
nature machine intelligence

https://doi.org/10.1038/s42256-023-00680-yArticle

Uncertainty quantification via a memristor
Bayesian deep neural network for risk-
sensitive reinforcement learning

In the format provided by the
authors and unedited

https://doi.org/10.1038/s42256-023-00680-y

This Supplementary Information contains:

Supplementary figures 1 – 16.

Supplementary tables 1 – 8.

Supplementary notes 1 – 5.

Captions for supplementary video 1.

Supplementary Figures

Supplementary Figure 1 | 32×128 1T1R memristor array chip and on-chip circuit.

a, Layout of the 32×128 (4K) memristor crossbar array. b, 1T1R structure and

TiN/TEL/HfOx/TiN material stack of the array. c, Photograph of the 4K memristor array

chips. d, On-chip circuit. To fully utilize the parallelism of the array, the 32 source lines

(SLs) occur perpendicular to the 128 bit lines (BLs) and parallel to 32 word lines (WLs).

a

WL[0]

WL[1]

WL[31]

SL[0]

SL[1]

SL[31]

BL[0] BL[64] BL[127]BL[63]
...

...

...

...

...

...

...

b

c d

32◊128 memristor array
WL[0]

WL[31]

BL[0]

BL[127]

BL[126]

BL[1]

SL[0]

SL[31]

BL[64]

BL[65]

… …

… …

50nm

S G

D

TE

BE

TiN
TEL
HfOx
TiN

Supplementary Figure 2 | Relationship between ∆𝑰𝑰
𝑰𝑰

 and 𝑰𝑰. We measured the abrupt

amplitude of RTN as 𝛥𝛥𝛥𝛥 and calculated the values of 𝛥𝛥𝛥𝛥/𝛥𝛥. We selected 325 devices

in the current window ranges from 2×10-7 to 2×10-6 A at 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0.1 V. Each dot

indicates an individual memristor device.

Supplementary Figure 3 | Distribution of average value mismatch degree (𝐴𝐴𝑟𝑟). a,

Measured distribution of 100×100 weight matrix’s 𝐴𝐴𝑟𝑟. b, Histogram plot of 𝐴𝐴𝑟𝑟.

Supplementary Figure 4 | Typical single-weight distribution shapes with different

mismatch degree (𝑆𝑆𝑟𝑟) in the experiment. a-i, 𝑆𝑆𝑟𝑟 is 0.02, 0.03, 0.06, 0.09, 0.12, 0.15,

0.18, 0.21, and 0.24, respectively. Each distribution shape is obtained from 360-times

read results.

Supplementary Figure 5 | Shape mismatch degree (𝑆𝑆𝑟𝑟) distribution. a, Distribution

of 100 ×100 weight matrix’s 𝑆𝑆𝑟𝑟 in the experiment. b, Histogram plot of 𝑆𝑆𝑟𝑟.

Supplementary Figure 6 | Average value mismatch degree (𝐴𝐴𝑟𝑟) distribution after

relaxation. a, Distribution of 100×100 weight matrix’s 𝐴𝐴𝑟𝑟 in the experiment. b,

Histogram plot of 𝐴𝐴𝑟𝑟.

Supplementary Figure 7 | Typical single-weight distribution shapes with different

mismatch degree (𝑆𝑆𝑟𝑟) after relaxation in the experiment. a-i, 𝑆𝑆𝑟𝑟 is 0.02, 0.03, 0.06,

0.09, 0.12, 0.15, 0.18, 0.21, and 0.24, respectively. Each distribution shape is obtained

from 360-times read results.

Supplementary Figure 8 | Shape mismatch degree (𝑆𝑆𝑟𝑟) distribution after

relaxation. a, Measured distribution of 100 ×100 weight matrix’s 𝑆𝑆𝑟𝑟. b, Histogram

plot of 𝑆𝑆𝑟𝑟.

Supplementary Figure 9 | Evolution of devices current distribution without drift

compensation. Each histogram shows the current distribution of the group of devices

at different escaped time. The average current of devices 𝛥𝛥𝑟𝑟𝑎𝑎𝑟𝑟 is represented by a pink

line and 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 is represented by a black dot line in each histogram.

Supplementary Figure 10 | Evolution of devices current distribution with drift

compensation. Each histogram shows the current distribution of the group of devices

at different escaped time. The average current of devices 𝛥𝛥𝑟𝑟𝑎𝑎𝑟𝑟 is represented by a pink

line and 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 is represented by a black dot line in each histogram.

Supplementary Figure 11 | Impacts on network performance under different

mismatch degree. a, Different average value mismatch degree (𝐴𝐴𝑟𝑟). b, Different shape

mismatch degree (𝑆𝑆𝑟𝑟).

Supplementary Figure 12 | 𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏 distributional prediction matrix for 4 cases

of present boat location. a, St =(0, 8). b, St =(0, 16). c, St =(15, 4). d, St =(15,16)

Supplementary Figure 13 | Visualization of actions chosen by the policy network
during policy search. The paddling action direction and amplitude chosen by the

network are denoted by arrows at the various locations, and locations are indicated by
dots.

Supplementary Figure 14 | Illustration of the Out-of-distribution (OOD) detection

task.

Supplementary Figure 15 | Aleatoric uncertainty (𝑨𝑨𝑨𝑨) and epistemic uncertainty

(𝑬𝑬𝑨𝑨) of MNIST images. a, for MNIST training dataset. b, for MNIST testing dataset.

Each point represents for an image sample, and point color indicates the class label of

the images. Each class is shown with 32 random-pick images in the figures.

