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Supplementary Information
This Supplementary Information describes ShELL algorithms and their implementations
(Section 1). Following, additional technical details are provided on application scenarios
and performance metrics (Section 2).
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1 Examples of ShELL algorithms and implementations

In this section, we provide summaries of a few exemplary ShELL algorithms and implemen-
tations that achieve the objectives O1 to O3 via the abilities A1 to A4 as listed in Section
3. In some cases, they are tested on edge devices and include approaches and considerations
for budgeted computation and deployment on SWaP-constrained devices. While their TRL
levels may still be low, they demonstrate that ShELL algorithms are technically feasible
and provide support to the intuitions and vision that are detailed in this Perspective paper.
When available, links to the source code of the implementations are provided.
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1.1 Multi-agent distributed lifelong learning for collective knowledge ac-
quisition [1].

In this study, the authors introduce a multi-agent collaborative lifelong learning system.
Each agent builds a local knowledge base and shares it with neighboring agents. Agents
update their knowledge bases to align with their neighbors. They create task-specific sparse
combinations of their local knowledge base to solve new tasks, update their knowledge as
needed, and share it. With a connected communication graph, this framework converges
to uniform agents with general expertise across all tasks. Benchmarks included land mine
detection, facial expression recognition, and student score prediction.

1.2 Collaborative learning through shared collective knowledge and local
expertise [2].

The previous work [1] was extended in [2], allowing agents to possess local expertise, resulting
in non-uniform agents with a shared global knowledge base and individual local expertise.
The approach decomposes the task-specific parameters into an overcomplete dictionary Di ∈
Rd×u and the corresponding sparse vector representation s

(t)
i ∈ Ru. The algorithm employs

a broadcast knowledge approach to sharing within the network of agents, where Di is shared
once task learning is complete. The algorithm was tested on facial expression recognition
with 21 total tasks with a 3-agent population where each agent learns 7 tasks, and landmine
detection with 29 total tasks and a population of 2 agents collaborating per task.

1.3 Sharing lifelong reinforcement learning knowledge via modulating
masks [3].

This study proposes a lifelong RL distributed and decentralized collective of agents in which
agents query each other for modulating masks and transfer those that are relevant to the
current task on a peer-to-peer basis. The core LL engine exploits modulating masks, based
on a type of parameter isolation LL method, that are used to learn one task for each mask [9].
This partial model parameter sharing has limited LL overhead due to the parameter isolation
approach. The masks can be linearly combined to learn new tasks, or transferred across the
collective. The collective uses an on-demand mechanism as each agent queries the collective
for masks when learning one specific task. The study also suggests a competitive mecha-
nism in which the better-performing masks for one task are used to overwrite less-performing
masks. Experiments were conducted on simulated RL problems that included the Minigrid
environment and the CT-graph environment. The system was tested on a range of servers
and embedded devices (Nvidia Jetson series including Nano, TX2, AGX, and Orin). Experi-
ments ran with up to 32 agents, and 32 tasks, although such limits were determined by avail-
able devices rather than algorithmic constraints. Agents ran asynchronously with agents con-
nected over the Internet and running in locations across different countries and continents.
Implementation code available at: https://github.com/DMIU-ShELL/deeprl-shell.git

• Lifelong learning algorithm: Lifelong reinforcement learning with modulating
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masks [9]. This study proposes and tests learnable masks and learnable linear com-
binations of masks for knowledge reuse in deep lifelong reinforcement learning. The
LL overhead is limited to a memory requirement with the increase of stored masks.
However, masks can be made arbitrarily sparse and can be binarized to reduce memory
use. Implementation code available at: https://github.com/dlpbc/mask-lrl.

