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Supplementary Notes 
1. MLP-VAE Training and Sampling 
MLP-VAE was trained on aligned hexon MSA calculated by ClustalOmega1. MSA training data was one-hot encoded. 
Different combination of learning rate (5e-3 - 5e-5), weight decay (1e-2, 1e-4) and dropout probability (0.3, 0.4) were tested 
(Supplementary Table 1). Model was trained with a NVIDIA V100 GPU with 32GB memory. To prevent overfitting, the 
training was stopped with earlystopping when validation cross-entropy loss has not improved in the last 250 epochs, and 
the checkpoint with the lowest validation perplexity was selected for evaluation. Model with highest test F1 score was 
used for generation (learning rate of 5e-5, weight decay of 1e-2 and dropout probability of 0.4). Only 40 unique sequences 
were found when decoding 1000 randomly sampled latent vectors. 

2. ProtBert Fine-tuning and Sampling 
ProtBert is a component of the ProteinVAE training pipeline. Therefore, it was fine-tuned to test if this component alone 
can generate hexons. 8 AMD MI50-32GB GPUs were in parallel, with a total effective batch size of 48. Learning rate 
from 2e-1 to 6e-6 was tested with weight decay from 0 to 10-5(Supplementary Table 2). To prevent overfitting, the training 
was stopped with earlystopping when validation loss has not improved in the last 10 epochs, and the checkpoint with the 
lowest validation perplexity was selected for evaluation. The model with the lowest test perplexity was use for generation 
(learning rate: 2e-4, weight decay: 10-1). Gibbs sampling was performed to generate sequences2.Gibbs sampling is a 
Markov-chain Monte-Carlo (MCMC) sampler with a local proposal distribution, and it often becomes trapped in one 
mode of distribution3. To encourage sequence diversity, all natural sequences were used for sequence initialization, and 
2 chains were sampled for each initialization. Despite 711 unique initializations, only 460 distinct sequences were 
generated, and they lack the sequence and structural characteristics inherent to natural hexon sequences. Additionally, 
Gibbs sampling was also slow due to the long sequence length, each sampling chain takes over 1.5 minutes to compute. 
Although higher sequence quality could potentially be obtained with Metropolis-Hastings (MH) sampling4, the 
computational complexity is quadratic of the sequence length, which results in prohibitively long sampling time for long 
sequences like hexons, where each chain takes ~312 hours to sample.  

3. Sequence Repetitiveness 
In order to compare sequence repetition patterns across different positions throughout the sequence, a sliding window 
with a fixed length  was defined. For a sequence of length , there are a total of  possible positions for the start 
of window, each position can be normalized . All windows were separated into 20 bins according 
to the normalized start of their start position. In each window, the number of repeated amino acids was counted. Mean 
repetition number and mean start of window position were plotted for all 20 bins. 

4. Alphafold2 structure prediction 

All structures were predicted with the Alphafold2.0.0. Due to limited computing resources, the reduced genetic database 
was used to save computation time. After folding a small number of natural hexons, it was observed that model_1 
predictions ranked first for all sequences. To conserve computing time, only model_1 was used for all predictions reported 
here. For each structure, the genetic database search takes 20 min on 4 CPUs, and the modeling prediction takes 10 min 
on a A100 GPU with 40GB memory. Predicting all 711 Ad structures would take 948 CPU hours (39.5 days) and 118h 
of A100 GPU computing time (4.92 days). Prediction cannot be done on GPUs with memory of 32GB or less. In addition, 
no structural prediction of acceptable quality could be obtained with less resource-intensive language-model-based single-
sequence structure prediction models, e.g. ESMFold5, RGN26, OmegaFold7. 

5. Human AdV Hexon Classifier 
All training sequences were labeled as human or non-human AdV hexon according to their fasta description. All training 
samples were converted to latent vectors with the previously trained encoder. A simple logistic regression classifier is 
trained to predict whether a training sequence is from human or non-human AdV from its latent vector. Learning rate is 
set to 5e-5. All samples previously generated from each cluster were encoded, and the trained classifier predicted whether 
they come from human AdV from their latent vectors.  



6. Phylogenetic Analysis 
Hexon sequences of generated sequences that are predicted to be human AdV and unique natural hexons with known 
serotype are aligned using ClustalOmega1. Maximum likelihood-based phylogenetic analysis was performed using 
PhyML 3.08 with BLOSUM62 substitution model , and support values were calculated using the Bayesian-like 
transformation of aLRT method (aBayes)9. Phylogenetic tree was visualized with iTOL10. 

