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1. BACKGROUND

A. Applications
There are several drug discovery strategies in which one of highly relevant tasks is to design linkers for molecular
fragments that are placed in the space and have fixed positions.

Fragment Based Drug Discovery (FBDD) By analogy with classical drug discovery methods, one of the common
strategies in FBDD is to operate on fragments that interact with the target proteins. First, binding fragments are defined
and characterized (using high-throughput screening followed by X-ray / NMR, or virtual screening and docking). As
a result, the exact location and orientation of the fragments in which they interact with patches of the protein pocket
is defined. The next step is to design a linker between the fragments that preserves positions and thus the binding
affinity of the fragments (preferably, the linker addition will enhance the binding affinity of the final molecule) [1].
Several successes have been reported on the design of linkers starting from a protein crystal structure in complex with
bound fragments [1], for example: inhibitors for CK2 [2], LDH-A [3] and Dot1L [4], which are proteins playing crucial
roles in cancer, were designed by linking the fragments that were experimentally observed in a bound state with the
corresponding targets.

Proteolysis targeting chimera (PROTAC) PROTACs are heterobifunctional small molecules designed for stimu-
lating degradation of a target protein by bringing it to the proximity of an E3-ligase. PROTACs consist of two ligands
joined by a linker: one ligand recruits and binds a target protein while the other recruits and binds the E3 ubiquitin ligase
[5]. For designing PROTACs, one of possible strategy is to dock two proteins with ligands bound and explore a favorable
conformation of the prospective tertiary complex. This information about the initial docking pose of the proteins and
exact positions of bound fragments is further used for designing linkers that stabilize the whole complex [6, 7].

Scaffold hopping Scaffold hopping is a strategy for designing novel compounds by replacing the central core
structure of the known molecule. As shown by Sun et al. [8], various scaffold-hopping strategies rely on the experimental
3D data of the initial compound bound to a target: the information about the geometry of the initial bound molecule is
important for altering its core with the increase of the binding affinity, potency or selectivity of the whole molecule. In
such a case, scaffold-hopping of the bound molecule can be considered as a linking problem of several disconnected
fragments with fixed known 3D coordinates.

B. Related work
Molecular linker design has been widely used in the fragment-based drug discovery community [9]. Various de novo
design methods refer to the fragment linking problem [10–16]. Early fragment linking methods were based on search in
predefined libraries of linkers [17, 18], genetic algorithms, tabu search [19] and force field optimization [20]. Having
been successfully used in multiple application cases [21–23], these methods are however computationally expensive and
substantially limited by the available data.

Hence, there has recently been interest in developing learning-based methods for molecular linker design. Yang
et al. [24] proposed SyntaLinker, a SMILES-based deep conditional transformer neural network that solves a sentence
completion problem [25]. This method inherits the drawbacks of SMILES, which are absent of 3D structure and the
lack of consistency where atoms that are close in the molecule can be far away in the SMILES string. Imrie et al. [26]
overcome these limitations by introducing an autoregressive model DeLinker, and its extension DEVELOP [27] that
uses additional pharmacophore information. Although these methods operate on 3D molecular conformations, they
use very limited geometric information and require input on the attachment atoms of the fragments. Recently, Huang
et al. [28] proposed another autoregressive method, 3DLinker, that does not require one to specify attachment points
and leverages the geometric information to a much greater extent. It makes this approach more relevant for connecting
docked fragments. As both DeLinker and 3DLinker are autoregressive models, they are not permutation equivariant
which limits their sample efficiency and ability to scale to large molecules [29, 30]. Moreover, these methods are capable
of connecting only pairs of fragments and cannot be easily extended to larger sets of fragments.