1.4 CoDeC: Communication-Efficient Decentralized Continual Learning
[4].

The CoDeC method extends the Gradient Projection Memory approach [10] to a decen-
tralized continual learning (DCL) setup, where a collection of networks (or agents) learns
from training data that is distributed across space as well as time. In this setup, each
agent computes gradients on its local data and shares that with its neighbors. Sharing
across agents happens every training iteration and can be performed in two ways. The
first methodology is a static Gossip mechanism, where an agent communicates with a fixed
user-defined number of random agents in the system. The second methodology is an active
communication model where an agent is communicating with others if their GPM distance
is greater than a user-defined threshold. In this framework, each agent maintains a GPM
and follows a two-step model update process. First, it updates the local gradient with gossip
(following either the static or active model) averaging [11] using the neighbors’ gradients,
which ensures effective decentralized learning. Next, to minimize forgetting, it projects the
averaged gradients on its GPM and updates the model. CoDeC reported results on three
image classification benchmarks where up to 16 agents were trained and tested using the
directed ring and torus topology. In the DCL setup, CoDeC obtained SoTA accuracy with
minimum forgetting achieving up to 4.8x reduction in communication cost.

• Lifelong learning algorithm: Gradient projection memory for continual learn-
ing [10]. Gradient Projection Memory (GPM) [10] casts catastrophic forgetting prob-
lems in continual learning as gradient interference problems among sequential tasks.
GPM partitions each layer’s gradient space into two orthogonal subspaces: Core Gra-
dient Space (CGS) and Residual Gradient Space (RGS). Important gradient directions
(CGS) for previous tasks are stored in GPM, and gradient updates for the new tasks
are taken along RGS to minimize interference. GPM operates in a single network (or
agent) setup, where each task uses a shared network backbone.

1.5 Lightweight learner for shared knowledge lifelong learning [5].

Shared Knowledge Lifelong Learning (SKILL) deploys a decentralized asynchronous popu-
lation of Lightweight Lifelong Learning (LLL) agents that each sequentially learn different
tasks, with all agents operating independently and in parallel. After learning their respec-
tive tasks, agents share and consolidate their knowledge over a decentralized communication
network, so that, in the end, all agents can master all tasks.

The goal of Lightweight Lifelong Learning (LLL) agents is to facilitate efficient shar-
ing by minimizing the fraction of the agent that is specialized for any given task. Each
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LLL agent thus consists of a common task-agnostic immutable part, where most parameters
are, and individual task-specific modules that contain fewer parameters but are adapted
to each task. The population of agents uses a broadcasting mechanism, where each agent
shares its knowledge with all others each time a new task has been learned. Agents share
their task-specific modules (Beneficial Bias (BB)), plus summary information ("task an-
chors") representing their tasks in the common task-agnostic latent space of all agents.
Receiving agents register each received task-specific module using the corresponding an-
chor. Thus, every agent improves its ability to solve new tasks each time new task-
specific modules and anchors are received. If all agents can communicate with all oth-
ers, eventually all agents become identical and can solve all tasks. On a new, very chal-
lenging SKILL-102 data set with 102 image classification tasks (5,033 classes in total,
2,041,225 training, 243,464 validation, and 243,464 test images), this new approach achieves
much higher (and SOTA) accuracy over 8 lifelong learning baselines, while also achiev-
ing near-perfect parallelization. LLL is edge-friendly because the number of parameters
learned for each task is small (typically < 2 MBytes). Implementation code available at:
https://github.com/gyhandy/Shared-Knowledge-Lifelong-Learning.git

• Lifelong learning algorithm: Beneficial perturbation network for designing gen-
eral adaptive artificial intelligence systems [12] - Beneficial perturbation net-
work (BPN) is a biologically plausible type of deep neural network with extra, out-
of-network, task-dependent biasing units to accommodate dynamic situations in task-
incremental lifelong learning. Biasing units are programmed by leveraging beneficial
perturbations (opposite to well-known adversarial perturbations) for each task. Benefi-
cial perturbations for a given task bias the network toward that task, without affecting
the weights of the network, essentially switching the network into a different mode to
process that task. This largely eliminates catastrophic interference between tasks.
When multiple agents each learn different tasks, task-dependent biasing units can be
shared among agents, giving rise to the LLL approach described in [5]. BPN was vali-
dated on Incremental MNIST, CIFAR-10, and 8-dataset with one agent, and provided
significant improvement in average task accuracy.

