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Supplementary Information

S1 Derivation to illustrate why LNO can learn
two parts of the transient response

In this section, we provide a derivation to demonstrate LNO’s capability to
learn both components of the transient response and the process of incorporat-
ing initial conditions into the method. FNO as well as LNO are based on the
solution of partial differential equations represented by the integral of Green’s
function. To illustrate, we employ an example of an undamped single-degree-
freedom system. The equation of motion for an ordinary differential equation
system is expressed as:

ẍ(t) + ω̄2x(t) = f(t), (1)

subject to: x(t = 0) = x0and ẋ(t = 0) = v0, (2)

where x(t) is a signal in the time domain, ω̄ is the natural frequency, and f(t)
is the source term. Performing the Laplace transform yields:

(s2 + ω̄2)x̃(s) = f̃(s) + sx0 + v0, (3)

where s = σ + iω is a complex frequency domain parameter and σ and ω are
real numbers. Then,

x̃(s) = h̃(s)f̃(s) + h̃(s)[sx0 + v0], (4)

where the transfer function is

h̃(s) =
1

s2 + ω̄2
=

β

s− iω̄
+

β∗

s+ iω̄
, (5)

in which β and β∗ = ±i/(2ω̄) are system residues and ±iω̄ are system poles.
Let s = iω, then Eq. 5 can be re-written as

H(ω) =
1

ω̄2 − ω2
, (6)

1
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where H(ω) is the complex frequency response function (FRF). Eq. 4 can be
categorized into two parts [1]:

x̃(s) = x̃1(s) + x̃2(s), (7)

where

x̃1(s) = h̃(s)f̃(s), (8)

and

x̃2(s) = h̃(s)[sx0 + v0]. (9)

For an arbitrary external force, f(t), it can be expressed as a complex Fourier
series such that

f(t) =

∞∑
m=−∞

CmeiΩmt (10)

where Cm is the mth complex Fourier coefficient, and Ωm = mΩ1, Ω1 is the
fundamental frequency. Performing Laplace transform of Eq. 10, results in

f̃(s) =

∞∑
m=−∞

Cm

s− iΩm
. (11)

Substituting s by iω in Eq. 11 leads to the corresponding frequency represen-
tation:

F (ω) =

∞∑
m=−∞

Cm

iω − iΩm
(12)

Substituting Eqs. 5 and 11 into Eq. 8 yields

x̃1(s) =

(
β

s− iω̄
+

β∗

s+ iω̄

) ∞∑
m=−∞

Cm

s− iΩm
. (13)

Since the common denominator in Eq. 13 is the product of (s− iω̄), (s+ iω̄)
and (s− iΩm), Eq. 13 can be re-written in a partial fraction form as

x̃1(s) =

(
V

s− iω̄
+

V ∗

s+ iω̄

)
+

∞∑
m=−∞

Um

s− iΩm
, (14)
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where V and V ∗ are response residues corresponding to the excitation poles;
and Um are response residues corresponding to the system poles. From Eq. 14,
V can be obtained by [2]

V = lim
s→iω̄

(s− iω̄)x̃1(s). (15)

Substituting Eq. 13 into Eq. 15, we get

V = β f̃(iω̄), (16)

where

f̃(iω̄) =

∞∑
m=−∞

Cm

iω̄ − iΩm
. (17)

Similarly, Um can be obtained by

Um = lim
s→iΩm

(s− iΩm)x̃(s), (18)

and then

Um = Cm h̃(iΩm), (19)

or

Um = Cm H(Ωm). (20)

Once V and Um are computed, by taking the inverse Laplace transform of
Eq. 14, we get

x1(t) = [V exp (iω̄t) + V ∗ exp iω̄∗t)] +

∞∑
m=−∞

Um exp(iΩmt), (21)

where x1(t) = L −1{x̃1(s)} is the response under the zero initial conditions.
For calculating x̃2(s), one can write Eq. 9 into a partial fraction form

x̃2(s) =
A

s− iω̄
+

A∗

s+ iω̄
, (22)

where A = (iω̄x0 + v0)/2iω̄. By performing the inverse Laplace transform, we
get

x2(t) = A exp (iω̄t) +A∗ exp (−iω̄t). (23)
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where x2(t) = L −1{x̃2(s)} is the transient response caused by the non-zero
initial conditions. Finally, the total solution is the sum of Eqs. 21 and 23, and
it reads as:

x(t) = [A exp (iω̄t) +A∗ exp (−iω̄t)] +

[V exp (iω̄t) + V ∗ exp (iω̄∗t)] +

∞∑
m=−∞

Um exp(iΩmt).
(24)

