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In the Supplementary Information, we first give the detail on evaluating the accuracy of training the VAN by the
loss function. We also provide the application of the method to more examples in addition to those in the main text,
including the birth-death process, gene expression without regulation, an autoregulatory feedback loop, the early life
self-replicator, the epidemic model and more cases of the intracellular signaling cascade.

I. SUPPLEMENTARY NOTE 1: EVALUATING THE ACCURACY OF TRAINING
Toggle Switch Genetic Network

T. S. Gardner, C. R. Cantor, and J. J. Collins, Nature 403, 339 (2000).
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Supplementary Figure 1. The loss function during the training on the VAN for the genetic toggle switch. (a) The loss mean
during the training at the first time step with 5000 epochs. The highlighted area denotes the converged regime with the last
10 training epochs, where we take the samples to evaluate statistics of the learnt distribution. (b) The loss mean during the
training at 4001 and 8001 time steps with 100 epochs. The last 10 training epochs are also highlighted. (c) The converged
value of the loss mean over time. (d-f) The loss variance under the same layout as (a-c).

In this section, we demonstrate a procedure to evaluate the accuracy of the VAN and the error accumulation of
tracking the time-evolved distribution, by the loss function. This procedure is especially useful when no other methods
of tracking the distribution is at hand for a comparison. We take the genetic toggle switch as an example for the
demonstration.

We show the loss function during the training and the time evolution of the system. At the first time step, with
the increase of training epoch, the average KL-divergence (Supplementary Fig. 1a) and the sample variance of the
loss function (Supplementary Fig. 1d) decrease and gradually converge. For the later time of tracking the distribution
such as at the time steps 4001 and 8001, the average KL-divergence (Supplementary Fig. 1b) and the sample variances
(Supplementary Fig. 1e) also remains around O(10−4). In addition, we highlight the last 10 epochs for each chosen
time step, and take the samples in this converged region to estimate the statistics.

We further provide the mean value of the converged loss over time points, which is typically around O(10−4)
(Supplementary Fig. 1c). The converged value of the loss variance is around O(10−5) (Supplementary Fig. 1f). These
results indicate that the variational training effectively learns the distribution over time. Therefore, we can examine
the KL-divergence to quantify the convergence of the numerical calculation and the accuracy of the trained VAN. To
further evaluate the accuracy of the VAN, we can compare the result with other methods when they are available.

To estimate statistics of the learnt distribution, we use samples over the last 10 epochs where the loss function
already converges, as illustrated in Supplementary Fig. 1. Alternatively, it is common to use samples from the same
probability distribution at the last training step. To compare the accuracy of these two methods, we also evaluate
the statistics by drawing all the samples from the final distribution after the training. The results from the two
ways of sampling are similar, such as for the genetic toggle switch in Fig. 2 and Supplementary Fig. 7, validating the
accuracy of our sampling method. After the loss function converges, the learnt distributions over the last few epochs
have similar statistics. Thus, using samples at these epochs not only increases the number of samples to evaluate
the statistics, but also save the additional computational time of drawing a large batch of samples from the final
distribution after the training.
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II. SUPPLEMENTARY NOTE 2: MORE EXAMPLES

A. Birth-death process

As the first example, we consider the time-homogeneous birth-death process [1] with the count of the species in

the interval X ∈ [0, N ]. The reactions are ∅ k2−→ X, and X
k1−→ ∅. Its dynamics are described by a time-dependent

probability distribution Pt(n) with the count n at time t. The chemical master equation is:

∂tPt(n) = B(n+ 1)Pt(n+ 1) + F (n− 1)Pt(n− 1)− [B(n) + F (n)]Pt(n), (0 ≤ n ≤ N), (S2.1)

where B(n) and F (n) are backward (death) and forward (birth) propensities, respectively. We consider the case of
propensities: F (n) = k2, B(n) = k1n with k1, k2 as rates, for 0 ≤ n ≤ N and zero otherwise, with the boundary
conditions F (N) = 0, B(0) = 0.

Birth-death process

Supplementary Figure 2. The result from the VAN for the birth-death process. The distributions of the species between the
VAN and the analytical solution match over time. The bar is the result from the VAN, and the line is the analytical solution
Eq. (S2.3). The color specifies the time points t = 5, 50, 100, and the transparency is used to visualize the overlap. Parameters:
k1 = 0.01, k2 = 0.1. The hyperparameters of the VAN are in Table I, and the initial distribution is the Poisson distribution.