• Lifelong learning algorithm: CLR: Channel-wise Lightweight Reprogramming
for Continual Learning [13] - Channel-wise Lightweight Reprogramming (CLR)
is another method to help convolutional neural networks (CNNs) overcome catas-
trophic forgetting during continual learning. A CNN model trained on an old task
(or self-supervised proxy task) could be “reprogrammed” to solve a new task by using
inexpensive reprogramming parameters. The reprogramming is implemented in addi-
tional layers which simply transform a set of incoming CNN feature maps into a new
set by applying 3x3 convolutions channel-wise to each map. The 3x3 reprogramming
kernels are learned for each new task.

CLR aims to improve the stability-plasticity trade-off to solve continual learning prob-
lems: To maintain stability and retain previous task ability, we use a common task-
agnostic immutable part as shared core parameter set. We then add task-specific

4

https://github.com/gyhandy/Shared-Knowledge-Lifelong-Learning.git


lightweight reprogramming parameters to reinterpret the outputs of the immutable
parts, to enable plasticity and integrate new knowledge. To learn sequential tasks,
we only train the lightweight reprogramming parameters to learn each new task. Re-
programming parameters are task-specific and exclusive to each task, which makes
this method immune to catastrophic forgetting. In a ShELL setting, the task-specific
lightweight reprogramming parameters (CLR-Layers) could be shared among agents.

To minimize the parameter requirement of reprogramming to learn new tasks, we make
reprogramming lightweight by only adjusting essential kernels and learning channel-
wise linear mappings from anchor parameters to task-specific domain knowledge. We
show that, for general CNNs, the CLR parameter increase is less than 0.6% for any new
task. Our method outperforms 13 state-of-the-art continual learning baselines on a new
challenging sequence of 53 image classification datasets. Implementation available at:
https://github.com/gyhandy/Channel-wise-Lightweight-Reprogramming.git

1.6 A distillation-based approach integrating continual learning and fed-
erated learning for pervasive services [6].

This study investigated the combination of Continual Learning (CL) techniques and Federal
Learning (FL) to allow for edge devices (nodes) that are tuned to the specificity of the de-
ployed domain as they encounter new streams of data. The neural model in each edge device
is trained using its locally owned data set that corresponds to the current task, while data
from previous task is unavailable. The learned models across edge devices are communicated
(shared) synchronously to the central server during each communication round. Before the
introduction of CL techniques, the sharing of knowledge across all nodes proved beneficial
and sometimes enabled nodes to acquire knowledge of a task before it is learned locally.
To prevent catastrophic forgetting locally on each edge device, a knowledge distillation CL
method was employed. Inspired by Learning without Forgetting (LwF) [14] approach, the
study employed two teachers to serve as regularizers for the distillation process. The pre-
vious version of a local model and the centralized server model served as teachers for the
current local model in each edge device during training on a task. The approach was eval-
uated in a class incremental setup, using the Human Activity Recognition (HAR) dataset
[15] and demonstrated the mitigation of catastrophic forgetting in the FL framework.

1.7 A Rule-based Shield: Accumulating Safety Rules from Catastrophic
Action Effects [7].

Representing a shield as a compilation of experienced catastrophic mistakes can promote
safer behaviors. However, this approach exhibits limitations in terms of generalizability, par-
ticularly in continuous domains where the likelihood of encountering the same state twice
is virtually nonexistent. The challenge is tackled by categorizing errors into equivalence
classes, each of which is addressed through a set of safety rules (predicates) accumulated
from learned catastrophic outcomes. For example, when observing a rear-end collision in an
autonomous driving task the aim is to obtain a set of rules that prevent all similar future
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rear-end collisions. In practice, prior to selecting each action for execution by the policy,
actions that contravene any safety rule pertaining to the current state are systematically
excluded and not considered for selection. In a multi-agent setting, agents collaborate by
sharing safety rules instead of pairs of unsafe states and actions. The effectiveness of this ap-
proach was evaluated using an autonomous driving simulator where ten decentralized agents
encountered a series of randomized scenarios across six driving tasks. The rule-based shield
variant, PPO-RS, notably decreased unsafe outcomes and enhanced cumulative rewards
compared to the original PPO, ShieldPPO, and other safety-focused RL benchmarks.

