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Supplementary Notes1

————————————————2

1 Analysis of MAG abundances with both high and low levels of contami-3

nation4

We randomly selected MAGs with high levels of contamination (completeness ≥ 50% and contami-5

nation > 10%) and randomly selected 1,000 MAGs with low levels of contamination (completeness6

≥ 50% and contamination ≤ 10%) from the human fecal dataset that were binned with MetaBAT2.7

MAG abundance estimation was conducted by mapping reads to MAG contigs. The reads per kilobase8

per million mapped read (RPKM) for these MAGs were calculated.9
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Supplementary Figure 1: Density distribution of RPKM for MAGs with high and low contamination

The density distribution of RPKM for MAGs with high and low contamination exhibited signif-10

icant overlap, as depicted in Supplementary Figure 1. This suggests that some MAGs with high11

abundances might not be suitable for further analysis due to contamination, potentially resulting in12

the exclusion of MAGs that have significant associations with some diseases.13
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2 Analysis of the annotation of contigs in highly contaminated MAGs14

We randomly selected 1,110 highly contaminated MAGs (completeness ≥ 50% and contamination15

> 10%) from the human fecal dataset, which were assembled and binned using metaSPAdes and16

MetaBAT2. We utilized Kraken2 [1] with a standard database to annotate the contigs in these MAGs.17

We identified the taxon with the highest number of contigs as the core taxon, while the remaining18

taxa were considered contaminated at each taxonomic rank (from phylum to species). The contam-19

ination rate at each taxonomic rank was assessed by calculating the rate of contigs belonging to20

contaminated taxa to the total number of annotated contigs.21
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Supplementary Figure 2: Estimated contamination rates in six taxonomic ranks (n = 1,100). All
the box plots depict the median (horizontal line inside box), 25th and 75th percentiles (box), and 25th
or 75th percentiles ± 1.5 × interquartile range (whiskers). The other points are outliers.

Supplementary Figure 2 clarifies that contamination mostly did not occur at higher taxonomic22

ranks such as phylum, class, and order but became more concentrated at lower taxonomic ranks,23

including family, genus, and species.24
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3 Averaged precision and recall for MAGpurify, MDMcleaner, and Deep-25

urify on SIM126

We assessed the precision and recall for three MAG decontamination methods MAGpurify, MDM-27

cleaner, and Deepurify, using the SIM1 simulated testing set. Contaminated contigs were classified28

as positive labels and core contigs as negative labels. We calculated balanced precision and recall29

to account for the label imbalance in the simulated MAG, where core and contaminated contigs had30

unequal counts; this involved assigning higher weights to contaminated contigs, adjusted based on31

the rate between the number of core contigs and contaminated contigs within a simulated MAG.32

Supplementary Table 1 summarizes the precision and recall values for each MAG decontamination33

method.34

Contamination Rate: 5% Contamination Rate: 10%

MAGpurify MDMcleaner Deepurify MAGpurify MDMcleaner Deepurify

LCA(c, t) Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Kingdom 0.921 0.592 0.991 0.988 0.996 0.996 0.980 0.577 0.998 0.993 0.997 0.997
Phylum 0.877 0.312 0.997 0.992 0.990 0.989 0.961 0.344 0.997 0.984 0.991 0.991
Class 0.895 0.256 0.998 0.936 0.981 0.980 0.890 0.271 0.997 0.961 0.978 0.977
Order 0.891 0.158 0.978 0.700 0.940 0.931 0.961 0.220 0.998 0.710 0.971 0.967
Family 0.865 0.094 0.918 0.480 0.953 0.946 0.916 0.154 0.853 0.293 0.931 0.913
Genus 0.781 0.113 0.875 0.216 0.897 0.871 0.871 0.082 0.879 0.174 0.897 0.869

Contamination Rate: 15% Contamination Rate: 20%

MAGpurify MDMcleaner Deepurify MAGpurify MDMcleaner Deepurify

LCA(c, t) Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Kingdom 0.976 0.424 0.999 0.995 0.996 0.996 0.958 0.385 0.996 0.996 0.994 0.994
Phylum 0.952 0.221 0.992 0.974 0.990 0.989 0.906 0.294 0.991 0.987 0.990 0.990
Class 0.881 0.226 0.998 0.952 0.973 0.970 0.955 0.206 0.998 0.960 0.961 0.958
Order 0.926 0.138 0.976 0.779 0.962 0.958 0.947 0.186 0.977 0.792 0.965 0.961
Family 0.879 0.163 0.839 0.328 0.928 0.922 0.960 0.107 0.879 0.482 0.929 0.917
Genus 0.851 0.050 0.773 0.118 0.866 0.825 0.907 0.083 0.880 0.138 0.852 0.822

Supplementary Table 1: Averaged precision and recall for MAGpurify, MDMcleaner, and Deepurify
on SIM1 simulated testing set.