In Eq. 24, the term, A exp (iω̄t) + A∗ exp (−iω̄t) denotes the transient
response caused by non-zero initial conditions; while the term, V exp (iω̄t) +
V ∗ exp (iω̄∗t) is the transient response under zero initial conditions. These
two transient terms are related to the system poles. The last term in Eq. 24,∑∞

m=−∞ Um exp(iΩmt) is the steady-state response operated in the frequency
domain, which can be obtained by performing the inverse Fourier transform
of Eq. 20. In summary, FNO employs a linear weight to capture the described
transient responses, relying on regression for data fitting. While adept at inter-
polation, FNO struggles with extrapolation issues, especially when datasets for
training and testing involve significantly different source terms, f(t). In con-
trast, the accuracy of LNO is significantly higher as it independently learns the
three components, proving particularly effective in extrapolation scenarios.
Furthermore, one can add one parallel part in the Laplace layer to compute the
response caused by the non-zero initial conditions based on the above deriva-
tion. More details about the derivation and relative knowledge can be read
in [3–5].

Next, we summarize the primary differences between FNO and LNO:

1. FNO chooses Kϕ to be a neural network parameterized by ϕ =
(Kϕ(iω1), · · · ,Kϕ(iωL)) in the frequency domain. However, LNO chooses
Kϕ to be a neural network parameterized by ϕ = (µ1, · · · , µN , β1, · · · , βN )
in the Laplace domain, where µn and βn are the trainable system poles and
residues, respectively.

2. LNO learns the steady-state response, transient response under zero initial
conditions, and transient responses caused by non-zero initial conditions,
respectively, which guarantees the true system is learned so that LNO
performs better for extrapolation problems. FNO uses a linear weight to
capture two types of transient responses, which does not totally learn the
system but uses the regression method to fit the data. Thus, FNO is very
good at interpolation problems.

When implementing LNO, the process involves three key steps:

1. The input f(t) undergoes an initial transformation through a linear
operation, resulting in a higher-dimensional representation v(t).

2. v(t) is then subjected to Laplace layers, involving the following substeps:
a) Employing a signal decomposition method, such as FFT or the Prony-
SS method, to express v(t) in a pole-residue form, yielding iωℓ and αℓ.
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b) Defining training parameters µn and βn, which are learned from the data.
c) Calculating output residues γn and λℓ based on Eq. (27) and Eq. (29).

3. In the final substep, Eq. (31) or Eq. (32) is constructed using µn, iωℓ, γn,
and λℓ to obtain the desired output u(t) or u(x, t).

S2 Justification for selecting these benchmarks

In this section, we systematically elucidate the rationale behind the selection
of each example:

1. The Duffing and pendulum systems are examined under two conditions:
first without a damping term and the second with slight damping, caus-
ing transient responses to manifest more gradually. These cases serve as
illustrations to showcase LNO’s ability to learn transient responses.

2. The exploration of the Lorenz system with a parameter setting of ρ = 10
reveals two equilibrium states within its solutions. This deliberate selec-
tion affords a valuable opportunity to showcase LNO’s efficacy in learning
solutions characterized by multiple equilibria.

3. Both the Euler-Bernoulli beam and the diffusion equation exemplify linear
operators, strategically chosen to accentuate how the pole-residue formula-
tion accurately represents the responses of linear systems. This choice aims
to illustrate the precision and fidelity of LNO in capturing the dynamics of
linear operators.