Beyond the linker design problem, several groups have recently proposed diffusion models for molecule genera-
tion [31, 32] and molecular conformer generation [33–35]. Several others apply diffusion models for docking [36],
structure-based drug design [37–39], protein design [40–43], and protein-ligand complex prediction [44]. Some of these
methods generate molecules conditioned on additional 3D contexts such as protein pockets and binding sites, antibody
complementarity-determining regions (CDR), and protein backbones. In many cases, conditioning can be achieved by
training an unconditional diffusion model on the full molecules (including context) and replacing the learned denoising
process with the true denoising process for the known context during sampling. Such a mechanism was originally
proposed by Sohl-Dickstein et al. [45] and later improved by Lugmayr et al. [46] in the scope of the image inpainting
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problem. We discuss the limitations of this approach in the context of the molecular linker design problem and provide
quantitative results in Section 5C. In this work, we propose another 3D-conditioning approach and show that it satisfies
the desirable equivariance properties.
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2. EQUIVARIANCE

A. Proof of Proposition 1
O(3)-equivariance of function f and the fact that q is isotropic Gaussian distribution implies O(3)-equivariance of the
prior distribution:

p(RzT |Ru) = N (RzT | f (Ru), I) = N (RzT |R f (u)) = N (zT | f (u)) = p(zT |u).

Likewise, O(3)-equivariance of function φ and Equation 8 imply O(3)-equivariance of all transition probabilities
p(zt−1|zt, u).

To obtain the distribution p(z0|u) of data point z0, we can consider joint distribution p(z0, z1, . . . , zT |u) and marginalize
it by z1...T :

p(z0|u) =
∫

p(z0, z1, . . . , zT |u)dz1...T =
∫

p(zT |u)
T−1

∏
t=0

p(zt|zt+1, u)dz1...T .

Having prior and all transition distributions equivariant, it is now trivial to show O(3)-equivariance of p(z0|u):

p(Rz0|Ru) =
∫

p(RzT |Ru)
T−1

∏
t=0

p(Rzt|Rzt+1, Ru)dz1...T

=
∫

p(zT |u)
T−1

∏
t=0

p(Rzt|Rzt+1, Ru)dz1...T (equivariant prior p(zT |u))

=
∫

p(zT |u)
T−1

∏
t=0

p(zt|zt+1, u)dz1...T (equivariant kernels p(zt|zt+1, u))

=
∫

p(z0, z1, . . . , zT |u)dz1...T = p(z0|u).

B. Problem with translations
Consider transition probability p(zt−1|zt, u) = q(zt−1|x̂, zt). Translation equivariance of p(zt−1|zt, u) means that

p(zt−1 + t|zt + t, u + t) = p(zt−1|zt, u) ∀t ∈ R3. (S1)

More precisely,
N (zt−1 + t; µ̂t(zt + t, u + t), ς2

t I) = N (zt−1; µ̂t(zt , u), ς2
t I), (S2)

where

µ̂t(zt , u) = µt(x̂, zt) =
αtσ

2
t−1

σ2
t

zt +
αt−1σ2

t
σ2

t
x̂, (S3)

and
x̂ =

1
αt

zt −
σt
αt

φ(zt , u, t). (S4)

Therefore, the mean of this distribution can be written as:

µ̂t(zt , u) =
1
αt

zt −
σ2

t
αtσt

φ(zt , u, t). (S5)

Neural network φ is translation invariant meaning that φ(zt + t, u + t, t) = φ(zt, u, t). It means that:

µ̂t(zt + t, u + t) =
1
αt
(zt + t)− σ2

t
αtσt

φ(zt + t, u + t, t) (S6)

=
1
αt
(zt + t)− σ2

t
αtσt

φ(zt , u, t) (S7)

=
1
αt

zt −
σ2

t
αtσt

φ(zt , u, t) +
1
αt

t (S8)

= µ̂t(zt , u) +
1
αt

t (S9)

= µ̂t(zt , u) + λtt. (S10)
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So we see that µ̂t(zt , u) is equivariant to translations, however input and output translations are not equal because
λ ̸= 1. It means that equivariance of distributions from Equations (S1) and (S2) does not hold. More formally,

p(zt−1 + t|zt + t, u + t) = N
(

zt−1 + t; µ̂t(zt , u) + λt, ς2
t I
)

(S11)

= N
(

zt−1; µ̂t(zt , u) + (λ− 1)t, ς2
t I
)

(S12)

̸= N
(

zt−1; µ̂t(zt , u), ς2
t I
)

. (S13)

We can also write that

p(zt−1 + t|zt + t, u + t) = p (zt−1 + (1− λ)t|zt, u) ̸= p (zt−1|zt, u) . (S14)
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3. IMPLEMENTATION DETAILS

Algorithm S1. Training

Input: linker x, context u, neural network φ
Sample t ∼ U (0, . . . , T), ϵt ∼ N (0, I)
zt ← αtx + σtϵt
ϵ̂t ← φ(zt, u, t)
Minimize ∥ϵt − ϵ̂t∥2

