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1.1 Details on running the compared methods

ESM-IF. We utlize the test script provided in the ESM GitHub
repository (https://github.com/facebookresearch/esm/tree/main/examples/
inverse folding), with the model esm if1 gvp4 t16 142M UR50 and all other
default settings.

ProteinMPNN. ProteinMPNN offers multiple models based on varying
noise levels. For a more comprehensive comparison, we use the Protein-
MPNN (default) model with 0.2Å noise and the ProteinMPNN (v 48 002)
model with 0.02Å noise. We use the testing scripts of ProteinMPNN
from the ProteinMPNN GitHub repository (https://github.com/dauparas/
ProteinMPNN). Except for our selection of different models for testing, all
parameter settings employ the default options provided by GitHub.

ProDESIGN-LE.We utilized all sequences designed by the ProDESIGN-LE
provided server (http://falcon.ictbda.cn:89/serving2/submit/aFGjrWnGyA/
?app=prodesign). All parameters were selected according to the default
settings of this method.

ABACUS-R. We utilized the test script provided on the GitHub (https://
github.com/liuyf020419/ABACUS-R/tree/main/demo) for protein sequence
design through ABACUS-R. All parameters were selected from the default
options provided in the config file on the website.

ESM-1v. In predicting functional effects of variants, we employed ESM-
1v as the benchmark criterion. We use the testing script of ESM-1v in
the ESM GitHub repository (https://github.com/facebookresearch/esm/tree/
main/examples/variant-prediction). All the hyper-parameters are default.

ProGen2. We use the model ProGen2-xLarge (6.4B). The GitHub reposi-
tory is (https://github.com/salesforce/progen/tree/main/progen2). All hyper-
parameters are default.

1.2 Additional details on ablation models

The ablation models we trained include:

1. Based on CarbonDesign (default), we removed the network recycling, and
this model will also disable the language model added during the recycling
stages.

2. Based on CarbonDesign (default), we removed the pairwise amino acid
head.

3. Based on CarbonDesign (default), we removed the side chain head during
training.

https://github.com/facebookresearch/esm/tree/main/examples/inverse_folding
https://github.com/facebookresearch/esm/tree/main/examples/inverse_folding
https://github.com/dauparas/ProteinMPNN
https://github.com/dauparas/ProteinMPNN
http://falcon.ictbda.cn:89/serving2/submit/aFGjrWnGyA/?app=prodesign
http://falcon.ictbda.cn:89/serving2/submit/aFGjrWnGyA/?app=prodesign
https://github.com/liuyf020419/ABACUS-R/tree/main/demo
https://github.com/liuyf020419/ABACUS-R/tree/main/demo
https://github.com/facebookresearch/esm/tree/main/examples/variant-prediction
https://github.com/facebookresearch/esm/tree/main/examples/variant-prediction
https://github.com/salesforce/progen/tree/main/progen2
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CAMEO CASP15

CarbonDesign (default) 0.60 0.54

no network recycling and language model 0.52 0.48

no pairwise amino acid head 0.51 0.47

no side chain head 0.59 0.52

Table S1: Evaluation of ablation models on CAMEO and CASP15 testing
sets.

1.3 Intuitive connections

During the encoding of backbone structures, the direct operation on nodes
and edges plays a crucial role in determining the information flow and learning
their representations.

ProteinMPNN and ESM-IF utilize different approaches for node and edge
encoding. In ProteinMPNN, a graph neural network is used, while ESM-IF
employs a Geometric Vector Perceptron (GVP) [62] for this task. Information
on each edge in these models is updated based on the edge itself and its related
edges (Figure S1a).

In contrast, CarbonDesign’s Inverseformer uses triangular attention
updates on edges, where the representation of each edge is updated by
considering the representations of edges sharing a node (Figure S1b). This
approach is inspired by AlphaFold’s Evoformer, where triangular edge updates
are motivated by the need to satisfy the triangle inequality constraints on
residue-residue distances. In CarbonDesign, we establish an intuitive con-
nection between triangular edge updates in sequence design and the Belief
Propagation algorithm used in probabilistic graphical models.