4. The investigation into shallow-water equations serves a comparative pur-
pose, specifically to assess the accuracy of Latent-LNO (L-LNO) against
DeepONet and latent-DeepONet (L-DeepONet), where the latent represen-
tation is acquired through training an autoencoder. This particular example
has been chosen to demonstrate and evaluate the efficacy of LNO in solv-
ing high-dimensional problems, offering insights into its capabilities beyond
lower-dimensional scenarios.

S3 Data generation

This section introduces the details of the data generation for all ODE and
PDE examples.

Duffing oscillator To generate Ntrain samples to train LNO, we consider a
sinusoidal function, ftrain(t) = A sin(5t), where the amplitude A ∈ [0.05, 10]
with δA = 0.05. Each sample is discretized into 2048 temporal points and the
time interval is ∆t = 0.01 seconds. The response is calculated by the solver
ode45 on MATLAB. For validating and testing the neural operators, we gen-
erated datasets considering ftest(t) = Ae−0.05t sin(5t), where the amplitude
A ∈ [0.14, 9.09].

Driven gravity pendulum For the driven gravity pendulum model, we
consider the same forcing functions for training, ftrain, and testing, ftest as
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used in the last example. Thus, Ntrain = 200, Nvali = 50, and Ntest = 130.
The corresponding responses, x(t), are also computed by ode45.

Forced Lorenz system The number of samples for training, testing, and
validation is kept the same as in the previous two examples.

Euler-Bernoulli beam To generate Ntrain samples to train LNO, we con-
sider a function, ftrain(x, t) = Ae−0.05x(1−102) sin(10t), where the amplitude
A ∈ [0.05, 10] with an interval δA = 0.05, therefore Ntrain = 200. Each sam-
ple is discretized on 50 × 50 tempo-spatial grid such that the time interval,
∆t = 0.02 seconds, and the spatial interval, ∆x = 0.03 meters. For validating
and testing the neural operator, a function, ftest(x, t) = Ae−x(1−102) sin(10t),
is considered, where the amplitude A ∈ [1.24, 10.19] and Nvali = 50 and
Ntest = 130. The analytical particular solution of Eq.10 for ftrain is
ytrain(x, t) = Ae−0.05x sin(10t), and for ftest is ytest(x, t) = Ae−x sin(10t).

Diffusion equation For learning the operator of the system in Eq.11, we
consider a function, ftrain(x, t) = Ae−0.05t(1 − π2) sin(πx), where the ampli-
tude A ∈ [0.05, 10] with an interval δA = 0.05, therefore Ntrain = 200. Each
sample is discretized on 50× 50 tempo-spatial grid such that the time interval
is ∆t = 0.01 seconds and the spatial interval, ∆x = 0.08 meters. For validating
and testing the neural operators, we generate a dataset considering the func-
tion, ftest(x, t) = Ae−t(1− π2) sin(πx), where the amplitude A ∈ [1.24, 10.19]
and Nvali = 50 and Ntest = 130. The analytical particular solution of Eq.11
for the source terms, ftrain and ftest are ytrain(x, t) = Ae−0.05t sin(πx) and
ytest(x, t) = Ae−t sin(πx), respectively.

Reaction-diffusion system To generate Ntrain samples for training LNO,
we consider the source term ftrain(x, t) = Ae−0.05t(1 − π2) sin(πx) +
A2e−0.1t sin(πx)2, where A ∈ [0.05, 10], within the interval, we consider δA =
0.05, resulting in Ntrain = 200 samples. Each sample is discretized on a 50×50
tempo-spatial grid with a time interval of ∆t = 0.2 seconds and a spatial inter-
val of ∆x = 0.08. For validation and testing the neural operators, we have
employed the source term ftest(x, t) = Ae−t(1−π2) sin(πx)+A2e−2t sin(πx)2,
where A ∈ [0.14, 9.09] with Nvali = 50 validation samples and Ntest = 130
testing samples. The analytical particular solution for ftrain source term in
Eq.12 is ytrain(x, t) = Ae−0.05t sin(πx), and for ftest source term, the solution
is ytest(x, t) = Ae−t sin(πx).