Supplementary Figure 16 | Aleatoric uncertainty (𝑨𝑨𝑨𝑨) and epistemic uncertainty

(𝑬𝑬𝑨𝑨) of OOD images. a, for Fashion-MNIST dataset. b, for CIFAR-10 dataset. It also

shows images in MNIST training and testing dataset. Each point represents for an image

sample. Each class in Fashion-MNIST or CIFAR-10 dataset is shown with 32 random-

pick images in the figures.

Supplementary Tables

Supplementary Table 1 | List of policy search parameters.

Quantity Value

Discount factor 0.99

Timesteps per actor per update 512

Clipping parameter 0.2

Entropy loss weight 0.03

Advantage estimation 0.95

Aleatoric risk-sensitive parameter 0.95

Epistemic risk-sensitive parameter 40

Supplementary Table 2 | Architecture of the BDNN used for the storm coast task.

Weight

Layer

Input neurons

of weight layer

(𝒏𝒏𝒊𝒊𝒏𝒏_𝒅𝒅𝒊𝒊𝒅𝒅)*

Output neurons

of weight layer

(𝒏𝒏𝒐𝒐𝒐𝒐𝒐𝒐_𝒅𝒅𝒊𝒊𝒅𝒅)

No. of random weights (or

samples/multiplications/additions

per forward pass) (𝒏𝒏𝒘𝒘𝒘𝒘𝒊𝒊𝒘𝒘𝒘𝒘𝒐𝒐)

1 6 100 600

2 101 100 10100

3 101 2 202

* With bias input

Supplementary Table 3 | Detailed energy cost of each circuitry module at two

technology nodes with an 8-bit input per forward process.

Modules

130 nm 28 nm

Energy

cost/nJ
Latency/ns

Energy

cost/nJ
Latency/ns

Array 13.3 / 4.2 /

SL driver 0.6 6.8 0.08 0.006

WL driver 0.2 7.2 0.1 0.03

ADC 202.0 400.0 34.9 240.0

Shift & adder 0.9 60.3 0.04 15.5

ReLu 0.003 0.6 0.03 0.2

Total 217.0 476.9 39.3 255.7

Process

Supplementary Table 4 | NVIDIA Tesla A100 performance metrics.

Features Values

TDP [1] 𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺=400 W

Peak OPS (32-bit floating-point number

computation) [1]
𝑂𝑂𝑃𝑃𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺=19.5 TOPS

FP32 cores [1] 𝑁𝑁𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟=6912

High bandwidth memory (HBM) latency [2] 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺=404 ns

Random number generation throughput [3]

(normal distribution, 32-bit floating-point number)
𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺=236.6 GSamples/sec

Supplementary Table 5 | Energy cost and latency breakdown of the GPU in

performing a forward process.

Steps Energy cost/μJ Latency/μs

Sample 5.53 1.26

VMM 0.37 1.21

Total 𝑬𝑬𝑮𝑮𝑮𝑮𝑨𝑨 =5.90 𝑻𝑻𝑮𝑮𝑮𝑮𝑨𝑨 =2.47

Supplementary Table 6 | Comparison of the ESCIM system and current state-of-the-art

randomness weight implementation in performing a forward process.

References Hardware platform Energy cost/nJ Latency/ns

GPU-A100* CMOS (GPU) 5900 2470

Cai, R. et al.[8] CMOS (FPGA) 2400 3110

Dalgaty, T. et al. [9] Memristor 1064 -

Wu, N. et al. [10] Thin-film transistors 1798 1500

Kang, K. et al. [11] CMOS (AISC) 113 † 3420

This work Memristor 39.3 255.7

*Obtained from Supplementary note 4; † Not included DAC and ADC.

Supplementary Table 7 | Classification accuracy on MNIST and OOD detection

accuracy on Fashion-MNIST and CIFAR-10 datasets for two types of networks.

Networks
Classification accuracy OOD detection accuracy*

MNIST Fashion-MNIST CIFAR-10

Memristor BDNN 97.76% 78.33% 93.80%

Traditional DNN† 97.63% Not supported Not supported

*Percentage of correct detections in the input images; † The network structure is the

same as the BDNN and all weights are represented by three memristors; Considering

the same device variations as the BDNN.

Supplementary Table 8 | Comparison of energy cost and latency between GPU and

ESCIM system in performing the same OOD detection task with the same BDNN

(𝑵𝑵𝒑𝒑𝒑𝒑𝒘𝒘𝒅𝒅𝒊𝒊𝒑𝒑𝒐𝒐𝒊𝒊𝒐𝒐𝒏𝒏 = 𝑴𝑴 × 𝑵𝑵 = 𝟑𝟑𝟏𝟏 × 𝟑𝟑𝟏𝟏 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏).

Metrics
A100 GPU (7-nm

CMOS technology)
ESCIM system

(130 nm)
ESCIM system

(28 nm)
Energy cost/ μJ 53495.9 247.3 73.3

Latency/ μs 2872.2 490.1 261.9

Supplementary Notes

Supplementary note 1: Drift current compensation

The relaxation could have two effects on the read current distribution: the average

current value drifts, and the shape of the distribution could appear several peaks.

Because the average drift current caused by relaxation is somewhat predictable, the

network's weights can be compensated to reduce the influence of current drift. First, we

conduct a statistical analysis of the average drift current 𝛿𝛿𝛥𝛥 with respect to the initial

current under various current states. We program 1890 cells into an expected current

state 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 . Then, the cells are measured at different escaped time. The drift current

𝛿𝛿𝛥𝛥𝑐𝑐𝑟𝑟𝑙𝑙𝑙𝑙 is the difference between the present read current 𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and the initial current

𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 at 𝑡𝑡 = 0 𝑠𝑠:

𝛿𝛿𝛥𝛥𝑐𝑐𝑟𝑟𝑙𝑙𝑙𝑙 = 𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 .