Algorithm S2. Sampling

Input: context u, neural network φ
Center context u at f (u)
Sample zT ∼ N (0, I)
for t in T, T − 1, . . . 1:

Sample ϵt ∼ N (0, I)
ϵ̂t ← φ(zt, u, t)
zt−1 ← (1/αt) · zt − σ2

t /(αtσt) · ϵ̂t + ςt · ϵt
end for
Sample x ∼ p(x|z0, u)

A. Dynamics

EGNN takes as input a graph of atoms belonging to the linker zt and its context u represented by feature vectors hi ∈ Rin

and coordinates ri ∈ R3. Feature vector hi consists of atom types, fragments flag and time step t. If anchors are known,
additionally anchor flag is passed. If the model is conditioned on the protein pocket, an additional pocket flag is passed.

Forward pass
First, atom features are passed to the encoder: hi → Linear(in, nf)→ h0

i .
Next, L Equivariant Graph Convolutional Layers (EGCL) are sequentially applied. Learnable components of EGCL
ϕe, ϕh, ϕr are implemented as neural networks that include fully-connected layers (FC), batch normalization layers (BN)
and activations SiLU.

Message ϕe
Takes a pair of node embeddings hl

i and hl
j and the squared distance d2

ij = ∥ri − rj∥2 between these nodes and outputs a

message mij ∈ Rnf:

concat[hl
i , hl

j, d2
ij]→ {FC(2 · nf + 1, nf)→ SiLU→ FC(nf, nf)→ SiLU}→ mij

Features update ϕh
Takes as input node embedding hl

i and its aggregated message mi = ∑j mij and returns the updated node embedding:

concat[hl
i , mi]→

→ {FC(2 · nf, nf)→ BN→ SiLU→ FC(nf, nf)→ BN→ add(hl
i)}→

→ hl+1
i

Coordinates update ϕr
Takes the same input as ϕe and outputs a scalar value:

concat[hl
i , hl

j, d2
ij]→

→ {FC(2 · nf + 1, nf)→ SiLU→ FC(nf, nf)→ SiLU→ FC(nf, 1)}→
→ output

B. SizeGNN
Graph neural network for predicting probabilities of the number of atoms in the prospective linker for a given set of
fragments takes as input a fully-connected graph of atoms belonging to the fragments represented by feature vectors
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Table S1. Hyper parameters of EGNN models trained on ZINC, Multi-Fragment and Pocket datasets.

dataset given anchors nf L batch size epochs time per epoch, min

ZINC no 128 8 128 300 15.2

ZINC yes 128 8 128 300 17.1

Multi-Fragment no 128 6 64 839 10.6

Multi-Fragment yes 128 6 128 1240 10.1

Pocket (full atomic representation) yes 128 6 32 420 20.3

Pocket (backbone representation) yes 128 6 32 620 10.7

Pocket (no pocket) yes 128 6 32 670 8.4

Table S2. Hyper parameters of SizeGNN models trained on ZINC and Multi-Fragment datasets.

dataset in hid out L batch size epochs time per epoch, min

ZINC 8 256 10 5 256 53 10.6

Multi-Fragment 9 256 33 5 256 119 9.2

hi ∈ Rin and inter-atomic squared distances d2
ij = ∥ri − rj∥2, and outputs a vector of probabilities corresponding to the

predefined linker sizes p ∈ [0, 1]out.

Forward pass
First, node embeddings are computed: hi → Linear(in, nf)→ h0

i .
Next, a sequence of L Graph Convolutional Layers (GCL) is applied. Learnable components of GCL ϕe, ϕh are imple-
mented in the same way as for EGNN. Finally, node embeddings hL

i are projected onto Rout, aggregated and normalized
resulting in the vector of label probabilities:

hL
i → {FC(nf, out)→ Mean→ Softmax}→ p

C. Training
We trained all DiffLinker models with T = 500 diffusion steps using polynomial noise schedule:

αt = (1− 2s) · (1− (t/T)2), (S15)

where s = 10−5 is a precision value that helps to avoid numerically unstable situations [31]. We trained separate models
for ZINC, Multi-Frag and Pocket datasets. Hyper parameters of the models and average time required for training one
epoch are provided in Table S1. All models were trained on a single Tesla V100-PCIE-32GB GPU using Adam with
learning rate 2 · 10−5 and weight decay 10−13.

