacts with the same kernel function in different receptive regions. d, 

Unknow input pattern was added to the solution, upon addition of the DNA circuit, fluorescence signals were readout to 

report recognition results. 

 



 
Supplementary Fig. 21| A DNA-based ConvNet for one of eight molecular patterns recognition. a, The characteristic 

receptive region of different target patterns (colors are associated with respective output trajectories in c and d). b, The 

number of distinct species in the circuit. The bottom row lists the number of species for a specific number of inputs (left) 

and for all possible inputs (right). We chose representative example patterns with up to 43 1s from the dataset, which 

corresponds to up to 43 distinct single strands. c, Fluorescence kinetics data of the DNA-based ConvNet behavior with eight 

input patterns. d, Fluorescence level of each pair of outputs at 24 h after the inputs were added, collected from 88 

experiments with 11 example patterns per oracle. Each colored point corresponds to an example pattern, each grey point 

corresponds to an out-of-class example pattern. The output will be 1 when the fluorescence is greater than the threshold of 

0.6, otherwise output will be 0. As expected, all output signals reached ideal ‘on’ state, while the other fluorescent signals 

were at ideal ‘off’ state.  
 



 
Supplementary Fig. 22| Eleven representative input patterns from the reference dataset. 

 
 
 
 
 
 
 
 
 



S7. The DNA-based hierarchical network for one of 32 molecular patterns 

recognition 

 
Supplementary Fig. 23| 32 patterns were divided into four groups, and each group was trained in silico separately. 

Once the optimal models were obtained, the value of weights was determined by four convolution kernels.  
 



 

Supplementary Fig. 24| Fluorescence kinetics data of the circuit behavior of Layer 1 with 32 representative input 

patterns. Matching colors were used to visualize corresponding trajectories and outputs. 

 

 

 



 
Supplementary Fig. 25| Fluorescence kinetics data of the circuit behavior of Layer 2 with 32 representative input 

patterns. Matching colors were used to visualize corresponding trajectories and outputs. 

 

 

 
 

Supplementary Fig. 26| Maximum number of species of neural networks implementation for pattern recognition 

with the two-step classification approach. a, The size of a DNA-based WTA and a DNA-based ConvNet implementation 

scales up for an increasing number of patterns. In general, constructing a DNA-based ConvNet that can remember b×m 

distinct n-bit patterns with e-bit kernel size requires n input strands Xi, b×e weight tuning molecules MWt and b×e×m weight 

substrate molecules NWt,Ii,j for weight multiplication, 2m summation gates Sdj,k, m complex Ddk,Yi and m annihilation 

species Subn,Yi for subtraction, and m reporters RepYi, totaling maximum n+5m+(m+1)×b×e molecules. b, On the basis of 
hierarchical network model, the number of molecules used to construct the neural network increased linearly as the number 

of patterns was scaled up. Moreover, the inset graph shows that the number of w-t (weight-tuning) sequence domains are 

increased linearly while the number of recognition sequence domains can remain unchanged, which could potentially lead 

to more scalable and complex DNA sequence design. 

 



S8. Cyclic freeze/thaw approach as drivers of DNA circuits  

We discovered that a cyclic physicochemical process (freeze/thaw cycling) can be a potent driver for strand 

displacement. During freezing, the steep increase in DNA concentrations could trigger the generation of a 

subpopulation of active complexes; during thawing, the steep drop in DNA concentrations could 

disassemble active and unproductive complexes. We first sought to study whether a basic strand 

displacement can be speeded up with freeze/thaw cycling (Extended data Fig. 5). Once the invader strand 

Dsk,Yi was added, the freeze/thaw cycling was completed by two steps (Extended data Fig. 5a): (1) the 

solution was frozen using liquid nitrogen in 1 min. (2) The tube was transferred to a water bath for thawing 

in 5 mins at 37 °C, then the tube was frozen by liquid nitrogen again. We found that the steady state 

fluorescence rapidly increased after just one freeze/thaw cycle. For two freeze/thaw cycles of 12 minutes, 

the extent of reaction was equivalent to that of 15 hours at 25 °C, which corresponded to nearly 75 times 

increase of the average reaction rate (Extended data Fig. 5b). In this case, we can shorten the response time 

of the reaction from 15 hours to 12 minutes. As the number of cycles increased, the reaction gradually 

tended to be completed (Extended data Fig. 5c). We further explored the effect of freezing temperature and 

freezing time on DNA strand displacement. The data shows that the speed of DNA strand displacement is 

faster at -196 °C (Supplementary Fig. 27a), and there is no significant increase in speed when increasing 

freezing time (Supplementary Fig. 27b). 

 

Supplementary Fig. 27| a, The fluorescence level of strand displacement with one freeze/thaw cycles at -80°C and -196°C, 

respectively. b, The fluorescence level of strand displacement with two freeze/thaw cycles, with different freezing time. 
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