7. Imputed Serotyping 
Imputed serotyping was conducted as previously described11. All natural human AdV hexons with known serotypes were 
extracted and aligned with all generated sequences that are predicted to be human AdV hexon. Location of hexon loop1 
and loop2 were identified according to the sequence reported11. Pairwise amino acid divergence was computed for all 
possible pairs in the MSA to distinguish if generated sequences are from any known human serotypes. It was reported 
that amino acid divergence higher than 4.2% in Loop1 and 2.1% in Loop2 to all previously reported serotypes supports 
that a new serotype is likely identified. 

8. Simulation of ProT-VAE Results on Hexon Dataset 
Given that ProT-VAE model has not been released, reconstruction F1 in ProT-VAE model was simulated by introducing 
a small Gaussian noise to the language model hidden state before decoding (Supplementary Figure 9). Since the ProtT5 
model (48 M parameters) used in ProT-VAE was not publicly available, another larger ProtT5 (3 B parameters) was used. 
As a comparison, 5000 phenylalanine hydroxylase (PAH) sequences were found via psiBLAST with a human PAH 
variant (2PAH) as described in ProT-VAE. Owing to the high computational resources required by running the large T5 
model, an equal size PAH dataset was randomly selected from the psiBLAST results for comparison (n = 711). When a 
small Gaussian noise (variance < 0.0625) was injected to the encoder output, the simulated reconstruction performance 
on the PAH dataset remained at a high level (F1 = 0.81). When tested on the hexon dataset (n = 711), the T5 model can 
faithfully decode all hexon sequences in the training dataset (F1 = 1) without noise. However, when a smaller level of 
Gaussian noise (variance < 0.04) was added, significantly worsened F1-score (0.19) was observed on the hexon dataset. 
Because of the significantly low performance with noise, it is likely that the ProT-VAE will not be able to generate high-
quality hexon sequences using a ProtT5 pre-trained on sequences less than 512 amino acids.  

Due to the model design in ProT-VAE, exchanging the PLM would not only require retraining the VAE part on family-
specific sequences, but also retraining the generic CNN network on a large protein database which is computationally 
prohibitive. In comparison, accommodating another PLM in ProteinVAE only requires training the VAE component on 
sequences from a specific protein family. It is also unlikely that a pre-trained PLM decoder can be used directly to 
reconstruct hexon, because this small family is likely underrepresented in the pre-training database. Moreover, in (Sevgen 
et al., 2023), the diversity of sequences was only measured against one natural sequence. This could lead to overestimation 
of sequence novelty, because the generated sequences could be very different from the compared single natural sequences 
while sharing high identity with other natural sequences. Although, T5 model was previously demonstrated to be able to 
extrapolate up to another 600 tokens when trained on 512 tokens in natural language processing tasks (Press et al., 2021), 
it is unclear if ProT-VAE can be used to design longer proteins like hexon.   

9. ReLSO Training and Sampling 
ReLSO model was developed to model sequences with a numerical label. To adapt it for training on the unlabelled hexon 
dataset, all loss terms related to regression were removed, leaving only the cross-entropy term and the spectral-norm 
penalty. Model was trained with a NVIDIA V100 GPU with 32GB memory. Different combination of learning rate (2e-3 
- 2e-5), weight decay (0 or 0.1), dropout rate (0.2 - 0.4), and number of transformer layers (5 or 10; 10M or 13M trainable 
parameters, respectively) were tested (Supplementary Table 3). To prevent overfitting, the training was stopped with 
earlystopping when validation loss has not improved in the last 250 epochs, and the checkpoint with the lowest validation 
perplexity was selected for evaluation. The model with the lowest test perplexity was use for generation (learning rate of 
2e-4, weight decay of 0, dropout rate of 0.2, and number of transformer layers 5, 10M parameters). Since the ReLSO 
model is not a VAE model, and no method has been suggested for unconditional generation, 1,500 latent vectors were 
sampled from a Gaussian distribution with the posterior mean and standard deviation. Generated sequences were ranked 
according to perplexity, and the top  !

"
	 sequences were used for comparison. 