Then, we calculate the average drift current 𝛿𝛿𝛥𝛥 of all cells:

𝛿𝛿𝛥𝛥 = 𝐴𝐴𝑉𝑉𝐴𝐴(𝛿𝛿𝛥𝛥𝑐𝑐𝑟𝑟𝑙𝑙𝑙𝑙)

where 𝐴𝐴𝑉𝑉𝐴𝐴(𝑥𝑥) is the average of data 𝑥𝑥. The average drift current 𝛿𝛿𝛥𝛥 evolution over

time of 7 expected current states 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 is shown in Extended Data Fig. 4.

Finally, to correct the current value in the memristor BDNN, the weight 𝛥𝛥𝑐𝑐𝑜𝑜𝑖𝑖 which is

optimized by the training algorithm, is compensated with corresponding drift 𝛿𝛿𝛥𝛥:

𝛥𝛥𝑖𝑖 = 𝛥𝛥𝑐𝑐𝑜𝑜𝑖𝑖 − 𝛿𝛿𝛥𝛥

where 𝛥𝛥𝑖𝑖 is a compensated current. Finally, the compensated current 𝛥𝛥𝑖𝑖 is programmed

into device, instead of 𝛥𝛥𝑐𝑐𝑜𝑜𝑖𝑖. Since 𝛥𝛥𝑖𝑖 evolves during time, it is impossible to program

the compensated current 𝛥𝛥𝑖𝑖 into the device as a function of time due to the limitation

of system overhead. But we reasonably choose the average drift current of about 3000s

as the correction value 𝛿𝛿𝛥𝛥. From the Extended Data Fig. 4, we can see that ~90% of the

total drift has occurred when the time escapes 3000s for the current states 2.1μA, 2.7μA,

3.3μA and 3.9μA. Then, the drift current increases at a slower pace over longer time

scales. Compared with these current states, the drift of the rest states, 0.4μA, 0.9μA and

1.5μA, almost keep constant over long-time scales. Taking into account both short-term

and long-term system performance, we choose the drift current of about 3000s as the

correction value 𝛿𝛿𝛥𝛥 in our experiment.

For the potential implementation costs of drift compensation, we add a flow chart of

the operations as shown in Extended Data Fig. 5 to show the process of ex-situ training

more clearly. We can see that the drift compensation technique can be added to the tool

chain such as a compiler, and it is a one-time correction after training, which basically

does not increase the cost for the integrated circuit.

We evaluate the network performance experimentally with and without drift

compensation, respectively. As shown in Extended Data Fig. 8, the time is counted from

the moment when the weight-programming process is finished. It reveals that the

network performance is almost maintained when the weights are compensated against

the current drift.

Regarding the shape of the weight distribution, serval peaks may arise as a result of the

three memristor devices' relaxation. However, we discover that the percentage of such

multi-peaks weights is very low in our experiment. Besides, as detailed further below

(Supplementary note 3), the compensated weight mismatch caused by relaxation have

a minor impact on network performance.

Supplementary note 2: Mismatch between memristor weight and target weight

caused by device-to-device variability, and the impact on network performance.

We carefully analyze the mismatch between memristor weight 𝑤𝑤𝑚𝑚 and target weight

𝑤𝑤𝑖𝑖 caused by device-to-device variability, and the impact on network performance.

Since the weight in BDNN is a distribution, the average value and the distributed shape

are two key properties. So, we compare the average value and the distributed shape of

memristor weight with target weight, respectively.

The average value of memristor weight (𝑤𝑤�𝑚𝑚) is obtained from 360-times read results.

The size of hidden layer (100×100 weight matrix) covers most (92.66%) of whole

weights in BDNN, so we focus on weights belonging to this hidden layer. To compare

the average value mismatch, we use the relative difference percent between 𝑤𝑤�𝑚𝑚 and

average target weight 𝑤𝑤�𝑖𝑖 as average value mismatch degree indicator 𝐴𝐴𝑟𝑟:

𝐴𝐴𝑟𝑟 =
𝑤𝑤�𝑚𝑚 − 𝑤𝑤�𝑖𝑖
𝑤𝑤𝑚𝑚𝑟𝑟𝑚𝑚

where 𝑤𝑤𝑚𝑚𝑟𝑟𝑚𝑚 is the maximum weight value, which is limited by the conductance range

of the three memristor weights. The calculated average value mismatch degree 𝐴𝐴𝑟𝑟 of

different weights is shown in Supplementary Fig. 3. We can see that 85.0% of memristor

average values are around their target values (𝐴𝐴𝑟𝑟 < 4.8%), and only 15.0% weights

show relative large variations (𝐴𝐴𝑟𝑟 > 4.8%).

To compare the distributed shape, the measured memristor weights and target weights

are first subtracted their average values, respectively. Then, the difference between

them is calculated as the shape mismatch degree indicator 𝑆𝑆𝑟𝑟:

𝑆𝑆𝑟𝑟 = 𝐽𝐽𝑆𝑆(𝑤𝑤𝑚𝑚 − 𝑤𝑤�𝑚𝑚,𝑤𝑤𝑖𝑖 − 𝑤𝑤�𝑖𝑖)

where 𝐽𝐽𝑆𝑆 is Jensen–Shannon (JS) divergence function which can measure the

difference of two distributions. In this case, the higher JS divergence value is, the

greater shape mismatch degree 𝑆𝑆𝑟𝑟 is. Supplementary Fig. 4 shows several typical

single-weight (the read current sum of three devices) distribution plots with different

𝑆𝑆𝑟𝑟 in our experiment. As we can see, when the shape of weight matches with the target

shape well, 𝑆𝑆𝑟𝑟 value is small (<0.12). In contrast, when the weight distribution shows

multiple peaks or is flattener than target shape, 𝑆𝑆𝑟𝑟 increases up to 0.24.