• Lifelong learning algorithm: Learning a shield from catastrophic action effects:
Never repeat the same mistake [16]. In unfamiliar environments, learning agents
may make errors with potentially catastrophic consequences. While acknowledging the
inevitability of agents occasionally making catastrophic errors, this study addresses
the crucial task of preventing the repetition of such mistakes by autonomous agents.
The proposed method employs a shield, which restricts agents from executing specific
actions in specific states. Catastrophic mistakes made by an agent are recorded, and
the agent is prohibited from repeating these mistakes in the future. In a multi-agent
setting, catastrophic mistakes made by one agent are shared with the entire group,
ensuring that no other agents repeat the same mistakes. The shield, being focused
on catastrophic mistakes and independent of the reward function, is task-agnostic
and adaptable to lifelong learning scenarios with evolving tasks. The method was
evaluated in a grid-based domain, where ten decentralized agents faced a series of
navigation challenges in changing environments. The agents employed a variant of the
Proximal Policy Optimization (PPO) [17] algorithm, called ShieldPPO, that integrates
the shield into the policy to mask unsafe actions. Results indicate that ShieldPPO
surpasses PPO and baseline methods from the safe reinforcement learning literature
across various settings. Additionally, the sharing of mistakes among agents leads to a
linear reduction in catastrophic mistakes relative to the number of agents.

1.8 Asynchronous decentralized federated lifelong learning for landmark
localization in medical imaging [8].

Tackling a privacy-preserving medical imaging problem, this study investigated the use
of Federated Learning (FL) to learn landmark localization in the brain tumor segmenta-
tion (BraTS) dataset [18] with a focus on applicability to edge devices. To prevent catas-
trophic forgetting, the selective experience replay lifelong learning method was employed [19]
through the SERIL lifelong DRL approach described in related paper 1 [20]. Specifically,
selected experiences of past tasks were sampled from a replay buffer and interleaved with the
current task data during training. A key trait of the FL setup employed was the breakaway
from a centralized model, thus allowing a decentralized setup. Furthermore, asynchronous
updates between devices were also employed. Thus, the asynchronous decentralized setup
enabled data and model heterogeneity and allowed for robustness to connection drops be-
tween devices as there is no central point of failure. To prevent excessive communication
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and sharing overhead, a set of predefined hub devices (nodes) that supported communication
only with spatially adjacent devices was set up. During training, each lifelong learner model
on a device learns using the current task data, experiences from its own replay buffer, and
experiences from the replay buffer (ERB) of other devices. Each agent’s personal experi-
ences are shared when training is completed. The ERB datasets are shared from nodes to
the agents to help in the training process on-demand. A maximum collective size of 4 was
tested across DGX-1 and Google Cloud T4-based systems.

• Lifelong learning algorithm: Multi-environment lifelong deep reinforcement
learning for medical imaging [20]. The nature of medical imaging environments
requires deep reinforcement learning agents to constantly evolve and adapt to changes
in aspects such as orientation, sequences, and pathologies. This work introduces a
novel lifelong DRL framework, SERIL, to learn and adapt to evolving landmark local-
ization tasks on brain MRI images. SERIL is based on a lifelong learning algorithm
known as selective experience replay [19]. The approach is tested in a single-agent
setup on the 2017 BraTS image dataset.

• Lifelong learning algorithm: Low-compute compression mechanism for edge:
A framework for dynamically training and adapting deep reinforcement
learning models to different, low-compute, and continuously changing ra-
diology deployment environments [21]. Low-compute edge devices are heavily
used in the medical imaging field. Imaging environments often evolve rapidly and
this requires models to continually adapt and adjust. This is difficult to achieve on
low-compute devices. This study introduces three novel coreset-based compression al-
gorithms used to improve the per-epoch running time performance for medical imaging
localization tasks on low-compute devices i.e., edge devices: neighborhood averaging
coreset, neighborhood sensitivity-based sampling coreset, and maximum entropy core-
set. These were applied in conjunction with the selective experience replay [19] lifelong
learning method to perform localization tasks in DIXON water and DIXON fat MRI
images.