10. Ablation study 
The goal of this study is to design a model that is intrinsically easy to sample where only latent variables are required 
during generation. This would also allow convenient sequence manipulation in latent space. Thus, instead of passing 
amino-acid-level embedding to the decoder, any encoder-decoder information flow other than the bottleneck vector was 
eliminated. Then, the generation from the bottleneck vector can be viewed as an upsampling process. Similarly, when 
provided with the same input vector at each time-step, traditional LSTM-based12 sequence generation can also be viewed 
as an upsampling process. To test the hypothesis that non-autoregressive generation is more suitable in the case of protein 
design, deconvolution-based upsampling was also compared with the traditional LSTM method. After tuning the number 
of layers, processing direction and hidden dimension, the best performing LSTM-based model (14.0M parameters) only 
achieved a reconstruction accuracy of 0.18 on the validation set, while the deconvolution-based (12.4M parameters) model 
achieved 0.86. As an alternative to using LSTM as an upsampling method, training LSTM with additional per-time-step 
token information in a teacher forcing manner was experimented with, and this led to detrimental overfitting. No 
generation with the LSTM-based model was attempted, given the extremely low reconstruction accuracy.  

To deepen our understanding of each component’s contribution to the generation capacity, an ablation study was 
conducted by leaving out non-standard elements of the network one at a time. Reconstruction and generation performance 
was summarized for each version of the ablated model in Supplementary Table 4. The full model performs best overall. 
Using one-hot encoding instead of the ProtBert embedding resulted in worsened performance. ProtBert was also fine-
tuned with the masked language model objective on the hexon dataset. However, using embeddings extracted by the fine-
tuned ProtBert did not increase the performance any further. The encoder CNN module improved the reconstruction 
accuracy, which is likely due to the addition of local features that reflects detailed differences among sequences. The 
bottleneck attention module has more effect on improving generation, which is likely tied to its ability to produce a better 
protein level representation that complies with the sampling process13. Surprisingly, the amino acid attention improved 
generation in terms of secondary structure ratio and sequence variability profile, but not the amino acid usage. In addition, 
the secondary structure reweighting on the cross-entropy loss only improved amino acid usage and sequence variability 
profile slightly. This could be related to the error in the secondary structure prediction. The model does not benefit from 
larger number of parameters, and the current number of parameters cannot be compressed further without performance 
degradation. The ProtBert model alone cannot generate sequences with comparable quality (Supplementary Figure 1, 3-
9). 

 

 

 

  



Supplementary Figures 

 
Supplementary Figure 1 (a - d): Repetition profile for natural hexons and sequences generated by all models with 
window size of 3, 5, 7, and 10, respectively. 
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Supplementary Figure 2 RMSD for randomly selected natural (n = 1) and ProteinVAE generated sequences (n = 4) with 
extended simulation time of 300 ns. Dash line indicates simulation at 100 ns. As can be seen, RMSD only showed 
negligible changes past 100 ns. Therefore, all simulations analyzed in main results section were stopped at 100 ns. 
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Supplementary Figure 3 Amino-acid pair association scores for sequences generated by all models. Negative values 
(blue) indicate shorter distances compared to random shuffled sequences. 
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Supplementary Figure 4 Sequence perplexity (log10 transformed) from fine-tuned ProtGPT2 (left) and ProGen2(right) 
for sequences generated by all models. The number on the X-axis is the average perplexity for each group of sequences. 
Lower perplexity means better fit in the training data of natural hexons. All natural sequences were used for analysis (n 
= 711). For all models, the same-ratio of higher quality sequences were compared (ProteinVAE: n = 1000, all other 
models: n = 214). Each box-plot shows the first and third quartiles, central line is median, and whiskers show range of 
data with outliers displayed individually. 
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Supplementary Figure 5 HMMER score for the hexon N-terminal (left) and C-terminal (right) domain. The percentage 
of hits and the average score is labeled next to the model name. Scores were normalized by the highest score seen in 
natural sequences. Higher score means higher likelihood of a sequence containing a domain. All natural sequences were 
used for analysis (n = 711). For all models, the same-ratio of higher quality sequences were compared (ProteinVAE: n = 
1000, all other models: n = 214). Each box-plot shows the first and third quartiles, central line is median, and whiskers 
show range of data with outliers displayed individually. 
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Supplementary Figure 6 Shannon-entropy for natural hexons and sequences generated by all models in MSA columns 
with above 20% occupancy in each dataset. Higher value reflects higher sequence variability across samples.  
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Supplementary Figure 7 Positions of invalid columns in MSA (less than 80% occupancy) in the reference sequence of 
human adenovirus serotype 5 hexon (P04133). Color indicates number of invalid columns (log transformed). Red squares 
show the location of hypervariable regions.  

  



 
Supplementary Figure 8 Helix and strand ratio in natural and hexons generated by all models. Pink shade in all plots 
shows the area in the bi-variate normal distribution fitted on natural samples (α = 0.05). In generated sequence plots, 
gray points represent outliers, while colored points are sequences considered within the natural distribution. 