Then we calculate 𝑆𝑆𝑟𝑟 of each weight in the hidden layer and present the distribution

and histogram in Supplementary Fig. 5. It can be found that around 75.3% of 𝑆𝑆𝑟𝑟 is less

than 0.06, and only 6.0% of 𝑆𝑆𝑟𝑟 is greater than 0.12. These results show that the

majority of the memristor weight shape matches the target shape well, with only a small

portion showing some mismatch.

Furthermore, we investigate the impact on network performance through simulation,

under different average value mismatch 𝐴𝐴𝑟𝑟 and shape mismatch 𝑆𝑆𝑟𝑟 . The network

performance is evaluated by Jensen–Shannon (JS) divergence as discussed in the

manuscript. For the average mismatch simulation, we assume 15.0% of whole weights

in the network are not matched well with target one. For the shape mismatch simulation,

the mismatch weight percent is about 6.0%. The mismatch percent values are consistent

with our measured data. The impact on network performance under different mismatch

𝐴𝐴𝑟𝑟 and 𝑆𝑆𝑟𝑟 is shown in Supplementary Fig. 11. It can be found that the network

performance shows very small degradation when mismatch 𝐴𝐴𝑟𝑟 and 𝑆𝑆𝑟𝑟 are smaller

than 5.83% and 0.15, respectively. And the shape mismatch has less impact on network

performance than average value mismatch. This result shows that the BDNN has some

tolerance ability to the mismatch of average value and distributed shape. We think such

tolerance ability originates from the redundancy of the deep neural network, just like

the tolerance ability of the traditional DNNs to some level of weight variations.

Supplementary note 3: Mismatch between memristor weight and target weight

caused by relaxation, and the impact on network performance.

We carefully analyze the mismatch between memristor weight 𝑤𝑤𝑚𝑚𝑟𝑟 after relaxation

and target weight 𝑤𝑤𝑖𝑖 caused by device-to-device variability and relaxation, and the

impact on network performance. Sine the weight in BDNN is a random variable, the

average value and the distributed shape are two key properties. So, we compare the

average value and the distributed shape of memristor weight with the target weight,

respectively.

The average value of weight (𝑤𝑤�𝑚𝑚𝑟𝑟) based on the total read currents of three memristors

is obtained from 360-times read results after relaxation. The size of the hidden layer

(100×100 weight matrix) covers most (92.66%) of whole weights in BDNN, so we

focus on the weights belonging to this hidden layer. To compare the average value

mismatch, we use the relative difference percent between 𝑤𝑤�𝑚𝑚𝑟𝑟 and the average target

weight 𝑤𝑤�𝑖𝑖 as the average value mismatch degree indicator (𝐴𝐴𝑟𝑟):

𝐴𝐴𝑟𝑟 =
𝑤𝑤�𝑚𝑚𝑟𝑟 − 𝑤𝑤�𝑖𝑖
𝑤𝑤𝑚𝑚𝑟𝑟𝑚𝑚

where 𝑤𝑤𝑚𝑚𝑟𝑟𝑚𝑚 is the maximum weight value, which is limited by the conductance range

of the three memristor weights. The calculated average value mismatch degree 𝐴𝐴𝑟𝑟 of

different weights is shown in Supplementary Fig. 6. We can see that 15.0% weights’

𝐴𝐴𝑟𝑟 are greater than 5.8%, and 80.0% of weights’ 𝐴𝐴𝑟𝑟 are less than 5.0%.

To compare the distributed shape, the measured memristor weights and target weights

are first subtracted their average values, respectively. Then, the difference between

them is calculated as the shape mismatch degree indicator (𝑆𝑆𝑟𝑟):

𝑆𝑆𝑟𝑟 = 𝐽𝐽𝑆𝑆(𝑤𝑤𝑚𝑚𝑟𝑟 − 𝑤𝑤�𝑚𝑚𝑟𝑟 ,𝑤𝑤𝑖𝑖 − 𝑤𝑤�𝑖𝑖)

where 𝐽𝐽𝑆𝑆 is Jensen–Shannon (JS) divergence function which can measure the

difference of two distributions. In this case, the higher JS divergence value is, the

greater shape mismatch degree 𝑆𝑆𝑟𝑟 is. Supplementary Fig. 7 shows several typical

single-weight (the read current sum of three devices) distribution plots with different

𝑆𝑆𝑟𝑟 in our experiment. As we can see, when the shape of weight matches with the target

shape well, 𝑆𝑆𝑟𝑟 value is small (<0.12). In contrast, when the weight distribution shows

multiple peaks or is flattener than target shape, 𝑆𝑆𝑟𝑟 increases up to 0.24.

Then we calculate 𝑆𝑆𝑟𝑟 of each weight in the hidden layer and shown the distribution

and histogram in Supplementary Fig. 8. It can be found that around 73.6% of 𝑆𝑆𝑟𝑟 is

less than 0.060, and only 6.0% 𝑆𝑆𝑟𝑟 is greater than 0.124. These results show that the

majority of the memristor weight shape matches the target shape well, with only a small

portion showing some mismatch.