We trained two SizeGNN models ––– for ZINC and Multi-Frag datasets. Hyper parameters of the models and average
time required for training one epoch are provided in Table S2. Both models were trained using Adam with learning rate
10−4 and weight decay 10−13. Both models were trained on a single Tesla V100-PCIE-32GB GPU.
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4. EVALUATION METHODOLOGY

A. Evaluation details
The main difference between our and other methods is that we generate 3D point clouds of atoms that are further
connected with covalent bonds while other methods generate covalent bonds along with atom types. We emphasize that
both DeLinker and 3DLinker employ valency rules at each generation step, which facilitates the generation of samples
with high chemical validity. In our case, DiffLinker learns these chemical rules from the data and places atoms at the
relevant distances from each other. Since the output of DiffLinker is a 3D point cloud, we compute covalent bonds
between pairs of atoms based on their types and pairwise distances using OpenBabel [47].

To be consistent in the evaluation methodology, we recomputed covalent bonds using OpenBabel for all molecules in
ZINC and CASF test sets. Next, for each updated molecule, we obtained linkers by removing irrelevant atoms and saved
the resulting molecules and fragments in SDF and SMILES formats. Molecules saved in SDF format were considered as
ground truth and used for 3D comparison (for computing RMSD and SCRDKit metrics). Molecules and linkers saved in
SMILES format were considered as ground truth and used for 2D comparison (novelty and recovery rates). To evaluate
other methods, we used original SMILES representations.

Our samples
For each generated point cloud, we computed covalent bonds with OpenBabel, and extracted the largest connected com-
ponent. Next, we obtained a linker by matching the generated molecule with the corresponding fragments (computed
with OpenBabel as explained above) and removing irrelevant atoms. Finally, we kekulized [48] the resulting linker
and saved the generated molecule with recomputed covalent bonds and the corresponding linker in SDF and SMILES
formats.

Table S3. Average quantitative estimation of drug-likeness (QED) [49], synthetic accessibility (SA) [50], and number
of rings for molecules in training, validation and test datasets.

Dataset QED ↑ SA ↓ # Rings ↑

Z
IN

C

Train 0.734 2.986 0.213

Validation 0.736 2.930 0.207

Test 0.729 2.944 0.274

G
EO

M

Train 0.546 2.720 0.901

Validation 0.556 2.711 0.853

Test 0.537 2.735 0.849

Po
ck

et
s Train 0.330 5.330 0.926

Validation 0.418 4.783 0.763

Test 0.356 5.445 1.272

CASF 0.481 3.572 0.271

Metrics
To compute validity, we apply sanitization and additionally check that the molecule contains all atoms from fragments.
For all other metrics, we consider only a subset of valid samples. To compute novelty, we first preprocess SMILES
of the linker by removing stereochemistry and using canonical tautomer SMILES. Next, we count how many of the
resulting generated linker SMILES were represented in the training set. To compute uniqueness, we compare SMILES
of whole molecules and compute the number of unique molecules sampled for each input pair of fragments. To
compute recovery, we compare SMILES of each molecule sampled for a given pair of fragments with SMILES of
the corresponding ground-truth molecule. Before the comparisons, we remove hydrogens and stereochemistry from
molecules. To compute RMSD, we consider only recovered molecules and align them with the corresponding ground-
truth molecules using RDKit function rdkit.Chem.rdMolAlign which returns the optimal RMSD for aligning two
molecules. Other properties are also computed with the RDKit package, such as: quantitative drug-likeness (QED) [49]
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using the function rdkit.Chem.QED.qed; synthetic accessibility (SA) score with the function calculateScore provided
by Ertl and Schuffenhauer [50] in the RDKit-compatible package sascorer.py; number of rings, with the function
rdkit.Chem.rdMolDescriptors.CalcNumRings. Table S3 provides mean QED, SA and number of rings computed for
molecules in training, validation and test datasets.