In probabilistic models like Bayesian networks and Markov Random
Fields, a graph G = (V,E) is employed to describe the joint distribution of
P (X1, X2, ..., Xn) for n random variables (Figure S1c). Each variable xi is rep-
resented as a node, and edges between variables represent direct correlations.
The Belief Propagation algorithm aims to calculate the marginal distribu-
tion of a specific variable or a subset of variables by iteratively aggregating
probability mass from neighboring nodes. Specifically, mji(xj) represents the
“belief” of variable xi based on variable xj , and it is updated by aggregating
information from all edges jk (k ̸= i) connected to node j (Equation 8).

mji(xi) =
∑
xj

ϕ(xj)ϕ(xi, xj)
∏

k∈N(j),k ̸=i

mkj(xj)

 (8)
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Fig. S1: Edge update in ProteinMPNN, Inverseformer, and Belief
Propagation algorithm. a, ProteinMPNN updates representation of edge
ij using the edge itself and the nodes i and j. b, Inverserformer updates
representation of edge ij using the information from all related edges ik and
jk (i, j ̸= k). c, BP algorithm updates the belief on edge ij using beliefs from
all edges jk connected to j (k ̸= j).

1.4 Global inference mode for the amortized MRF model

In the MRF-sequence module, we leverage a local inference mode to generate
intermediate sequences (see Methods in the main text) and a global infer-
ence mode to produce the final designed sequences (Algorithm 2), respectively.
Since it is computationally infeasible to determine the sequences that exactly
maximize the full likelihood under the MRF model (Equation 3), we use an
efficient and straightforward greedy approach for approximation.

We initialize the sequence with the local inference mode, denoted as xintmd.
Subsequently, we update each amino acid by maximizing its conditional
likelihood given the identities of other amino acids:

xfinal
i = argmax

xi

P(Xi = xi| X⌝i = xintmd
⌝i ; s, z), i = 1, 2, 3, ..., L; (9)

The conditional likelihood involves both the conservation bias term
hi(xi | si) and the pairwise coupling term eij(xi, xj | zij), and it can be
calculated efficiently as follows:

P(Xi = xi| X⌝i = xintmd
⌝i ; s, z) =

1

Zi
exp{hi(xi | si) +

∑
i̸=j

eij(xi, x
intmd
j | zij)}

(10)
Here, Zi is the local partition function that sums over all 20 possible amino
acid types at position i. For both training and inference, we only include edges
for neighboring residues within a Cβ − Cβ distance of 8Å.

We introduce a temperature parameter, T , into CarbonDesign to regulate
the diversity of the designed sequences. This parameter enables CarbonDe-
sign to produce a set of sequences for a provided backbone structure. The
conditional likelihood can be calculated as follows:
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P(Xi = xi| X⌝i = xintmd
⌝i ; s, z, T )

=
1

ZT
i

exp{ 1
T
[hi(xi | si)

∑
i̸=j

eij(xi, x
intmd
j | zij)]} (11)

Here, T represents the sampling temperature. Lower sampling temperatures
lead to a more concentrated distribution, tending to yield more accurate
sequences, whereas higher temperatures lead to generating more diverse
sequences.

We alternately update each amino acid, and after completing updates for
the entire sequence, we proceed to the next round of updates until the sequence
converges. Typically, sequences converge within 2 rounds of updating, and we
set the maximum number of rounds as 3. We note that during the inference
of the MRF model, both si and zij are held constant and treated as static
inputs, and there is no need to run Inverformer to update them in the process.