Furthermore, we investigate the capability of LNO to map the input
with low resolution to the output with high resolution. The source term
f(t) is sampled from a Gaussian random field according to the distribution:

N(0,K(t1, t2)), whereK(t1, t2) = exp[− |t1−t2|2
2(0.5)2 ]. We use 500 samples for train-

ing, and 50, and 130 samples for validation and testing. The corresponding
response y(x, t) to each input sample is calculated by the PDE solver—pdepe
on MATLAB. When solving the PDE, the time and spatial intervals are
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∆t × ∆x is 0.05 × 0.05, respectively. Thus, both the input and output have
a size of 21 × 21. For showing the ability of interpolation, the input of size
21× 21 is down-sampled to size 11× 11. We aim to map the input f(t) of size
11× 11 to the output y(x, t) of size 21× 21.

We also test the ability of LNO to predict the output at locations that
do not have inputs; that is, we choose the input and output at different
locations, which are summarized in Supplementary Section 1. The relative L2

error (7.04 × 10−2 ± 1.89 × 10−4) is similar to the situation that maps the
low-resolution input to high-resolution output (7.43 × 10−2 ± 3.16 × 10−4).
The last two rows of Fig. S3 display error plots of two typical test samples.
Another example—Burger’s equation, which is also used to show the above
two abilities of LNO—is demonstrated in Supplementary Section 1.

Brusselator reaction-diffusion system For training and testing the
operators, slightly different functions ftrain(t) = Atraine

−0.01t sin(t) and
ftest(t) = Ateste

−0.05t sin(t) are considered. The amplitude A belongs to
[0.01, 10] with an interval δA = 0.01, in which random 800 values are used as
Atrain, and 200 values are used as Atest. The response u(x, t) is calculated
by the PDE solver—py-pde on Python [6]. When solving the PDE, the time
interval ∆t is 0.02 seconds, and the spatial interval ∆x × ∆y is 1/28 × 1/28
meters. When training and testing the operators, the snapshots with the time
interval ∆t = 0.5 seconds for each sample are chosen.

Shallow-water equations When generating the training and testing data,
the following values are chosen: Ξ = 7.292 × 10−5 s−1, g = 9.80616 ms−1,
ν = 1.0 × 105 m2s−1, umax = 80 ms−1, ϕ0 = π/7, ϕ1 = π/2 − ϕ0, thus the
jet’s mid-point is applied at ϕ = π/4. Substituting these values into Eq.16, the
initial velocity u is obtained. The height field is then numerically calculated
by integrating the balance equation based on Gaussian quadrature

gh(ϕ) = gh0 −
∫ ϕ

αu(ϕ′)

[
f +

tan(ϕ′)

α
u(ϕ′)

]
dϕ′, (25)

in which α = 6.37122×106 m is the Earth’s radius and h0 = 10 km is the mean
layer depth around the sphere. For generating different input data, we add a
small unbalanced perturbation to the height field h to induce the development
of barotropic instability. The localized Gaussian perturbation is represented
as:

h′(λ, ϕ, t = 0) = ĥ cos(ϕ) exp[−(λ/α)2] exp[−(ϕ2 − ϕ)/β]2, (26)

where −π < λ < π, ϕ2 = π/4 and ĥ = 120 m define the location of
the perturbation. The values α ∼ U [0.1̄, 0.5], β ∼ U [0.03̄, 0.2], which define
the shape of the perturbation, are considered random variables. We generate
Datasets using the Dedalus Project, which can be found at https://github.
com/DedalusProject/dedalus. The simulation domain is a spherical domain
Ω = [−π, π] × [−π, π], which is discretized with ms × ms = 256 × 256 mesh

https://github.com/DedalusProject/dedalus
https://github.com/DedalusProject/dedalus
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points in the directions of longitude and latitude, respectively. The time dura-
tion is t = [0, 360h] with the time interval δt = 1.6̄ · 10−1h, so that mt = 72
time steps are considered. To simply present the results, the time range is
mapped to the dimensionless range t = [0, 1]. In total, Ntrain = 230, Ntest = 70
are generated for training and testing, respectively.