B. 2D filters
2D Filters used by Imrie et al. [26] for constructing ZINC and CASF datasets include synthetic accessibility [50], ring
aromaticity (RA), and pan-assay interference compounds (PAINS) [51] criteria. RA controls the correctness of the
covalent bond orders in the rings of the a linker and PAINS checks if a molecule does not contain compounds that often
give false-positive results in high-throughput screens [51]. Even though we used the same datasets as in [26] that were
created using all three filters, we however modify the metric "Passed 2D Filters" by removing SA from it. Instead we
introduce our own SA-based metric that we report separately.

Implementation of the SA filter
The molecule is considered to pass the synthetic accessibility filter if its SA-score [50] is lower than SA-score of the
corresponding pair of fragments. Even though our models performed on par or better than DeLinker and 3DLinker
according to all other metrics, almost all molecules generated by our models did not pass SA-filter. We investigated this
issue and figured out that SMILES of fragments passed to SA filter by DeLinker and 3DLinker contained dummy atoms
representing anchors. These atoms did not have any atom type assigned and therefore such molecules were considered
hard to be synthesised. For almost all molecules in the test set SA-scores of fragments with dummy atoms were higher
than SA-scores of the whole molecules. However, for most of fragments without dummy atoms SA-scores were much
lower. Figure S1 shows 4 examples of molecules and fragments with and without dummy atoms and the corresponding
SA-scores. We can conclude that SA-filter proposed by authors of DeLinker shows nothing but the fact that molecules
with unknown atoms are hard to be synthesized. Therefore, we considered this metric to be irrelevant and excluded it
from our report. Instead, we report average Synthetic Accessibility score of full generated molecules.

2.11

2.29

3.26

2.01

2.23

3.49

2.11

2.88

4.37

2.33

2.21

3.44

our fragments
(without dummy atoms)

full molecules

DeLinker fragments
(with dummy atoms)

Fig. S1. Synthetic accessibility scores (SA-scores) for fragments without dummy atoms (top row), full molecules
(middle row) and fragments with dummy atoms (bottom row).

C. DeLinker and 3DLinker on GEOM Dataset
To evaluate DeLinker and 3DLinker on GEOM dataset, we had to filter the original test set consisting of 1,288 input
fragment sets and remove examples with more than 3 disconnected fragments. For the remainder test set that included
1,170 input fragment triplets, we ran both DeLinker and 3DLinker twice: first, to connect two randomly selected
fragments (10 samples per fragment pair) and then to connect the resulting compound with the third fragment (10 samples
per input). To obtain the linker of the correct (ground-truth) size, in both steps, we generated half of the original linker
size. Overall, we obtained 100 samples for each input fragment triplet. We used a pre-trained DeLinker model available
at https://github.com/oxpig/DeLinker and a pre-trained 3DLinker model available at https://github.com/YinanHuang/3DLinker.
The results are provided in Tables 1 (main text) and S5.
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Scores of Di�Linker samples and inactive compounds Scores of inactive compounds and crystal structures

Scores of Di�Linker samples and inactive compounds Scores of inactive compounds and crystal structures

A B

C D

GNINA score GNINA score

Vina score Vina score

Fig. S2. Comparison of GNINA (the higher the better) and Vina (the lower the better) scores of inactive compounds
with DiffLinker samples and crystal structures from PDBbind with reported Kd values.

D. GNINA for Hsp90 docking
To demonstrate the suitability of GNINA [52] and Vina for docking of small molecules to Hsp90 proteins, we perform
two experiments.

First, we assemble a set of 76 Hsp90 structures with their corresponding ligands from PDBbind v2020 [53] database
and compare the reported experimental KD values to GNINA’s and Vina predicted affinities without redocking or
minimization in Extended Data Figure 3. While it is obvious that the computational docking tool is not a perfect predictor
of in vivo binding affinity, there is some level of correlation between the experimental and computational values which
justifies using GNINA as an accessible computational proxy of true binding affinity.

Second, we dock and score molecules reported to be inactive to Hsp90 in three binding assays (PubChem AID 754: 657
molecules, PubChem AID 687006: 81 molecules, PubChem AID 1803875: 18 molecules). Figure S2 shows the distribu-
tions of GNINA (A-B) and Vina (C-D) scores of the docked inactive compounds and compares them with the scores
of DiffLinker samples (A-C) and ligands from PDBbind used in Figure 3G-H (main text). While both scores represent
the expected situation where inactive compounds tend to have worse scores than other molecules, inactive molecules
obtain relatively high Vina scores likely as a consequence of the docking being performed using the Vina scoring function.