The birth-death process has an analytical solution. With the Poisson initial distribution:

P0(n) =
e−α0αn

0

n!
, (S2.2)

where α0 is a parameter, the time-dependent distribution is [1]:

Pt(n) =
e−αtαn

t

n!
, (S2.3)

αt = α0e
−k1t + (k2/k1)(1− e−k1t). (S2.4)

The analytical solution makes it convenient to test the present numerical approach. In Supplementary Fig. 2, the
distributions from the analytical solution and the present approach match well.

B. Gene expression

We consider the example of gene expression without regulation, as one of the standard examples in the systems
biology. The system involves two species, mRNA and protein. The four reactions include the transcription from DNA
to mRNA, the transcription from mRNA to protein, and the decay of the mRNA and protein. The parameters are
the transcription rate kr, transcription rate kp, and decay rates γr, γp. It has the chemical reaction:

DNA
kr−→ r, r

kp−→ r + p, r
γr−→ ∅, p

γp−→ ∅. (S2.5)

where r denotes the mRNA, p denotes the protein. The parameter values used in the simulation are listed in
Supplementary Fig. 3.
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Supplementary Figure 3. The result of gene expression without regulation. (a) A schematic of the chemical reaction. (b) The
time series of the average counts for the mRNA and protein specified by color, from the VAN (dots) and the Gillespie simulation
(lines). (c) Comparison of the means and standard deviations of the mRNA and protein between the VAN and the Gillespie
simulation, at time points t = 0, 0.004, 0.008, ..., 0.196, 0.2 denoted by the transparency. (d) The marginal distributions of the
mRNA and protein at time points t = 0.1, 0.5, from the Gillespie simulation (gray) and the VAN with the same color in (b).
The inset shows the Hellinger distance between the two distributions. (e) The joint distribution of mRNAs and proteins at
time points t = 0.1, 0.5 from the VAN, with the color as the probability values in the logarithmic scale. The parameters are
kr = 0.1, kp = 0.1, γr = 0.1, and γp = 0.002 with the unit of time in seconds, and the Gillespie simulation has 104 trajectories.
The hyperparameters of the VAN are in Table I. The initial distribution is the delta distribution with zero mRNA and protein.

In Supplementary Fig. 3, we show the mean, the marginal distribution and the joint distribution of the counts of
the mRNA and protein over time, by using Gillespie simulation or the VAN method. The marginal statistics match
well between the two methods. We quantify the similarity of the two distributions by the Hellinger distance, which is
below 0.05. This validates the accuracy of the VAN in tracking the distribution.

C. Autoregulatory feedback loop

We consider an autoregulatory feedback loop [2] as illustrated in Supplementary Fig. 4a. The gene has two promoter
states Gb, Gu switching to each other, with a binding rate σb and an unbinding rate σu. The two states of bond and
unbound have different translation rates. The model has the chemical reactions:

Gu + P
σb−→ Gb, Gb

σu−→ Gu + P, Gu
ρu−→ P, Gb

ρb−→ P, P
1−→ ∅. (S2.6)

where σb, σu, ρb, ρu are rate constants with the unit of time in hours. The total count of the two promoter states is
conserved: Gb+Gu = 1. This conservation effectively reduces a variable by having Gu = 1−Gb, and sets a constraint
on the counts of the two promoters: Gu = 0, 1, Gb = 0, 1. We have put this constraint on the neural network of the
VAN. The three groups of parameters under the consideration [2] are listed in Supplementary Table I.

Parameter σu σb ρu ρb
Case 1 0.94 0.01 8.40 28.1
Case 2 0.69 0.07 7.20 40.6
Case 3 0.44 0.08 0.94 53.1

Supplementary Table I. The values of the parameters used in the three cases of the autoregulatory feedback loop.