S4 Additional results

Fig. S1 presents the error plots of two representative test samples drawn from
three ODE experiments. Fig. S2 presents the error plots of two representative
test samples drawn from three PDE experiments. Fig. S3 shows pointwise error
plots of responses for two scenarios drawn from reaction-diffusion experiments.
Scenario 1 represents the mapping from low-resolution input to high-resolution
output; Scenario 2 represents the mapping whose input and output are at
different locations. Fig. S4 displays error plots of two typical test samples
drawn from the Brusselator reaction-diffusion experiment.
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Fig. S1 Pointwise error plots of responses for two representative test samples drawn from
three ODE experiments. The ground truth is plotted by red curves and the pointwise error
for LNO, FNO, and GRU are presented by blue curves.
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Fig. S2 Pointwise error plots of responses for two representative test samples drawn from
three PDE experiments. The ground truth is plotted in the left column and the point-wise
errors for LNO and FNO are presented in the right section.
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S5 Comparing neural operators
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Fig. S5 Duffing oscillator: Comparison of training and testing losses and responses obtained
using LNO and FNO: (a) learning curve of the system without damping, (b) representative
response obtained from the system without damping, for test cases, (c) learning curve of the
system with damping c = 0.5, (d) representative response obtained from the system with
damping c = 0.5, for test cases.
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Fig. S6 Driven gravity pendulum: Comparison of training and testing losses and responses
obtained using LNO and FNO: (a) learning curve of the system without damping, (b) rep-
resentative response obtained from the system without damping, for test cases, (c) learning
curve of the system with damping c = 0.5, (d) representative response obtained from the
system with damping c = 0.5, for test cases.



14 S6 BURGER’S EQUATION

(a) (b)

(c) (d)

Learning curve for 𝜌 = 5

Learning curve for 𝜌 = 10

Samples for 𝜌 = 5

Samples for 𝜌 = 10

0 200 400 600 800 1000

epoch

10-3

10-2

10-1

100
Train error of LNO
Test error  of LNO

Train error of FNO
Test error of FNO

0
5

10
Case 25 True

LNO
FNO

-10
0

10
Case 50

0
5

10
Case 75

0 5 10 15 20
Time (seconds)

0
5

10
Case 100

0 200 400 600 800 1000
epoch

10-1

100

Train error of LNO
Test error of LNO

Train error of FNO
Test error of FNO

0

5
Case 25

True
LNO

FNO

0

5
Case 50

0

5
Case 75

0 5 10 15 20

Time (seconds)

0

5
Case 100

Fig. S7 Lorenz system: comparison of learning rates and responses computed by LNO and
FNO: (a) learning curve of the system with ρ = 5, (b) response samples of the system with
ρ = 5, (c) learning curve of the system with ρ = 10, (b) response samples of the system with
damping ρ = 10

S6 Burger’s equation

Burger’s equation is a nonlinear PDE that occurs in various areas, such as fluid
mechanics, nonlinear acoustics, gas dynamics, and traffic flow. For a given field
u(x, t) and kinematic viscosity coefficient ν, it takes the form:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ (0, 1), t ∈ (0, 1]

u(x, 0) = u0(x)

(27)
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with periodic boundary conditions. The initial conditions are modeled as a
Gaussian random process such that u0 ∼ GP (0, C), where C = σ2(−∆ +
τ2I)−γ . In this example, the following values: ν = 1/1000, γ = 2.5, τ = 7
and σ = 7 are considered. We aim to learn the operator mapping the initial
condition to the solution; that is, Gθ : u0 → u(x, t). The following two scenarios
are studied:

• Scenario 1: Mapping from input with low resolution to output with high
resolution.

• Scenario 2: Outputs required at positions not aligned with the input sensors.