While computational docking methods and state-of-the-art docking scores are known to have many limitations [54],
experiments performed here with compounds inactive to Hsp90 (Figure S2) and with crystal structures of protein-ligand
complexes with reported KD values (Extended Data Figure 3) suggest that the chosen GNINA and Vina scores are
satisfactory computational tools to assess the quality of samples generated by DiffLinker in terms of its interaction with
the target protein.
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5. ADDITIONAL RESULTS

A. GEOM
As mentioned in Section 4C, we filtered the original GEOM test set consisting of 1,288 input fragment sets and remove
examples with more than 3 disconnected fragments. For each input fragment set, we obtained 100 samples with 3DLinker.
For consistency we report DiffLinker performance on GEOM in Tables 1 (main text) and S5 computed in the same setting:
1,170 input examples and 100 samples per input. DiffLinker results computed on the full GEOM test set with 250 samples
per input are provided in Tables S6 and S7.

B. Pockets
DiffLinker results on the Pockets test set with 100 samples per input are provided in Tables S6 and S7 as well. We note
that train/test split of the Pockets dataset was performed solely based on PDB-codes of the protein-ligand complexes
and EC numbers of proteins. In the resulting dataset used for evaluation, we therefore have 17 molecules that are also
represented in the training set but bound to different proteins. For the full picture, we alternatively provide another
reduced test set which does not contain molecules from the training set at all. It includes 453 examples from the initial
test set. We provide evaluation metrics obtained on the reduced test set in Table S8.

C. Inpainting

Table S4. Comparison of DiffLinker trained in 3D-conditioning setting with DiffLinker trained in inpainting setting.
Evaluation was performed on ZINC validation set. For each input pair of fragments we sampled 50 linkers.

Method Valid, % Recovered, % RMSD ↓ SCRDKit ↑ QED ↑ SA ↓ # Rings ↑

3D-conditioning 91.0 66.3 0.31 0.92 0.71 3.02 0.21

Inpainting 65.5 65.9 0.79 0.89 0.73 3.09 0.25

Instead of defining a 3D-conditional diffusion model, an alternative approach to this problem is to view linker generation
as an inpainting task where a part of the molecule is known, and the rest needs to be recovered. Inpainting with diffusion
models is achieved by training an unconditional diffusion model on the full molecules, and replacing the learned
denoising process with the true denoising process for the known parts during sampling [46]. However, training a model
on full molecules defeats the purpose of fragment-based molecule generation, which aims to reduce the problem size
by avoiding the generation of all atoms. Instead of learning the full molecular space, which is necessary in inpainting
formulation, we propose the 3D-conditioning mechanism that allows to focus on learning the subspace of valid linkers.
Besides, inpainting formulation lacks consistency in case protein pockets are included: such a model would have to
learn a more complex space of the molecules along with the corresponding pockets. At the same time, the proposed
3D-conditioning mechanism naturally scales to this scenario.

Technically, molecular linker design can be considered as an inpainting task, and such a strategy can be easily im-
plemented using vanilla Equivariant Diffusion Model [31] with a minor adaptation of the sampling function. However,
3D-conditioning remarkably outperforms inpainting approach in the simplest linker design setup. In Table S4 we
provide a comparison of DiffLinker trained in 3D-conditioning setting with DiffLinker trained in the inpainting setting.
Both models have identical architectures and were trained with identical hyper parameters. For evaluation we used
validation ZINC set (400 examples) and sampled 50 linkers for every pair of input fragments.

As shown in Table S4, using 3D-conditioned model reduces the number of invalid molecules (i.e., chemically in-
correct or with disconnected fragments) by 25%. Moreover, the inpainting model generates molecules with worse
RMSDs. Even though the chemical properties of the molecules generated by both methods are comparable, significantly
lower validity indicates that inpainting approach is suboptimal in the implemented molecular linker design task.
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Fig. S3. Distributions of atom types in train and test datasets and the corresponding DiffLinker samples.

Table S5. Additional metrics assessing the ability to generate compounds that are similar to reference molecules.
2D filters include ring aromaticity (RA), and pan-assay interference compounds (PAINS) [51] criteria. SCRDKit score
reflects geometric and chemical similarity of samples to reference compounds. Top-2 best results for each metric are
highlighted in bold.