By the present approach, the means (Supplementary Fig. 4b), the standard deviations (Supplementary Fig. 4c) and
the marginal distributions (Supplementary Fig. 4d) of the counts of the protein and promoter match those from the
finite state projection, for the three sets of parameters. As shown in the marginal distribution (Supplementary Fig. 4d)
and the joint distribution (Supplementary Fig. 4e), the three cases include unimodal and bimodal distributions for the
count of the protein. The results demonstrate that the VAN generates accurate marginal statistics and can effectively
produce the bimodal probability distribution for the reaction network with the feedback loop.
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Supplementary Figure 4. The result of the autoregulatory feedback loop. (a) A schematic of the reactions. (b) The time
evolution of the average counts for the promoter (blue) and protein (red), from the VAN (symbols) and the finite state
projection (FSP) (lines). Three cases with different parameters in Supplementary Table I are marked with different symbols
(circle, triangle and cross). (c) Comparison on the means and standard deviations of the promoter and protein between the
VAN and the FSP, at time points t = 0, 0.5, ..., 9.5, 10. (d) The marginal distributions of the promoter and protein at time
points t = 10 from the FSP (gray) and the VAN with the same color in (b). The inset shows the Hellinger distance between
the two distributions. (e) The joint distribution of the promoter and protein calculated from the VAN at time points t = 1, 10
in different cases, with the color bar for the probability values in the logarithmic scale. The hyperparameters of the VAN are
in Table I, and the initial distribution is the delta distribution with one Gu and zero protein.

D. Early life self-replicator

We consider a chemical reaction modeling the biological homochirality of an early life self-replicator [3], which is
an extension of the original model of spontaneous asymmetric synthesis [4]. One property of the model is that the
species intrinsically has a total count conservation. To maintain count conservation, we use the implementation of
the VAN in the Methods section, which effectively learns the distribution with conservation.

The system contains three species A,D,L, six reactions and three rate constants. The enantiomers D,L of a chiral
molecule are produced autocatalytically from an achiral molecule A. It has the following chemical reactions.

A+D
ka−→ 2D, A+ L

ka−→ 2L, A
kn−→ D, D

kd−→ A, A
kn−→ L, L

kd−→ A. (S2.7)

The rate constants ka, kn, kd have the subscript identify the specific reaction. Another parameter α = V kn/ka is
introduced, corresponding to the volume V in which the reactions occur.

The state of this system is described by a chiral order parameter ω = (nD − nL)/(nD + nL) from the counts of
D, L. The bifurcation on the stability at the steady state was found, which is controlled by the parameter α. The
steady-state distribution is given analytically by Pss(ω) = N (1 − ω2)α−1, where N = Γ(α + 1/2)/[

√
πΓ(α)] and V

denotes the volume [3]. At the critical value of the parameter αc, the system changes between a unimodal system
with the order parameter ω = 0 in the racemic state, and a bimodal system with ω = ±1 in the homochiral states,
which was confirmed by the Gillespie simulation. The bimodal distribution was found to have two probability peaks
concentrated on the two boundaries of the order parameter, ω = ±1.
We consider three cases of the critical parameter: αc = 10, 1, 0.1 as above, equal, and below the critical value

αc ≈ 1. In the long-time regime, the probability distribution P (ω) by the VAN has unimodal and bimodal shapes for
αc = 10, 0.1 separately (Supplementary Fig. 5a), which matches the Gillespie simulation. The bimodal distribution
has a higher peak at the right side of the boundary, because the initial distribution has more nD = 50 than nL = 47,
and will converge to the steady state with an equal height of two peaks after longer simulations. The two sharp
peaks at the boundary ω = ±1 are sensitive to the collected samples for performing the histogram, which affects
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Supplementary Figure 5. The result of the early life self-replicator. (a) The order parameter ω = (nD − nL)/(nD + nL) from
the VAN (dots) and the Gillespie simulation (line), at the time steps 104 and 106, where the latter reaches close to the steady
state. The values of the critical parameter αc = 10, 1, 0.1 separately lead to unimodal, flat, and bimodal distributions in the
long-time regime, as denoted by the color. (b) The joint distribution of D,L at time steps 104 and 106. The long-time joint
distribution also shows unimodal, flat, and bimodal shapes (higher probabilities at the corner), where the color bar denotes
the probability values in the logarithmic scale. The parameters are ka = kn = kd = 1, and α = V kn/ka with the volume V .
The initial distribution is the delta distribution at nA = 3, nD = 50, nL = 47 with the total count N0 = 100. The Gillespie
simulation has 103 trajectories. The hyperparameters of the VAN are in Table I, with the recorded time for the case of αc = 1.
The time step length for the VAN is δt = 4 ∗ 10−3, 4 ∗ 10−4, 4 ∗ 10−5 for α = 10, 1, 0.1, as the three cases have different time
scales.