We train the LNO with a dataset of 800 different u0, validate and test the
trained LNO with a dataset of 100 and 100 random u0, respectively. The cor-
responding output u(x, t) is calculated by the open-source package—chebfun.
For scenario 1, the set up of the input and the output are summarized in
Table S1. FNO with the inverse discrete Fourier transform (IDFT) is essen-
tially the latter part of Eq. 32 in the manuscript, which also can learn the
mapping from low resolution to high resolution. Motivated by FNO, we intro-
duce an advanced version of LNO. In this advanced version, we retain µn and
βn as training parameters for the transient term, while the steady-state term
follows the approach of FNO, treating ϕ = (Kϕ(iω1), · · · ,Kϕ(iωL)) as the
training parameters. This approach decouples the transient and steady-state
terms, enhancing the flexibility of the LNO method for operator learning. For
fair comparison across the different neural operator architectures (FNO with
IDFT, LNO, and advanced LNO), we choose the same hyper-parameters (see
Table S5) and report the relative L2 errors in Table S2. Both advanced LNO
and FNO with IDFT achieve similar accuracy, outperforming vanilla LNO.
Advanced LNO overcomes the limitations of vanilla LNO in scenarios involving
initial conditions and interpolation problems, as discussed in the conclusion.
However, for extrapolation problems, vanilla LNO performs better, avoiding
overfitting. This will be taken up for study in our future work. Fig. S8 illus-
trates two representative test samples for the three architectures. The scenario
2 chooses the input and output at different locations, which are summarized in
Table S3. The relative L2 errors for this situation is 9.26× 10−2± 1.57× 10−3.
Fig. S9 displays error plots of two typical test samples.

Here we show some techniques about how to handle different resolutions.

• Low to High Resolution Transition: In cases where input data is of
low resolution and output data requires a higher resolution, we address this
by zero-padding at points where input data is absent. This ensures uniform
grids for both input and output data. Subsequently, the original LNO can
predict high-resolution output values effectively.

• Outputs required at positions not aligned with the input sensors:
Alternatively, when faced with scenarios where the outputs need to be com-
puted at locations without input sensors at those specific locations, we resort
to the second method. In this method, we augment the original architec-
ture with a standalone Laplace layer (without the weight matrix) after the
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lifting layer, P (as shown in Fig. 1). Following the newly discussed Laplace
layer, we continue with the original framework of the Laplace layer and
weight matrix. This newly added Laplace layer allows us to handle a smaller
number of points in the output.

Table S1 The resolution of the input and outputs for different situations in Burger’s
equation and diffusion-reaction system.

Application Type Resolution of input Resolution of output

Diffusion-reaction

Same resolution ∆t = 0.05, Nt = 21
∆x = 0.05, Nx = 21
∆t = 0.05, Nx = 21

Low to high resolution ∆t = 0.1, Nt = 11
∆x = 0.05, Nx = 21
∆t = 0.05, Nx = 21

Burger

Same resolution ∆x = 1
63

, Nx = 64
∆x = 1

63
, Nx = 64

∆t = 1
49

, Nx = 50

Low to high resolution ∆x = 2
63

, Nx = 32
∆x = 1

63
, Nx = 64

∆t = 1
49

, Nx = 50

Table S2 Relative L2 error for FNO with IDFT, LNO, and advanced LNO for scenario 1
which considers the Burgers equation and learns the mapping from a low-resolution input
to a high-resolution output.

Method LNO Advanced LNO FNO with IDFT

Error
9.15 × 10−2 5.31 × 10−2 5.32 × 10−2

±6.99 × 10−4 ±1.79 × 10−4 ±3.05 × 10−4

Table S3 The locations of input and output for scenario 2 in Burger’s equation and
diffusion-reaction system.

Application Input location Output location and time

Diffusion-reaction x = [0, 0.1, 0.2 · · · , 0.9, 1] x = [0.05, 0.15, 0.25, · · · , 0.85, 0.95]
t = [0.05, 0.15, 0.25, · · · , 0.85, 0.95]

Burger x = [0, 2
63

, 4
63

, · · · , 60
63

, 62
63

]
x = [ 1

63
, 3
63

, · · · , 61
63

, 1]

t = [ 1
49

, 3
49

, · · · , 47
49

, 1]
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Fig. S8 Pointwise error plots of responses for two representative test samples for Scenario
1 in Burger’s equation experiments. Scenario 1 represents the mapping from low-resolution
input to high-resolution output.
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Fig. S9 Pointwise error plots of responses for two representative test samples for Scenario
2 in Burger’s equation experiments. Scenario 2 represents the mapping whose input and
output are at different locations.
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S7 Network architecture details

Table S4 Hyperparameters used in CNO and U-Net for training an operator to
approximate the responses for the beam, diffusion equation, and reaction-diffusion system.
In this table, lr is the learning rate, bs is the batch size, and act is the activation function.