SCRDKit

Method 2D Filters, % Recovery, % RMSD ↓ > 0.7 > 0.8 > 0.9 Avg ↑

Z
IN

C

DeLinker + ConfVAE + MMFF 84.88 80.2 5.48 3.73 0.61 0.09 0.49

3DLinker (given anchors) 84.24 94.0 0.10 99.86 97.05 63.78 0.92

3DLinker 83.72 93.5 0.11 99.83 96.22 63.63 0.92

DiffLinker 86.26 82.0 0.34 99.72 94.62 67.85 0.93

DiffLinker (given anchors) 84.36 87.2 0.32 99.96 97.02 71.73 0.94

DiffLinker (sampled size) 87.98 70.7 0.34 99.37 90.21 51.90 0.90

DiffLinker (given anchors, sampled size) 84.76 77.5 0.35 99.67 95.04 56.35 0.91

C
A

SF

DeLinker + ConfVAE + MMFF 77.25 52.8 11.89 1.24 0.19 0.03 0.39

DiffLinker 87.73 42.8 0.44 92.17 79.62 50.14 0.84

DiffLinker (given anchors) 82.37 50.2 0.37 95.07 89.05 60.63 0.86

DiffLinker (sampled size) 89.27 40.5 0.34 92.83 79.12 43.99 0.82

DiffLinker (given anchors, sampled size) 82.08 48.8 0.32 94.52 87.90 55.25 0.84

G
EO

M

DeLinker + ConfVAE + MMFF 100.00 0.0 — 0.00 0.00 0.00 0.42

3DLinker 94.10 0.0 — 60.63 29.30 8.22 0.72

DiffLinker 47.68 85.6 0.12 95.53 87.87 71.36 0.92

DiffLinker (given anchors) 49.70 85.2 0.12 95.12 86.79 69.91 0.92

DiffLinker (sampled size) 55.68 68.8 0.07 91.74 81.47 57.11 0.88

DiffLinker (given anchors, sampled size) 57.90 67.9 0.07 90.95 79.57 54.78 0.87
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Table S6. Performance metrics on GEOM (250 samples, full test set) and Pockets test set (100 samples). The first three
metrics, average quantitative estimation of drug-likeness (QED) [49], average synthetic accessibility (SA) [50] and
average number of rings in the linker, assess the chemical relevance of the generated molecules. The last three metrics,
validity, uniqueness and novelty, evaluate the standard generative properties of the methods. Top-2 best results for
each metric are highlighted in bold.

Method QED ↑ SA ↓ # Rings ↑ Valid, % Unique, % Novel, %

G
EO

M

DiffLinker 0.48 2.99 0.75 93.4 31.6 68.7

DiffLinker (given anchors) 0.49 3.01 0.79 93.5 32.1 68.5

DiffLinker (sampled size) 0.45 3.27 0.76 87.1 57.3 76.2

DiffLinker (given anchors, sampled size) 0.46 3.33 0.84 88.6 58.2 76.2

Po
ck

et
s DiffLinker (pocket atoms) 0.45 3.89 1.06 88.7 62.5 73.1

DiffLinker (pocket backbone) 0.45 3.77 0.95 90.4 60.9 72.8

DiffLinker (unconditioned) 0.45 3.83 1.10 93.6 61.1 74.9

Table S7. Additional metrics assessing the ability to generate compounds that are similar to reference molecules. For
GEOM (250 samples, full test set) and Pockets test set (100 samples). 2D filters include ring aromaticity (RA), and
pan-assay interference compounds (PAINS) [51] criteria. SCRDKit score reflects geometric and chemical similarity of
samples to reference compounds. Top-2 best results for each metric are highlighted in bold.