Furthermore, we investigate the impact on network performance through simulation,

under different average value mismatch 𝐴𝐴𝑟𝑟 and shape mismatch 𝑆𝑆𝑟𝑟 . The network

performance is evaluated by Jensen–Shannon (JS) divergence as discussed in the

manuscript. For the average mismatch simulation, we assume 15.0% of whole weights

in the network are not matched well with target one. For the shape mismatch simulation,

the mismatch weight percent is about 6.0%. The mismatch percent values are consistent

with our measured data.

The impact on network performance under different mismatch 𝐴𝐴𝑟𝑟 and 𝑆𝑆𝑟𝑟 is shown

in Supplementary Fig. 11. It can be found that the network performance shows very

small degradation when mismatch 𝐴𝐴𝑟𝑟 and 𝑆𝑆𝑟𝑟 are smaller than 5.83% and 0.15,

respectively. And the shape mismatch has less impact on network performance than

average value mismatch.

Moreover, to show the conductance drift on single cells and provide a thorough

explanation, we add an additional comparison between without and with compensation.

Compared to the case without compensation, the number of cells after relaxation which

are still around expected state is greater for the case with drift compensation (that is,

the deviation between average device conductance and the expected state is smaller as

the quantitative analysis as follows). Moreover, since the deviation is small, the

distribution of the device conductance around the expected state is more symmetrical.

At the system application level of matrix multiplication and addition, the positive and

negative conductance fluctuation between multiple cells can better cancel each other

out. Blow is our discussion.

For the case without compensation, here we statistically analyze individual devices

current which has described in Supplementary note 1 for comparison. We program 1890

cells into an expected current state 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 . Then, the cells are measured at different

escaped time 𝑡𝑡. We select 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 = 0.9 𝜇𝜇𝐴𝐴, 2.1 𝜇𝜇𝐴𝐴 and 3.3 𝜇𝜇𝐴𝐴 and escaped time: 𝑡𝑡 ≈

0 𝑠𝑠 , 1000 𝑠𝑠 , 3000 𝑠𝑠 and 6000 𝑠𝑠 . The result of the case without compensation is

shown in Supplementary Fig. 9. Each histogram shows the distribution of cells current

𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 at different escaped time 𝑡𝑡. We calculate the standard deviation and average of

𝛥𝛥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, noted as 𝛥𝛥𝑠𝑠𝑖𝑖𝑟𝑟 and 𝛥𝛥𝑟𝑟𝑎𝑎𝑟𝑟. And the difference between 𝛥𝛥𝑟𝑟𝑎𝑎𝑟𝑟 and 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 as 𝛥𝛥𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑 to

show the deviation:

𝛥𝛥𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑 = 𝛥𝛥𝑟𝑟𝑎𝑎𝑟𝑟 − 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 .

𝛥𝛥𝑟𝑟𝑎𝑎𝑟𝑟 is represented by a pink line and 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 is represented by a black dot line in each

histogram. The percent of devices which are near the current 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 is also calculated:

𝑅𝑅𝑅𝑅𝑡𝑡𝑅𝑅 =
𝑛𝑛𝑤𝑤𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖𝑟𝑟𝑙𝑙

where 𝑛𝑛𝑤𝑤𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖 is the number of devices which fall within 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 ± ∆𝛥𝛥 (∆𝛥𝛥 = 0.3μA,

which is an error margin used in our main text), and 𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖𝑟𝑟𝑙𝑙 is the total number of

devices. The value of 𝑅𝑅𝑅𝑅𝑡𝑡𝑅𝑅 is also shown in each histogram.

As for the case with compensation, we measure the devices in the memristor BDNN

with compensation. The expected weight 𝛥𝛥𝑐𝑐𝑜𝑜𝑖𝑖 , which is optimized by the training

algorithm, is compensated with corresponding drift 𝛿𝛿𝛥𝛥:

𝛥𝛥𝑖𝑖 = 𝛥𝛥𝑐𝑐𝑜𝑜𝑖𝑖 − 𝛿𝛿𝛥𝛥.

where 𝛥𝛥𝑖𝑖 is a compensated current, which is directly programmed into devices. We can

select the devices, whose expected current state 𝛥𝛥𝑐𝑐𝑜𝑜𝑖𝑖 = 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 = 0.9 𝜇𝜇𝐴𝐴 , 2.1 𝜇𝜇𝐴𝐴 and

3.3 𝜇𝜇𝐴𝐴, to show what exactly happens for devices in the memristor BDNN. The results

of the case with compensation are shown in Supplementary Fig. 10. The value of 𝛥𝛥𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑

and 𝑅𝑅𝑅𝑅𝑡𝑡𝑅𝑅 are also calculated like Supplementary Fig. 9 for comparison.

As shown in Supplementary Fig. 9 and Supplementary Fig. 10, a spread of the

conductance occurs after programming during time for the case with and without

compensation. Just after programming, the absolute value of 𝛥𝛥𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑 and 𝑅𝑅𝑅𝑅𝑡𝑡𝑅𝑅 without

compensation is slightly better than the case with compensation. It results in a slightly

better network performance without compensation as shown in Extended Data Fig. 8.

But both two cases have a good network performance, since the weight mismatch is

quite small just after programming. However, as time goes on, the absolute value of

𝛥𝛥𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑 and 𝑅𝑅𝑅𝑅𝑡𝑡𝑅𝑅 without compensation is getting worse than the case with

compensation. Comparing to the case with compensation, the percent of devices which

fall within 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 ± ∆𝛥𝛥 is ~5% less in the case without compensation when t=6000s.