Network Layer Res blocks Kernel size Channels lr bs act Epochs

CNO 4 4 5 64 0.002 50 Leaky ReLU 1000
U-Net 10 / / 64 0.002 50 ReLU 1000

Table S5 Hyperparameters used in LNO for training an operator to approximate the
response where the input and output have different discretizations. In this table, lr is the
learning rate, bs is the batch size, and act is the activation function.

Application Layer Width Modes lr bs act Epochs

Reaction-diffusion
system

Scenario 1 1 4 8, 8 0.001 20 sin 1000

Scenario 2 1 4 8, 8 0.001 20 sin 1000

Burger’s equation
Scenario 1 4 16 4, 4 0.01 10 sin 1000

Scenario 2 4 16 4, 4 0.01 10 sin 1000

Table S6 Hyperparameters of GRU with zero initial conditions.

Application # hidden Width # dense lr bs Iterations

Duffing
oscillator

c = 0 1 10 1 0.001 128 20000
c = 0.5 1 10 1 0.001 128 30000

Driven
pendulum

c = 0 1 10 1 0.001 128 20000
c = 0.5 1 10 1 0.001 128 30000

Lorenz
system

ρ = 5 1 10 1 0.001 128 30000
ρ = 10 1 20 1 0.001 128 30000

Table S7 Hyperparameters used in LNO and FNO for training an operator to
approximate the response of shallow-water equation

Method Layer Width Modes 1/2/3 lr bs act Epochs
LNO 4 64 4/2/2 0.005 8 ReLU 1200
FNO 4 64 37/5/5 0.005 8 ReLU 1200
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Table S8 Hyperparameters used in LNO and FNO for training an operator to
approximate the response.

Application Layer Width Modes lr bs act Epochs

Duffing
oscillator

c = 0
LNO 1 4 16 0.002 20 sin 1000

FNO 1 32 16 0.002 20 sin 1000

c = 0.5
LNO 1 4 16 0.002 20 sin 1000

FNO 1 32 16 0.002 20 sin 1000

Driven
pendulum

c = 0
LNO 1 4 20 0.005 40 sin 1200

FNO 1 16 16 0.002 40 sin 1200

c = 0.5
LNO 1 4 8 0.002 40 sin 1200

FNO 1 16 16 0.002 40 sin 1200

Lorenz
system

ρ = 5
LNO 1 4 16 0.005 20 tanh 1000

FNO 1 32 32 0.002 20 tanh 1000

ρ = 10
LNO 1 4 84 0.002 10 tanh 1000

FNO 4 32 1025 0.002 20 tanh 1000

Euler-Bernoulli beam
LNO 1 16 4, 4 0.002 50 sin 1000

FNO 1 16 4, 4 0.002 50 sin 1000

Diffusion equation
LNO 1 16 4, 4 0.002 50 sin 1000

FNO 1 16 4, 4 0.002 50 sin 1000

Reaction-diffusion
system

LNO 1 48 4, 4 0.002 50 sin 1000

FNO 4 32 40, 11 0.002 50 sin 1000

Brusselator reaction
-diffusion system

LNO 1 8 4, 4, 4 0.005 50 ReLU 300

FNO 4 8 11, 8, 8 0.005 50 ReLU 300

Shallow-water equations
Latent
-LNO

4 64 4, 2, 2 0.01 8 ReLU 1000
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S8 Error metrics

The error metrics used to measure the accuracy of the models can be expressed
as Eq. 28:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 and Relative L2 =

|| yi − ŷi ||2
|| yi ||2

for i = (1, n),

(28)

where n is the number of samples, yi is the true value of the ith sample, and
ŷi is the predicted value of the ith sample.
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