  



 
Supplementary Figure 9 Comparing sequence diversity against sequence quality across all models (a) Number of 
clusters at different identity thresholds. (b) Scatter plot for sequence diversity and secondary structure similarity. X-axis 
is the maximum sequence identity on all aligned pairs. Y-axis is the maximum percentage identity of 3-state secondary 
structure on all aligned pairs of generated and natural sequences. Sequences closer to the top-left corner are ideal, as 
they are structurally similar to natural protein but more novel in sequence. (c) Pareto frontiers: The optimal sequences 
designed by each model are highlighted along respective frontier. 

  



 

Supplementary Figure 10 Simulation of ProT-VAE result on hexon dataset. Approximated reconstruction F1 score is 
compared between the hexon dataset (n = 711) and a PAH dataset (n = 711) extracted the same way as described in ProT-
VAE. Small Gaussian noises with different variance were introduced to the encoder output to simulate inaccuracy injected 
by the CNNs and VAE component in ProT-VAE. As can be seen, the simulated reconstruction F1 worsened even at very 
low variance for the hexon dataset, but the reconstruction performance was maintained even at higher variance in the 
PAH dataset. Each box-plot shows the first and third quartiles, central line is median, and whiskers show range of data 
with outliers displayed individually. 
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Supplementary Tables 
Supplementary Table 1 MLP-VAE training. Test F1 is shown for each run with different learning rate, weight decay, 
and dropout probability. Checkpoint used for generation is highlighted in bold. 

 
Dropout Probability 

 
0.3  0.4 

 
Weight Decay  Weight Decay 

Learning Rate 0.0001 0.01  0.0001 0.01 

0.0005 0.7829 0.7829  0.783 0.7829 

0.005 0.7830 0.7827  0.7829 0.7830 

5.00e-05 0.7827 0.7828  0.7827 0.7831 

 

  



Supplementary Table 2 ProtBert fine-tuning. Test perplexity is shown for each run with different learning rate and 
weight decay. Checkpoint used for generation is highlighted in bold. 

 
Weight Decay 

Learning Rate 0 1e-1 1e-2 1e-3 1e-4 1e-5 

2e-1 2.21e+6 2.93e+1 1.34e+3 4.35e+3 2.83e+6 3.47e+5 

2e-2 18.77 18.77 18.78 18.77 18.76 18.76 

2e-3 18.67 18.68 18.68 18.67 18.67 18.67 

2e-4 1.14 1.13 1.15 1.15 1.15 1.15 

2e-5 1.18 1.18 1.19 1.19 1.17 1.16 

2e-6 1.18 1.18 1.18 1.18 1.18 1.18 

 

  



Supplementary Table 3 ReLSO training. Test perplexity is shown for each run with different learning rate, weight 
decay, dropout probability, and number of transformer layer. Checkpoint used for generation is highlighted in bold. Model 
with 5 transformer layers has 10M parameter, and model with 10 transformer layers has 13M parameters. 

 
Weight Decay 

 
0.1 

 
0.0 

 
Dropout Probability 

 
0.4 

 
0.3 

 
0.2 

 
0.4 

 
0.3 

 
0.2 

 
Transformer Layer 

Learning Rate 5 10 
 

5 10 
 

10 5 
 

5 10 
 

5 10 
 

5 10 

2e-03 8.76 8.02 
 

8.75 8.07 
 

8.22 8.78 
 

10.82 10.85 
 

10.83 10.86 
 

10.89 10.91 

2e-04 5.18 5.36 
 

5.18 5.35 
 

5.35 5.19 
 

2.54 2.45 
 

2.27 2.33 
 

2.22 2.28 

2e-05 5.86 5.99 
 

5.85 5.93 
 

5.91 5.84 
 

2.75 3.26 
 

2.53 2.73 
 

2.39 2.54 

  



Supplementary Table 4 Ablation study illustrating model component contribution. Each setting was repeated with 3 
different random seeds. ECNN: CNN feature vector extractor in encoder; BA: Autobot attention mechanism13; AAA: 
Attention mechanism across different amino-acid channel; SSCE: cross entropy reweighted to assigned 1.2x penalty to 
the strand positions; Test F1: reconstruction F1 score on test set; JSD (Amino acid usage): Jesen-Shannon distance 
between amino acid usage frequency; JSD (Secondary Structure): Jesen-Shannon distance between secondary structure 
ratio; MSA Entropy Correlation: Pearson correlation between MSA entropies in valid columns of generated and natural 
sequences. Bold numbers denote the best performancec in each respective column.  