And we can also see that the devices average conductance with compensation deviates

from the expected state is smaller. Moreover, since the device conductance could

randomly spread to a lower or higher conductance due to relaxation effects, the

spreading distribution of the device conductance around the current state 𝛥𝛥𝑙𝑙𝑟𝑟𝑎𝑎𝑟𝑟𝑙𝑙 is more

symmetrical in the case with compensation as shown in Supplementary Fig. 10.

Comparing to the case without compensation, the positive and negative conductance

fluctuation between multiple devices can better cancel each other out when

accumulated the devices’ current. Hence, the performance of BDNN with compensation

is more robust than the case without compensation.

Supplementary note 4: Performance analysis of the ESCIM system compared to

the digital NVIDIA Tesla A100 GPU.

We estimate the performance (energy cost and latency) of the ESCIM system and

NVIDIA Tesla A100 GPU in uncertainty decomposition in the risk-sensitive RL storm

coast task.

To ensure a straightforward and fair comparison, we assume that both systems

implemented the same network architecture used for the storm coast task. Each layer of

the BDNN comprise 𝑛𝑛𝑤𝑤𝑟𝑟𝑖𝑖𝑤𝑤ℎ𝑖𝑖 random normally distributed weights (please refer to

Supplementary Table 2). Since each entry in the weight matrix is a random variable,

which need to be sampled during each prediction, the number of samples,

multiplications and additions per forward pass are the same, i.e., 𝑛𝑛𝑤𝑤𝑟𝑟𝑖𝑖𝑤𝑤ℎ𝑖𝑖 = 𝑛𝑛𝑠𝑠𝑟𝑟𝑚𝑚𝑜𝑜𝑙𝑙𝑟𝑟 =

𝑛𝑛multiplication = 𝑛𝑛addition (see Supplementary Table 2 for each layer details). The

prediction process is executed 𝑀𝑀 × 𝑁𝑁 times to decompose the prediction uncertainty

into aleatoric and epistemic terms in the RL storm coast task. Therefore, the forward

passes number of the BDNN is 𝑁𝑁𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 = 𝑀𝑀 × 𝑁𝑁 = 12 × 12 = 144. Next, we will

discuss and estimate the energy cost and latency of each layer to obtain those of a

prediction.

ESCIM system: We assume that three layers of the BDNN are mapped onto the three

memristor cores of the ESCIM system. The memristor cores operate in a pipeline

fashion. Each memristor core comprise one 𝑛𝑛𝑖𝑖𝑖𝑖_𝑟𝑟𝑖𝑖𝑚𝑚 × 𝑛𝑛𝑐𝑐𝑜𝑜𝑖𝑖_𝑟𝑟𝑖𝑖𝑚𝑚 (see Supplementary

Table 2 for details) memristor array and all the essential peripheral circuits, including

drivers, ADCs, shift & adder components and activation functions (Extended Data Fig.

9). The ADCs could complete the conversation step during the voltage pulse reading

period. The read voltage pulse widths are 50 ns@0.2 V and 30 ns@0.2 V at the 130-

and 28-nm technology nodes, respectively. At the 130-nm technology node, the

parameter of the ADC block is obtained in [4], and the parameters associated with the

memristor array and other peripheral circuitry blocks are obtained with the simulator.

At the 28-nm technology node, we designed and evaluated a 28-nm ADC based on [5].

And all the parameters are extracted using the simulated 28-nm technology node

circuits, except for the driver circuits which is simulated at the 65-nm technology node.

And it could be further reduced upon transistor scaling. The typical energy cost and

latency are obtained with the XPEsim simulator [6]. The detailed energy cost of each

block is listed in Supplementary Table 3, which indicates the performance of two

technology nodes given an input of an 8-bit read pulse. Hence, we could determine that

the energy cost and latency of the ESCIM system at the 130-nm technology node are

𝐴𝐴𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟@130 =217.0 nJ and 𝑇𝑇𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟@130 =476.9 ns, respectively, per forward pass. At the

28-nm technology node, the energy cost and latency of the ESCIM system reached

𝐴𝐴𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟@28 =39.3 nJ and 𝑇𝑇𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟@28 =255.7 ns, respectively. The total energy cost and

latency of prediction uncertainty decomposition could be easily obtained by

multiplying the total forward passes 𝑁𝑁𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 = 144. For the 130nm case as an

example:

�
𝐴𝐴𝑖𝑖𝑐𝑐𝑖𝑖𝑟𝑟𝑙𝑙@130 = 𝐴𝐴𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟@130 × 𝑁𝑁𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 = 217.0 × 144 = 31248.0 (𝑛𝑛𝐽𝐽)
𝑇𝑇𝑖𝑖𝑐𝑐𝑖𝑖𝑟𝑟𝑙𝑙@130 = 𝑇𝑇𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟@130 × 𝑁𝑁𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 = 476.9 × 144 = 68673.6 (𝑛𝑛𝑠𝑠) .

NVIDIA A100 GPU-based system: For simplicity, we assume that the A100 GPU

operate at the peak random number generation throughput, i.e., the peak operations per

second (peak OPS,𝑂𝑂𝑃𝑃𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺=19.5 TOPS), and thermal design power (TDP, 𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺=400

W) (please refer to Supplementary Table 4). To accomplish a forward pass of the BDNN,

the GPU should first obtain a normally distributed weight sample and then perform

VMM operations layer by layer.