Algorithm 2 Global inference mode of the MRFs model

1: function GlobalInference(xintmd, {hi(xi|si)}, {eij(xi, xj |zij)},
Nmax=3, T )

#hi(xi| si) ∈ R20, eij(xi, xj | zij) ∈ R20×20

2: xintmd
0 ← xintmd

3: Indices ← randomOrderIndices({0, 1, · · · , L− 1})
4: for m = 1, 2,..., Nmax do
5: for i in Indices do

#Update xi using equation 9 or 11
6: if T=0 then
7: xintmd

i,m ← argmaxxi
P(Xi = xi| X⌝i = xintmd

⌝i,m−1; s, z)
8: else
9: xintmd

i,m ← Sampling(P(Xi = xi| X⌝i = xintmd
⌝i,m−1; s, z, T )

10: end if
11: end for
12: xfinal ← xintmd

Nmax

13: end for
14: return xfinal

15: end function

1.5 Model inference

CarbonDesign consists of two main components: Inverseformer blocks and
the MRF-Sequence Module. The Inverseformer blocks take input backbone
features as initial representations to compute updated representations. Subse-
quently, the MRF-Sequence Module utilizes these representations to generate
intermediate sequences, final designed sequences, and corresponding side chain
structures.
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For inference, the whole network is executed sequentially Ncycle times,
where the output single and pair representations of the former execution are
recycled as inputs for the next execution (Algorithm 3). During the recycling
phase, the intermediate sequence is inferred using the MRF model, and addi-
tional recycling features are extracted from the protein language model ESM2
by obtaining embeddings of the sequence.

In the MRF-Sequence Module, we employ an efficient local inference mode
and a more accurate global inference mode for generating intermediate and
final designed sequences, respectively. The local inference mode utilizes only
the conservation bias term to infer the intermediate designed sequence:

x∗
i = argmax

xi

1

Zi
exp(hi(xi| si)) (12)

Here, Zi represents the local partition function involving only the conserva-
tion bias terms at position i. In contrast, the global inference mode optimizes
the sequence by maximizing the sequence probability under the MRF model,
considering both the conservation bias term and the pairwise coupling term
(Equation 12). The efficient local inference mode allows obtaining the embed-
dings of intermediate sequences in a computationally feasible manner. Since
exact optimization is challenging for the global mode, we initialize the infer-
ence using the sequence from the local inference mode and update sequences
using a fast greedy algorithm (Supplementary Note 2).

During the inference stage, when the types of amino acids are unknown,
we first utilize the single presentation si to predict the side chain structures
xsidechain
i,a ∈ Rb×3 for all possible amino acids, where b represents the number

of side chain atoms and a covers 20 amino acid types. The final side chain
structures are materialized from xsidechain

i,a once the final designed sequence is
determined by the global inference mode of the MRFs model.
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Algorithm 3 CarbonDesign Model Inference

1: function DesignSequence({xbackbone
i }, Nrecycle = 3, Nblocks = 12)

#compute input node and edge features (see Input features in Methods)
2: dij ← ∥xbackbone

i − xbackbone
j ∥2

3: dij ← oneHotEncoding(dij , vbins = [ 34 Å, 3
2 Å, ..., 15Å] )

4: ti ← computeLocalOrientations({xbackbone
i })

#initialize recycling features as 0
5: sprevi , zprevij = 0

6: for m = 1, 2, ..., Nrecycle do # shared weights during recycling
7: si ← Linear(Relu(Linear(ti)))
8: zij ← Linear(Relu(Linear(dij)))

9: zij ← zij + PariwiseRelativePositionEmbedding(i, j)

10: si ← si + Linear(Relu(Linear(sprevi )))
11: zij ← zij + Linear(Relu(Linear(zprevij )))

12: for n = 1, 2, 3, ..., Nblocks do
13: si, zij ← Inverseformer(si, zij)
14: end for

#generate intermediate sequence using local inference mode
(Equation 12)

15: xintermediate = MRFLocalInference(si)

#extract embedding of intermediate sequence using ESM2
16: {ei} = EmbeddingFromESM2(xintermediate)

#update initial single and pair representations for next cycle
17: sprevi ← si + Linear(ei)
18: zprevij ← zij
19: end for

#predict side chain angle χ1,χ2,χ3,χ4 for all possible amino acid types
20:

−→α f
i,a = Linear(ReLU(si)) # −→α f

i,a ∈ R2, f ∈ Storsion names, a ∈
20 amino acid types

#calculate atom coordinates from torsion angles following AlphaFold
21: xsidechain

i,a = computeSC(xbackbone
i ,−→α f

i,a) # xsidechain
i,a ∈ Rb×3

#generate final sequence using global inference mode (Algorithm 2)
22: xfinal ← MRFGlobalInference(xintermediate, {si}, {zij})

23: xsidechain*
i ← extractSC(xsidechain

i,a ,xfinal
i )

24: return xfinal,xsidechain*

25: end function
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Supplementary Figures
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Fig. S2:Computing local orientations of Cα atoms in backbone struc-
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α atoms.
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300, and 400 generated by the improved version of FrameDiff. We generated
128 backbone structures for each length.