both the Gillespie simulation and the VAN approach. Increasing the batch samples in the VAN and the trajectories
in the Gillespie simulation can lead to a more accurate estimation. Different from simulating trajectories by the
Gillespie algorithm, the VAN approach generates the evolving joint probability distribution in the state space of
D,L (Supplementary Fig. 5b). Starting from a unimodal distribution, the VAN approach reveals the emergence of
unimodal and bimodal joint distributions over time.

E. Epidemic model

We consider the epidemic SIR model with a time-dependent contact rate [5], which demonstrates the effectiveness
of our method in the system with time-dependent rates. The system models the transmission of an infectious disease,
and contains three species: susceptible S, infected I and recovered R. A susceptible population S can be infected when
it comes into contact with infected population I. The infected population I may become the recovered population R,
which can become susceptible again. Each population dies at a certain rate.

A schematic of the chemical reaction is illustrated in Supplementary Fig. 6a. It has the following chemical reactions:

S + I
c1−→ 2I, I

c2−→ R, R
c3−→ S, S

c4−→ ∅, I
c5−→ ∅, R

c6−→ ∅, (S2.8)

where c1 is a time-dependent contact rate modeled as a periodic function as c1 = c0(1 + ϵ) sin(ωt) and the remaining
parameters are constant. This time-dependent rate models the infection in a periodic environment.

We apply the present approach to estimate the evolution of joint probability distribution over time. As a comparison,
the average count of the three species estimated from the VAN match with the Gillespie simulation (Supplementary
Fig. 6b). The means, the standard deviations (Supplementary Fig. 6c) and marginal distributions (Supplementary
Fig. 6d) of the two methods are consistent with each other. We further show the joint probability distribution of S
and I and its evolution over time points (Supplementary Fig. 6e). The results demonstrate that the VAN method
can accurately track the joint probability distribution for systems with time-dependent rates. Thus, it is applicable
to more realistic situations where the parameters vary over time.
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Supplementary Figure 6. The result of the epidemic model. (a) A schematic of the chemical reaction. (b) The time series of
the average count of species from the VAN (dots) and the Gillespie simulation (lines). The color specifies the chemical species.
(c) Comparison of the means and standard deviations of the chemical species between the VAN and the Gillespie simulation,
at time t = 0, 10, ..., 190, 200 for chemical species specified by color. (d) The marginal count distributions of various chemical
species are plotted horizontally at time t = 10, 100. The color in (d) specifies the result from the VAN for the species I, and
gray denotes the Gillespie method. The inset contains the Hellinger distance between the two distributions. (e) The joint
distribution of S and I at time t = 10, 100 from the VAN, with the color bar denoting the probability values in the logarithmic
scale. The values of the parameters: c0 = 0.003, ω = π/3, ϵ = 0.2, c2 = 0.02, c3 = 0.007, c4 = 0.002, c5 = 0.05 and c6 = 0.002,
with the unit of time in hours [5]. The Gillespie simulation has 104 trajectories. The initial distribution is the delta distribution
with S = 51, I = 11 and R = 0.

F. Details of the genetic toggle switch

Toggle Switch Genetic Network
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Supplementary Figure 7. The result of the genetic toggle switch by using a different method of drawing samples. The layout is
the same as Fig. 2 in the main text. At every time step, 104 samples are drawn from the learnt distribution at the last epoch.
The parameters of the system are sx = sy = 50, dx = dy = 1, bx = by = 10−4, ux = uy = 0.1 with the unit of time in hours,
for both Fig. 2 and this figure.