2 Application Scenarios and performance of ShELL systems

2.1 ShELL advantages in multiple scenarios.

Fig. 1 expands with graphical illustrations the four scenarios described in Section 5 of the
main paper. Constraints, environmental conditions, and the advantages of ShELL are de-
scribed in conjunction with the graphical representations. The variety of scenarios, also
highlighted in Table 1 of the main paper, suggests that performance metrics may vary
across those different scenarios. In the following sections we highlight common aspects of
performance across ShELL scenarios.
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Figure 1: Illustration of ShELL-suitable domains. These four domains were chosen for the potential
advantages of lifelong learning and sharing. The illustrations cannot provide all details concerning
specific ML tasks that are performed in such domains, but highlight the particular constraints and
environmental conditions that make lifelong learning and sharing a highly desirable enhancement to
current ML approaches.

2.2 Target performance.

An intuitive idea is that, with an optimal algorithm, n agents may be n times better or
n times faster, or a combination of such factors, than the single agent. However, a more
careful examination of the problem reveals that a deviation from the n factor is possible in
both directions (Figure 2(c)). Improved performance or speed that is less than a factor n
can derive from efficiency losses, e.g., agents learning the same knowledge from the same
data, or communication and integration being time-consuming, delayed, or less effective
than learning from their own data. A counter-intuitive notion is that n agents can be better
than n times the single agent. This condition may occur in reinforcement learning with
large search spaces or sparse rewards where agents can explore different policies in parallel.
When an agent finds a sparse reward, this can be shared, and the entire collective can resume
learning from the vantage point of one lucky agent, a concept explored in [3]. Similarly, if one
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agent faces an adverse condition, e.g., hardware damage as a consequence of a policy, such a
mistake can be instantly shared to prevent it from happening again to other members of the
collective [16, 7]. These learning dynamics bear resemblance with parallel search processes
in evolutionary computation [22].

The increased learning speed can be measured with respect to levels of performance on a
given number of tasks (Figure 2(c, bottom graph)). The acceleration in learning speed can
be higher, equal, or lower than n times faster than the single agent, with n being the number
of deployed agents. The increase in the speed of learning is particularly desired when rapid
responses to new conditions are required.

Other system settings can affect the ShELL metrics, e.g., the available bandwidth and
the frequency of communication, the limitation of which could lead to reduced performance.
Other more subtle factors relate to the curricula, such as the ratio of the number of tasks
over the number of agents, the duration of a learning effort on a given task before switching
to other tasks, and the order of tasks. Given n agents and k tasks, having each agent learn a
different task could be beneficial in certain domains, while having all agents learn the same
task could be better in other scenarios. The ability of an agent to switch to new data, i.e.,
see a new task, once it has maximized performance on the current tasks, will also affect
ShELL metrics. In addition, active learning and coordination can improve the efficiency of
collective learning and thus ShELL metrics.

2.3 Measuring performance.

How can the overall performance of a collective of n agents on k tasks be measured? The
decentralized nature of ShELL allows this question to be answered in different ways because
of the absence of a central integrating server. Even if special nodes are designed to serve
as communication hubs, the performance of a ShELL system is intrinsically diffuse across
all agents. Testing all agents on all tasks requires considerable computation and stops the
collective from learning. Moreover, not all agents might be required to perform all tasks.
An interesting possibility is to exploit the ShELL communication capabilities and test only
one connected agent on all tasks: this agent will query the collective to gather the necessary
information to solve the tasks on which it is being tested. The performance of this agent
can be used to assess the collective. Such an agent was named the “evaluation” agent in [3]
because it is devoted solely to testing. Using one or more evaluation agents means that the
distinction between evaluation blocks and learning blocks [23, 24] is across different agents
(evaluation or learning agents). This implies that each learning agent does not need to be
stopped at any time for testing. Crucially, the evaluation agent is connected to the collective
and can fetch knowledge while being tested, but is invisible to the collective itself, i.e., it does
not share knowledge. Thus, the evaluation agent returns the performance of the collective
with minimal interference. Other ways to measure performance may be necessary in specific
scenarios.
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