Protein Sequence Design with CarbonDesign 11

Fig. S4: Evaluation of CarbonDesign on protein core and surface
regions. The relative solvent-accessible surface area (RSA) for each residue
is calculated and categorized into Core (< 0.25), Boundary (0.25-0.75), and
Surface (> 0.75) regions. Sequence recovery rates are evaluated for both the
CarbonDesign default model and the model with the recycling and protein
language model excluded.
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Fig. S5: Distributions of amino acid types in designed and native
sequences.a, A comparison between the distributions of amino acid types
in sequences designed by ProteinMPNN and native sequences. b, A compar-
ison between the distributions of amino acid types in sequences designed by
CarbonDesign without MRF modeling and native sequences. c, A comparison
between the distributions of amino acid types in sequences designed by Car-
bonDesign and native sequences.
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Fig. S6: Correlation between the residue-level diversity of designed
sequences and the contact numbers. We measure residue-level diversity
via the entropy of the amino acid distribution at specific sites and quantify
structural context constraints by the number of residues within an 8 Å radius
of each amino acid.
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Supplementary Tables

T1104 T1106s2 T1109 T1110 T1112 T1113
T1114s1 T1114s2 T1114s3 T1120 T1121 T1122
T1123 T1124 T1125 T1127 T1129s2 T1130
T1131 T1132 T1133 T1134s1 T1134s2 T1137s1
T1137s2 T1137s3 T1137s4 T1137s5 T1137s6 T1137s7
T1137s8 T1137s9 T1139 T1145 T1146 T1147
T1150 T1151s2 T1153 T1154 T1155 T1157s1
T1157s2 T1158 T1159 T1162 T1163 T1169
T1170 T1173 T1174 T1175 T1176 T1177
T1178 T1179 T1180 T1181 T1182 T1183
T1184 T1186 T1187 T1188 T1194

Table S2: List of protein names in the CASP15 testing set.

8g4u A 7y4i A 7rcw A 7bi4 A 7v53 A 7pyv B
7vyx A 7nsn A T1125 T1157s1 T1154 T1158
T1169

Table S3: List of protein names in the testing set of long proteins.

T1122 T1130 T1131 T1125 T1113 T1178
T1184 T1155 T1129s2

Table S4: List of protein names in the testing set of orphan proteins.

ProDESIGN-LE ABACUS-R
Protein

MPNN 002
Protein

MPNN 020 ESM-IF CarbonDesign

36.4% 36.3% 46.9% 41.8% 32.6% 55.1%

Table S5: Evaluation on the testing set of long proteins measured
with sequence recovery rate. The table presents the results for 13 proteins
with more than 800 amino acids collected from both the CASP15 and CAMEO
datasets. The average protein length in this set is 1239 amino acids.
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ProDESIGN-LE ABACUS-R
Protein

MPNN 002
Protein

MPNN 020 ESM-IF CarbonDesign

38.9% 32.6% 38.5% 44.3% 46.2% 49.1%

Table S6: Evaluation on the testing set of orphan proteins measured
with sequence recovery rate.

Methods BRCA1 PTEN TP53 MSH2 average

ESM-1v 0.896 1.000 0.994 0.812 0.926

ProGen2 0.876 1.000 0.952 0.844 0.918

CarbonDesign 0.933 0.986 0.984 0.822 0.931

Table S7: Evaluation of CarbonDesign in predicting pathogenicity of
variants with the testing set of clinically curated variants in ClinVar.