The genetic toggle switch [6, 7] has a multimodal distribution on the protein counts, depending on the genetic
states of the two mutually inhibited genes. Thus, the system is suitable for testing the flexibility of the VAN to learn
the multimodal distribution. The model has the chemical reactions:

Gx
sx−→ Gx + Px, Gy

sy−→ Gy + Py, Px
dx−→ ∅, Py

dy−→ ∅,

2Px +Gy
by−→ Ḡy, 2Py +Gx

bx−→ Ḡx, Ḡy
uy−→ 2Px +Gy, Ḡx

ux−→ 2Py +Gx,
(S2.9)

where sx, sy are the synthesis rates of the proteins, and px, py are the degradation rates of the proteins. The transition
rate by (bx) is the binding rate of two copies of protein PX (PY ) to the Gy (Gx), to form the complex Ḡy (Ḡx). The
unbinding of the complex Ḡy (Ḡx) has the rate uy (ux).
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The total count of the two forms for each gene is conserved: Gx + Ḡx = 1. This conservation sets a constraint on
the count of the two genes: Gx = 0, 1, Gy = 0, 1, and effectively reduces two variables by Ḡx = 1−Gx, Ḡy = 1−Gy.
We have put this constraint on the count of the two genes in the VAN. We consider the parameter regime with weak
promoter binding, because in this regime the joint distribution is multimodal with four probability peaks, posing a
challenge to accurately track the joint distribution. The results are shown in Fig. 2 and Supplementary Fig. 7.

G. More cases of the intracellular signaling cascade

Signaling cascade with more species
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Supplementary Figure 8. The result of the linear signaling cascade (case 1) with 50 species. (a) A schematic of the chemical
reaction. (b) The time series of the average count of species from the VAN (dots) and the Gillespie simulation (lines). The
color specifies the chemical species. (c) Comparison of the means and standard deviations of the chemical species between the
VAN and the Gillespie simulation, at time points t = 1, 2, ..., 9, 10 for chemical species denoted by color. (d) The marginal
count distributions of various chemical species are plotted horizontally at time points t = 2, 10. The color in (d) specifies the
result from the VAN for two species, and gray denotes the Gillespie method. The inset contains the Hellinger distance between
the two distributions. (e) The joint distribution of the first and the last species at time points t = 2, 10 from the VAN, where
the color bar denotes the probability values in the logarithmic scale. The Gillespie simulation has 104 trajectories.
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Supplementary Figure 9. The result of the linear signaling cascade (case 1) with the switched order of the 15 species. The
signaling starts from the last species X15, activating X1 and so on. The result is as accurate as that without switching the
order. The layout of the figure is the same as that of Supplementary Fig. 8.

We consider three cases of the intracellular signaling cascade [8]: (1) a linear signaling cascade without feedback
regulation; (2) a nonlinear signaling cascade without feedback regulation; and (3) a linear signaling cascade with
feedback regulation.

The first case contains chemical reactions:

∅ β0−→ X1, Xi
kc−→ Xi+1 (i = 1, . . . ,M − 1), Xi

γ−→ ∅ (i = 1, . . . ,M). (S2.10)
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Supplementary Figure 10. The result of the linear signaling cascade (case 1) with 15 species by using the transformer, with
hyperparameters of the VAN and the corresponding computational time in Supplementary Table II. The layout is the same as
that of Supplementary Fig. 8.
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Signaling cascade with nonlinear activation

A. Gupta, C. Schwab, and M. Khammash, PLoS Comput. Biol. 17, e1009623 (2021)
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Supplementary Figure 11. The result of the nonlinear signaling cascade (case 2) for 15 species. The captions of each panel are
the same as those of Supplementary Fig. 8. The parameters β0 = 10, γ = 0.1, b = 1, km = 100, k0 = 10, h = 1. The upper
count limit is chosen as N = 40, and the result with N = 100 has a similar accuracy.

The parameter β0 is the synthesis rate, kc is the catalytic rate, and γ is the decay rate.

The result for the case 1 with 15 species is presented in the main text, and that with M = 50 species is in
Supplementary Fig. 8. It shows a good match of the marginal statistics between the Gillespie simulation and the
VAN method, demonstrating that the present approach is applicable to high-dimensional systems. Besides, we have
switched the order of species, by starting the signaling from the last speciesXM that activatesX1 and so on. The result
(Supplementary Fig. 9) has the same high accuracy as that of the original order. Furthermore, we have considered
a set of transformer hyperparameters (Supplementary Table II), where the hyperparameters include the number of
features, the number of heads, the number of encoder and decoder layers, and the dimension of the feed-forward
network. The results (Supplementary Fig. 10) show a similar accuracy in generating the distribution.