  ECNN  BA  AAA  SSCE  Test F1  JSD (Amino 
acid usage)  

JSD (Secondary 
Structure)  

MSA Entropy 
Correlation  

Final (12.4M)  +  +  +  +  0.861  0.022  0.015  0.911  

w/o encoder cnn  -  +  +  +  0.836  0.023  0.015  0.878  

w/o bottleneck attn  +  -  +  +  0.868  0.039  0.038  0.500  

w/o aa attn  +  +  -  +  0.847  0.013  0.024  0.669  

w/o ss weighted ce  +  +  +  -  0.858  0.023  0.012  0.902  

Base  -  +  -  -  0.790  0.015  0.044  0.436  

Big (15M)  +  +  +  +  0.860  0.102  0.104  0.206  

Medium (10.2M)  +  +  +  +  0.835  0.021  0.020  0.913  

small (8.5M)  +  +  +  +  0.763  0.038  0.031  0.634  

OneHot  +  +  +  +  0.822  0.092  0.079  0.280  

Final+finetuned  

ProtBert  
+  +  +  +  0.856  0.050  0.035  0.448  

ProtBert  /  /  /  /  /  0.099  0.041  -0.014  

 

  



Supplementary Table 5 ProtGPT2 fine-tuning. Test perplexity is shown for each run with different learning rate and 
weight decay. Checkpoint used for generation is highlighted in bold. 

 
Weight Decay 

Learning Rate 0 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 

1e-1 7.93e+8 1.52e+3 1.61e+3 1.99e+10 3.37e+7 7.24e+10 1.37e+10 

1e-2 114.46 104.86 93.67 113.68 120.64 95.47 114.46 

1e-3 2.24 2.36 2.38 2.39 2.34 2.24 2.24 

1e-4 2.77 2.95 2.97 2.70 2.77 2.77 2.77 

1e-5 3.07 3.09 3.09 3.07 3.07 3.07 3.07 

1e-6 10.41 10.40 10.41 10.41 10.41 10.41 10.41 

 

  



Supplementary Table 6 ProtGen2 fine-tuning. Test perplexity is shown for each run with different learning rate and 
weight decay. Checkpoint used for generation is highlighted in bold. 

 
Weight Decay 

Learning Rate 0 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 

6e-3 15.61 13.34 16.50 13.11 13.27 20.08 16.07 

6e-4 1.34 13.31 1.36 1.47 1.31 1.34 1.34 

6e-5 1.48 1.47 1.45 1.48 1.48 1.48 1.48 

6e-6 20.81 22.59 21.05 22.92 24.87 20.44 24.10 

 

  



Supplementary Table 7 ProtGen2 generation parameter tuning. Log likelihood is shown for each generation condition 
with different nucleaus sampling probability (top_p) and temperature. Final generation condition used in analysis is 
highlighted in bold. 

 
Temperature 

Top_p 0.2 0.4 0.6 0.8 1.0 

0.7 -0.44 -0.33 -0.39 -0.49 -0.51 

0.9 -0.38 -0.40 -0.46 -0.63 -0.78 

1.0 -0.42 -0.45 -0.59 -0.80 -1.03 

 

 

 

  



Supplementary Table 8 ESM-IF1 sampling temperature tuning with predicted structures as a template. Mean likelihood 
is shown to assess sequence quality, and mean number of unique 7-grams is shown to reflect changes in diversity. When 
temperature is reduced below 0.1, no substantial improvement in sequence quality is observed, while there is a drastic 
drop in sequence diversity. Therefore, sampling temperature for final generation is set to 0.1. 

 
Temperature 

 
1e-06 1e-05 1e-04 1e-03 1e-02 1e-01 1 

Mean likelihood -0.74 -0.74 -0.74 -0.74 -0.73 -0.76 -1.56 

Mean unique 7-gram 883.00 883.00 971.60 1205.20 3699.80 12099.20 44814.00 

 

  



Supplementary Table 9 ESM-IF1 sampling temperature tuning with experimental structures as a template. Mean 
likelihood is shown to assess sequence quality, and mean number of unique 7-grams is shown to reflect changes in 
diversity. When temperature is reduced below 0.1, no substantial improvement in sequence quality is observed, while 
there is a drastic drop in sequence diversity. Therefore, sampling temperature for final generation is set to 0.1. 

 
Temperature 

 
1e-06 1e-05 1e-04 1e-03 1e-02 1e-01 1 

Mean likelihood -0.86 -0.86 -0.86 -0.86 -0.86 -0.89 -1.90 

Mean unique 7-gram 819.22 819.22 860.22 1086.78 3100.56 11259.00 44076.00 
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