Methods
Length
200

Length
300

Length
400

Length
500

Length
600

CarbonDesign(small noise) 0.84 0.69 0.58 0.58 0.48

CarbonDesign(high noise) 0.89 0.80 0.74 0.64 0.54

Table S8: Evaluation on de novo backbone structures from RFDif-
fusion at varying noise levels, measured using scTM score.

Single representation dimension 384

Pair representation dimension 128

Number of heads 8

Number of Inversformer blocks 12

Protein crop size during training 400

Dropout rate during training 0.1

Table S9: Hyperparameters of CarbonDesgin architecture
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Temperature 0.0 0.1 0.2 0.3 0.4 0.5

Sequence
recovery rate 60.1% 58.4% 58.3% 57.9% 57.4% 55.7%

Sequence Level Diversity 0.000 0.067 0.124 0.175 0.226 0.272

Table S10: Sequence Recovery Rate on CAMEO dataset across var-
ious temperatures. We generate 50 sequences per backbone structure and
assess sequence-level diversity via average sequence similarity.

Temperature 0.0 0.1 0.2 0.3 0.4 0.5

scTM-score 0.801 0.809 0.799 0.783 0.773 0.716

Sequence Level Diversity 0.000 0.132 0.214 0.297 0.375 0.462

Table S11: scTM-score on proteins with length 300 in de novo back-
bone structures across various temperatures. We generate 50 sequences
per backbone structure and assess sequence-level diversity via average sequence
similarity.

Methods

Rosetta energy

CAMEO

Rosetta energy

CASP15

ProDESIGN-LE -2.06 -1.51
ABACUS-R -1.87 -1.25

ProteinMPNN 020 -2.25 -1.56
ProteinMPNN 002 -2.12 -1.47

ESM-IF -2.11 -1.46
Rosetta Software -3.54 -2.01
CarbonDesign -2.32 -1.65

Table S12: Evaluation on the testing set of CASP15 and CAMEO
measured with Rosetta energy.
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Methods Rosetta energy

ProDESIGN-LE -3.29
ABACUS-R -3.27

ProteinMPNN 020 -3.30
ProteinMPNN 002 -3.25

ESM-IF -3.27
Rosetta Software -3.84
CarbonDesign -3.48

Table S13: Evaluation on the testing set of de novo backbone struc-
tures measured with Rosetta energy.

Categories Methods Spearman correlation

Tranception-L 0.396
RITA-XL 0.397

MSA free methods ProGen2-XL 0.412
ESM-1v 0.394

CarbonDesign 0.434

Tranception-L (with retrieval on MSA) 0.444
MSA-based methods MSA-Transformer 0.428

DeepSequence 0.429
EVE 0.457

CarbonDesign+MSA-Transformer 0.485
CarbonDesign+Tranception 0.489

Ensemble methods CarbonDesign+DeepSequence 0.489
EVE+Tranception 0.479
CarbonDesign+EVE 0.501

Table S14: Evaluation on variants from 49 deep mutational scanning
essays. We conducted an assessment of methods based on MSA free methods,
MSA-based methods, and ensemble methods. Spearman correlation between
the prediction scores and experimental validated functional scores of the vari-
ants is utilized as a metric.

Methods CarbonDesign (w.o. LM) CarbonDesign

Spearman correlation 0.392 0.435

Table S15: Evaluation of the ablation model of CarbonDesign with-
out using the pre-trained protein language model on the DMS
testing set. Spearman correlation between the prediction scores and experi-
mental validated functional scores of the variants is utilized as a metric.
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Methods CarbonDesign (w.o. LM) CarbonDesign

auROC 0.912 0.933

Table S16: Evaluation of the ablation model of CarbonDesign with-
out using the pre-trained protein language model on the ClinVar
testing set. We used auROC as an evaluation metric with clinical labels as
ground truth.

Methods scTM-score

ProDESIGN-LE 0.38
ABACUS-R 0.36

ProteinMPNN 020 0.38
ProteinMPNN 002 0.37

ESM-IF 0.35
Rosetta Software 0.23
CarbonDesign 0.40

Table S17: Evaluation of CarbonDesign on de novo backbone struc-
ture with length of 500 and 600 generated from FrameDiff. 128
backbone structures were generated for each length.
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