The table shows that Deepurify consistently achieves significantly higher precision and recall than35

MAGpurify and MDMcleaner, especially when contamination occurs at the family, genus, and species36

taxonomic ranks. These results highlight Deepurify’s effectiveness in removing a substantial portion37

of contaminated contigs while preserving clean contigs.38

4 Deepurify’s performance and community complexity39

We used Nonpareil to quantify the community complexity of the real-word metagenomic sequencing40

datasets, including 7 soil samples, 3 plant samples, 3 freshwater samples, 3 ocean samples (1021520,41

1021523, 1021526), six human fecal samples (C0001, C0004, HC0006, HK0023, K0031, K0032). We42

plotted the community complexity (diversity) of each sample against the improvement of quality scores43

and the increased number of high-quality MAGs using Deepurify Iter in Supplementary Figure 3.44
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Supplementary Figure 3: (a). Diversity of each sample and improvement of MAG quality scores
by Deepurify Iter. The red curve was generated using the generalized additive model (GAM) on the
improvement of quality scores for MAGs and diversity of samples. (b). Diversity of each sample and
the increased number of high-quality MAGs by Deepurify Iter. The red curve was generated using
the GAM on the increased number of high-quality MAGs and diversity of samples. The error bands
represent the 95% confidence interval for the GAM curve.

5 Sequence augmentation45

We proposed several simple data augmentation strategies for the target sequences.46

• Insertions: We randomly generated a nucleotide sequence by concatenating A, T, C, and G with47

equal probabilities. The length of this generated sequence was in the range of 20% - 40% of48

the target sequence’s length, following a uniform distribution. The insertion of the generated49

sequence occurred as follows: it was either not inserted or inserted at either the beginning or end50

of the target sequence with corresponding probabilities of 0.5, 0.25, and 0.25, respectively.51

• Mutations: Each base pair in the target sequence had a 0.01 probability of being replaced by52

one of the other three nucleotides, with equal probabilities for each nucleotide.53

6 Advantage of GTDB’s taxonomic lineage for training Deepurify54

We trained Deepurify on representative microbial genomes using both NCBI and GTDB taxonomic55

lineages. Our findings suggested that utilizing GTDB’s taxonomic lineage could significantly improve56

Deepurify’s performance on simulated data (SIM1, Wilcoxon Signed-Rank Sum test, two-sided, p-57

value = 1.192e-07, 95 percent confidence interval = [0.023, 0.041], effect size statistic = 0.303). We58

further designed a strategy to improve the performance of Deepurify by selecting the sequences with59

low similarity from the representative genomes. It included two steps: 1. split the representative60
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genomes into sequences of length 8,192 bps with 512 bps overlap; 2. Apply MMSeqs2 to group these61

sequences and only select the representative sequences from each cluster (SIM1, Wilcoxon Signed-62

Rank Sum test, two-sided, p-value = 1.192e-07, 95 percent confidence interval = [0.089, 0.144], effect63

size statistic = 1.29). Supplementary Table 2 presents the averaged balanced macro F1-scores for64

Deepurify trained under different conditions: with NCBI’s taxonomic lineages, GTDB’s taxonomic65

lineages, and GTDB’s lineages using MMseqs2 clustering.66

Contamination Rate: 5% Contamination Rate: 10%

LCA(c, t) NCBI GTDB
GTDB &
MMseqs2

NCBI GTDB
GTDB &
MMseqs2

Kingdom 0.969 0.970 0.996 0.976 0.983 0.997
Phylum 0.927 0.944 0.991 0.929 0.944 0.989
Class 0.880 0.909 0.980 0.858 0.911 0.977
Order 0.806 0.834 0.930 0.832 0.880 0.967
Family 0.750 0.820 0.945 0.740 0.798 0.910
Genus 0.683 0.722 0.865 0.657 0.725 0.863

Contamination Rate: 15% Contamination Rate: 20%

LCA(c, t) NCBI GTDB
GTDB &
MMseqs2

NCBI GTDB
GTDB &
MMseqs2

Kingdom 0.971 0.981 0.996 0.972 0.972 0.994
Phylum 0.929 0.944 0.989 0.928 0.948 0.991
Class 0.862 0.880 0.970 0.867 0.889 0.957
Order 0.812 0.865 0.957 0.842 0.872 0.960
Family 0.757 0.803 0.917 0.726 0.779 0.915
Genus 0.625 0.661 0.813 0.627 0.647 0.814

Supplementary Table 2: Averaged balanced macro F1-score across various contamination rates,
along with the LCA of core and contaminated genomes at different taxonomic ranks on SIM1. The
training sets were constructed based on NCBI’s taxonomy, GTDB’s taxonomy, and GTDB’s taxonomy
followed by MMseqs2 clustering.