Regarding the sample and VMM steps, we consider the GPU relative occupancy

𝑂𝑂𝑠𝑠𝑟𝑟𝑚𝑚𝑜𝑜𝑙𝑙𝑟𝑟 and 𝑂𝑂𝑉𝑉𝑉𝑉𝑉𝑉 values, respectively, to carefully estimate the energy cost of a

layer. The occupancy in the sample step, 𝑂𝑂𝑠𝑠𝑟𝑟𝑚𝑚𝑜𝑜𝑙𝑙𝑟𝑟, is obtained in [7] according to the

number of samples 𝑛𝑛𝑠𝑠𝑟𝑟𝑚𝑚𝑜𝑜𝑙𝑙𝑟𝑟 for a layer. Note that the relative occupancy of [7] is based

on uniformly distributed pseudorandom number generation, whose occupancy could be

lower than that of normally distributed pseudorandom number generation. Hence, the

𝑂𝑂𝑠𝑠𝑟𝑟𝑚𝑚𝑜𝑜𝑙𝑙𝑟𝑟 of three layers are 30%, 30% and 30%, respectively. The average occupancy

of the VMM step, 𝑂𝑂𝑉𝑉𝑉𝑉𝑉𝑉, could be obtained by the number of weights 𝑛𝑛𝑤𝑤𝑟𝑟𝑖𝑖𝑤𝑤ℎ𝑖𝑖 in a

layer and cores in the GPU 𝑁𝑁𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟:

𝑂𝑂𝑉𝑉𝑉𝑉𝑉𝑉 =
𝑛𝑛𝑤𝑤𝑟𝑟𝑖𝑖𝑤𝑤ℎ𝑖𝑖/𝑁𝑁𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟
�𝑛𝑛𝑤𝑤𝑟𝑟𝑖𝑖𝑤𝑤ℎ𝑖𝑖/𝑁𝑁𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟�

where ⌈𝑥𝑥⌉ is the ceiling function. Hence, the 𝑂𝑂𝑉𝑉𝑉𝑉𝑉𝑉 of three layers are 17.36%, 73.06%

and 5.84%, respectively.

Then, according to the given sampling throughput with a normal distribution (𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺 =

236.6 GSamples/sec), the estimated energy cost and latency of the sample step for a

layer are:

𝐴𝐴𝑠𝑠𝑟𝑟𝑚𝑚𝑜𝑜𝑙𝑙𝑟𝑟 = (𝑛𝑛𝑠𝑠𝑟𝑟𝑚𝑚𝑜𝑜𝑙𝑙𝑟𝑟/𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺) ∗ 𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑂𝑂𝑠𝑠𝑟𝑟𝑚𝑚𝑜𝑜𝑙𝑙𝑟𝑟

𝑇𝑇𝑠𝑠𝑟𝑟𝑚𝑚𝑜𝑜𝑙𝑙𝑟𝑟 = 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑛𝑛𝑠𝑠𝑟𝑟𝑚𝑚𝑜𝑜𝑙𝑙𝑟𝑟/𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺

where 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺=404 ns refers to access to the HBM memory for weight sample storage.

Based on the given peak OPS (𝑂𝑂𝑃𝑃𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺=19.5 TOPS), the estimated energy cost and

latency of the VMM operation step for a layer are:

𝐴𝐴𝑉𝑉𝑉𝑉𝑉𝑉 = (𝑛𝑛multiplication + 𝑛𝑛addition)/𝑂𝑂𝑃𝑃𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑂𝑂𝑉𝑉𝑉𝑉𝑉𝑉

𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 + (𝑛𝑛multiplication + 𝑛𝑛addition)/𝑂𝑂𝑃𝑃𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺

By accumulating the energy cost and latency of three layer, we can obtain the

computational cost in performing a forward pass as listed in Supplementary Table 5.

The energy cost and latency of the GPU in decomposing the prediction uncertainty

could be easily obtained by multiplying the total forward passes 𝑁𝑁𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖.

Summary of the comparison with GPU: Extended Data Fig. 10 summarizes the energy

cost and latency of the GPU and ESCIM system in performing uncertainty

decomposition in the risk-sensitive RL storm coast task. Compared to the NVIDIA

Tesla A100 GPU, the energy cost of the memristor-based ESCIM system is

approximately 27 times better at 130 nm and 150 times better at 28 nm. In terms of

latency, that of the ESCIM system is 5 times better at 130 nm and 10 times better at 28

nm than that of the GPU. It should be noted that the NVIDIA Tesla A100 GPU is based

on 7-nm CMOS technology, which notably is more aggressively scaled than are the

nodes considered in our ESCIM system.

Comparison with other difference implementation approaches of BDNN: We also

compared the computational cost of the ESCIM system with current state-of-the-art

randomness weight implementations. We calculate the average energy cost of a weight

and the average time cost of a layer, according to the reported data in related works.

The total energy cost and the latency are then calculated proportionally based on the

number of weights and layers of the BDNN (i.e., 10,902 weights and 3 layers),

respectively. The calculated results are shown in Supplementary Table 6.

Supplementary note 5: Anomalous images classification benchmark.

In order to demonstrate how to deal with the uncertainty prediction, we added an

anomalous image classification task based on uncertainty estimation. In this

classification task, a trained BDNN classifier can categorize most of the images from

the training and testing datasets correctly. However, when the BDNN is given

anomalous images which are not from the training and testing datasets, the prediction

uncertainty will rise significantly. Because anomalous images deviate from the training

data distribution (i.e., out-of-distribution images), this classification task is also called

an out-of-distribution (OOD) detection task.

Our simulation task involves utilizing an MNIST classifier to determine whether the

input images are OOD images using the uncertainty estimation method (as shown in

Supplementary Fig. 14). The MNIST classifier is a memristor BDNN

(785×100×100×10) with latent variable input (as presented in Method 7), which is

trained on the MNIST trainset through our memristor variational inference (as

presented in Method 4). On the MNIST testset, its final classification accuracy is

97.76%.