We next provide the details of cases 2, 3. In the case 2, the signaling cascade with nonlinear activation has the
reaction scheme in Eq. (S2.10), and replaces the constant catalytic rate by a Hill function with a basal rate. For
each reaction Xi −→ Xi+1, the catalytic production is: H(xi) = b+ (kmxh

i )/(k0 + xh
i ), where b is the basal rate, km

controls the strength of the Hill activation, k0 corresponds to the affinity for the substrate, and h is the Hill coefficient.
For various M , the count of the last species xM changes dramatically. For a better comparison, we have rescaled the
parameters to be M -dependent, such that the count of the last species is kept similar for various M . We have also
rescaled the time scale by 25-fold, such that the system reaches the steady state with a similar time as the case 1.
In the case 3, the signaling cascade with negative feedback has the same reactions in Eq. (S2.10), and an additional
negative feedback from the last species to the first one: H(xM ) = b+ km/(k0 + xh

M ), where the parameters have the
same meaning of the case 2.

The results of cases 2, 3 with M = 15 species are separately shown in Supplementary Figs. 11, 12. The accuracy
of the VAN can be further improved by using more epochs, especially for the case 2 where the count of each species
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Signaling cascade with feedback

Supplementary Figure 12. The result of the linear signaling cascade with feedback (case 3) for 15 species. The captions of each
panel are the same as Supplementary Fig. 8. The parameters β0 = 1, kc = 5, γ = 1, b = 1, km = 100, k0 = 10, h = 1 [8].

The occupancy of trajectories in the state space
(a)

(b)

(c)

(d)

Supplementary Figure 13. The occupancy of the simulated trajectories in the state space from the Gillespie algorithm. The
system is the first case of the signaling cascade with M = 15 species. (a) The computational time of simulating certain numbers
of trajectories by using the Gillespie algorithm, based on Intel Xeon Gold 6240 CPU @2.6GHz. (b) The range of species counts
at t = 5 from the simulated 105 trajectories by the Gillespie algorithm. The blue line is the maximum of counts and the gray
line is the minimum. (c) The configurations with the species counts inside the range of the Gillespie simulation. The bars
in each panel denote the count of each species, and the legend denotes the logarithmic joint probability of the configuration
computed by the VAN. (d) The configurations outside the range of species counts, which are not captured by the Gillespie
algorithm. The bar with an asterisk identifies the count that is out of the range. The probability of configuration can still be
obtained by the VAN, as shown by the legend.

depends sensitively on the precedent species under the nonlinear activation. The results suggest that the present
approach is applicable to a high-dimensional system with nonlinear interactions and feedback.

To demonstrate the advantage of the VAN on learning the joint distribution over the Gillespie algorithm, we provide
a coarse estimation on the occupancy of the simulated trajectories in the state space, by considering the first case
of the signaling cascade with M = 15 species. If we assume that there are only 10 possible counts for each species,
[0, 9], the size of the entire state space is 1015. Then, 105 simulated trajectories only account for 10−10 of the state
space. Even when simulating such a small proportion of trajectories, the computational time of the Gillespie algorithm
(Supplementary Fig. 13a) has a same order as that of evolving the VAN (Table I). Moreover, many configurations
are not captured by the 105 simulated trajectories, but the joint probability of any configuration in the state space
can always be obtained by the VAN (Supplementary Fig. 13). It implies that the VAN provides a complete joint
distribution of the high-dimensional space, whereas the Gillespie algorithm is practically unaffordable to cover the
full state space.
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Species Reactions N Time steps δt Epochs nlayers nheads dmodel dff Comput. time (hr)
Signaling cascade 1 15 30 10 1 ∗ 103 10−2 100 2 2 16 32 3.96
Signaling cascade 1 15 30 10 1 ∗ 103 10−2 100 6 2 16 32 10.11
Signaling cascade 1 15 30 10 1 ∗ 103 10−2 100 2 4 16 32 4.50
Signaling cascade 1 15 30 10 1 ∗ 103 10−2 100 2 2 32 32 3.97
Signaling cascade 1 15 30 10 1 ∗ 103 10−2 100 2 2 16 128 4.31

Supplementary Table II. The computational time of the first case of the signaling cascade with M = 15 species. A set of
hyperparameters of the transformer are considered, and the transformer typically needs longer computational time than the
RNN. The other settings of hyperparameters are the same as shown in Table I.
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