SCRDKit

Method 2D Filters, % Recovery, % RMSD ↓ > 0.7 > 0.8 > 0.9 Avg ↑

G
EO

M

DiffLinker 49.47 89.1 0.11 95.90 88.81 73.31 0.93

DiffLinker (given anchors) 51.25 88.0 0.11 95.57 87.77 72.12 0.93

DiffLinker (sampled size) 56.05 77.5 0.07 92.11 82.11 58.03 0.88

DiffLinker (given anchors, sampled size) 58.16 77.1 0.07 91.38 80.37 55.71 0.88

Po
ck

et
s DiffLinker (pocket atoms) 69.47 37.3 0.87 71.61 57.30 34.52 0.78

DiffLinker (pocket backbone) 66.48 37.8 0.89 65.58 52.77 31.50 0.76

DiffLinker (unconditioned) 59.43 36.5 0.89 64.06 50.95 30.59 0.75
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Table S8. Performance metrics on the reduced Pockets test set (453 examples, 100 samples). Average quantitative esti-
mation of drug-likeness (QED) [49], average synthetic accessibility (SA) [50] and average number of rings in the linker
assess the chemical relevance of the generated molecules. Validity, uniqueness and novelty, evaluate the standard
generative properties of the methods. 2D filters include ring aromaticity (RA), and pan-assay interference compounds
(PAINS) [51] criteria. SCRDKit score reflects geometric and chemical similarity of the samples to the reference com-
pounds. Top-2 best results for each metric are highlighted in bold.

Method QED ↑ SA ↓ # Rings ↑ Valid, % Unique, % Novel, %

DiffLinker (pocket atoms) 0.50 3.77 1.07 86.2 77.5 90.7

DiffLinker (pocket backbone) 0.50 3.62 0.94 88.3 75.6 90.6

DiffLinker (unconditioned) 0.51 3.70 1.13 92.0 75.7 93.0

SCRDKit

Method 2D Filters, % Recovery, % RMSD ↓ > 0.7 > 0.8 > 0.9 Avg ↑

DiffLinker (pocket atoms) 60.84 31.2 0.86 66.35 48.67 26.62 0.75

DiffLinker (pocket backbone) 57.15 31.1 1.03 58.76 42.81 23.14 0.72

DiffLinker (unconditioned) 48.52 30.1 0.96 57.03 40.57 22.16 0.72
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Table S9. Standard deviation of QED, SA, number of rings, RMSD and SCRDKit metrics reported in Tables 1 (main
text), S5, S6 and S7

.

Dataset QED SA # Rings RMSD SCRDKit

Z
IN

C

DeLinker + ConfVAE + MMFF 0.16 0.68 0.42 2.29 0.14

3DLinker (given anchors) 0.16 0.67 0.42 0.29 0.08

3DLinker 0.16 0.68 0.43 0.31 0.08

DiffLinker 0.14 0.73 0.45 0.44 0.07

DiffLinker (given anchors) 0.14 0.76 0.47 0.43 0.06

DiffLinker (sampled size) 0.15 0.77 0.54 0.44 0.08

DiffLinker (given anchors, sampled size) 0.15 0.81 0.59 0.49 0.08

C
A

SF

DeLinker + ConfVAE + MMFF 0.18 0.95 0.66 5.30 0.13

DiffLinker 0.18 0.90 0.60 0.53 0.28

DiffLinker (given anchors) 0.18 0.90 0.66 0.42 0.27

DiffLinker (sampled size) 0.16 0.87 0.53 0.43 0.29

DiffLinker (given anchors, sampled size) 0.17 0.88 0.61 0.41 0.30

G
EO

M

DeLinker + ConfVAE + MMFF 0.13 0.88 0.00 — 0.07

3DLinker 0.16 0.61 0.00 — 0.14

DiffLinker 0.14 0.62 0.73 0.29 0.12

DiffLinker (given anchors) 0.14 0.64 0.78 0.27 0.12

DiffLinker (sampled size) 0.15 0.70 0.87 0.18 0.16

DiffLinker (given anchors, sampled size) 0.14 0.74 0.95 0.20 0.15

Po
ck

et
s DiffLinker (pocket atoms) 0.20 0.70 0.89 0.85 0.21

DiffLinker (pocket backbone) 0.19 0.68 0.75 0.86 0.21

DiffLinker (unconditioned) 0.20 0.68 0.85 0.82 0.22

Table S10. Sampling time for different datasets (with T = 500 denoising steps). Experiments were performed on a
single Tesla V100-PCIE-32GB GPU.

dataset batch size time per molecule, s

ZINC 128 0.37

CASF 128 0.63

Multi-Fragment 64 0.37

Pockets (full atomic representation) 32 0.46

Pockets (backbone representation) 32 0.21

Pockets (no pocket) 32 0.12
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