To detect OOD images, we must first get appropriate detected thresholds from the

MNIST dataset. So, using the proposed uncertainty decomposition method (as

presented in Methods 8), we estimate the aleatoric uncertainty (𝐴𝐴𝐴𝐴) and epistemic

uncertainty (𝐴𝐴𝐴𝐴) values of the MNIST training and testing datasets. The results are

shown in Supplementary Fig. 15. The appropriate detected thresholds 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 = 0.003

and 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 = 0.02 are acquired. If the 𝐴𝐴𝐴𝐴 or 𝐴𝐴𝐴𝐴 of an input image is greater than

𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 or 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇, the input image is classified as an OOD image.

Then, we use Fashion-MNIST dataset and resized CIFAR-10 dataset as OOD input

images. We calculate the 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 values for each input image, and compare them

with 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 or 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 to determinate whether the input is an OOD image. The 𝐴𝐴𝐴𝐴

and 𝐴𝐴𝐴𝐴 of the images from the two datasets are shown in Supplementary Fig. 16. We

can see that the majority of OOD images have high 𝐴𝐴𝐴𝐴 or 𝐴𝐴𝐴𝐴, indicating a lack of

knowledge and large aleatoric noise of OOD images.

Next, the accuracy of OOD detection is measured as the percentage of correct

detections in the input images. We randomly select 15,000 images from the Fashion-

MNIST and CIFAR-10 datasets as input, respectively. The detection accuracy results

are shown in Supplementary Table 7. The accuracy of OOD detection in the two

datasets is 78.33% and 93.80%, respectively. CIFAR-10 outperforms Fashion-MNIST

in terms of accuracy, which is due to the fact that the former has obviously different

styles, whereas the latter has a similar background style with MNIST. As shown in

Table R1-3, in comparison to traditional DNNs, the memristor BDNN exhibits

comparable accuracy in the MNIST classification task. Most notably, it can perform

OOD detection while traditional DNNs cannot, owing to its ability to estimate

uncertainty.

Finally, as shown in Supplementary Table 8, we calculate the energy cost and latency

of the ESCIM system and NVIDIA Tesla A100 GPU in this OOD detection task. The

energy cost of the memristor-based ESCIM system is roughly 200 times lower at 130

nm and 700 times lower at 28 nm when compared to the NVIDIA Tesla A100 GPU. In

terms of latency, the ESCIM system outperforms the GPU by 6 times at 130 nm and 11

times at 28 nm.

Supplementary Video

Captions for Supplementary Video 1

The movie shows result for the risk-sensitive RL storm coast task. A boat trajectory

passes through the low-epistemic uncertainty sea area and low environmental

stochasticity. The epistemic and aleatoric uncertainties are warning when boat is in sea

areas with a high environmental stochasticity and high epistemic uncertainty,

respectively. The warnings guide the boat paddling upwards so that leaving the high

uncertainties areas. The stable point occurred at a suitable distance from the coast due

to consideration of the uncertainties.

Supplementary Information References

[1] Nvidia ampere architecture whitepaper: Nvidia A100 tensor core GPU architecture.

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-

architecture-whitepaper.pdf , accessed: 2022-03-08

[2] How GPU Computing Works, Stephen Jones, Nvidia. https://www.nvidia.com/en-

us/on-demand/session/gtcspring21-s31151/ , accessed: 2022-03-08

[3] Nvidia curand: Random number generation on nvidia gpus.

https://developer.nvidia.com/curand , accessed: 2022-03-08

[4] S. M. Louwsma, J. M. van Tuijl, M. Vertregt and B. Nauta, "A 1.35 GS/s, 10b, 175

mW time-interleaved AD converter in 0.13 μm CMOS," 2007 IEEE Symposium

on VLSI Circuits, 2007, pp. 62-63, doi: 10.1109/VLSIC.2007.4342766.

[5] B. R. Gregoire and U. Moon, "An Over-60 dB True Rail-to-Rail Performance

Using Correlated Level Shifting and an Opamp With Only 30 dB Loop Gain," in

IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2620-2630, Dec. 2008,

doi: 10.1109/JSSC.2008.2006312.

[6] Zhang, W. et al. Design guidelines of RRAM-based neural-processing unit: a joint

device– circuit–algorithm analysis. In 2019 56th ACM/IEEE Design Automation

Conference (DAC) 63.1 (IEEE, 2019).

[7] Pascuzzi, Vincent R. and Mehdi Goli. “Achieving near native runtime performance

and cross-platform performance portability for random number generation through

SYCL interoperability.” ArXiv abs/2109.01329 (2021)

[8] Cai, R. et al., “VIBNN: Hardware Acceleration of Bayesian Neural Networks,” in

Proceedings of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems, Mar. 2018, pp. 476–

488. doi: 10.1145/3173162.3173212.

[9] Dalgaty, T. et al. In situ learning using intrinsic memristor variability via Markov

chain Monte Carlo sampling. Nat Electron 4, 151–161 (2021).

[10] Wu, N. et al. A Real-Time and Energy-Efficient Implementation of Difference-of-

Normal with Flexible Thin-Film Transistors. in 2016 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI) 455–460 (IEEE, 2016).

doi:10.1109/ISVLSI.2016.87.

[11] Kang, K. & Shibata, T. An On-Chip-Trainable Normal-Kernel Analog Support

Vector Machine. IEEE Trans. Circuits Syst. I 57, 1513–1524 (2010).

	SpringerNature_NatMachIntell_680_ESM.pdf
	Supplementary Figures
	Supplementary Tables
	Supplementary Notes
	Supplementary Video
	Supplementary Information References