7 Sequence embedding method67

We performed sequence embedding using both one-hot embedding and k-mer embeddings and then68

merged them to form a unified matrix. In the one-hot embedding procedure, we included two special69

tokens: “X ” to indicate padding applied at the sequence’s end to ensure consistent input length within70

a mini-batch, and “N ” to represent any unidentified characters. Consequently, the one-hot embedding71

generated a matrix sized L× 6 for each sequence, with L representing the sequence length.72

We have integrated k-mer embedding into our sequence embedding approach. First, we created a73

look-up table where each row represents a unique k-mer token and its corresponding ID. This table74

included two special tokens: the [PAD] token for padding sequences of varying lengths and [UNK] to75

signify any unidentified k-mer tokens within the sequences. Next, we split the sequence into k-mer76

tokens and converted them to IDs using the look-up table. Finally, a trainable matrix within the77
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embedding layer mapped the k-mer token ID to a dense vector with dm(k-mer) dimensions. In this78

study, we used both 3-mer and 4-mer token embeddings to represent the input sequences, with the79

dimensions set at dm(3-mer) = 16 and dm(4-mer) = 32, respectively.80

We combined the one-hot, 3-mer, and 4-mer embeddings of the sequence with those of its reverse81

complement using the same embedding methods. This fusion resulted in a unified matrix that effec-82

tively represents the input sequence. The unified matrix has a fixed dimension of L × 108, with L83

representing the sequence length. This approach provides a comprehensive and enriched representation84

of the input sequences, enhancing the robustness and effectiveness of our model.85

8 Architecture of modified Uniformer86

Supplementary Figure 4: The GseqFormer architecture comprises two essential components. The
segment shown on the left utilizes a modified EfficientNet architecture to compress sequence length,
while that on the right uses a modified UniFormer architecture with four distinct attention mechanisms
designed to capture intricate taxonomic patterns within complex DNA sequences.

We replaced the dynamic position embedding (DPE) blocks in UniFormer with the inverted residual87

blocks (IRB) designed from MobileNet V2 [2]. The DPE layer has a limited number of parameters88

and is less effective at handling complex sequences on its own. Therefore, we substituted it with the89

IRB, which has more trainable parameters to enhance the model’s capability to process complex DNA90
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sequences.91

The multi-head relation aggregator blocks in UniFormer have been replaced with tensor column-wise92

and row-wise gated self-attention modules (TCSA, Supplementary Figure 5 and TRSA, Supple-93

mentary Figure 6), modified from the Evoformer architecture. TRSA and TCSA are designed to94

improve the model’s capacity to capture taxonomic patterns within complex DNA sequences by inte-95

grating four distinct attention mechanisms for their input tensor (ψ), which represents the sequence96

embedding. The four attention mechanisms are as follows: (1) Embedding attention: This mecha-97

nism evaluates the attention scores assigned to different embedding approaches for each nucleotide in98

the sequence. (2) Nucleotide attention: This mechanism captures interactions between nucleotides99

in a sequence, similar to the self-attention mechanism in the Transformer model. (3)Across-block at-100

tention: This mechanism links nucleotide interaction knowledge learned from different Former blocks,101

enabling the model to capture nucleotide interrelationships across these blocks. (4) Spatial atten-102

tion: This mechanism extracts local spatial contexts from the attention map generated by nucleotide103

attention.104

Both TCSA and TRSA have an input sequence embedding tensor ψ ∈ RL×C with two dimensions:105

sequence length (L), and channel (C). Initially, we partitioned the channel dimension C into three equal106

segments in these two modules, resulting in a three-dimensional tensor denoted as ψd, with dimensions107

[3, L, dk], where dk is the value obtained by dividing C by 3. These dimensions correspond to the108

number of embedding methods, the sequence length, and the channel dimension for the corresponding109

embedding method. This reshaped configuration allows ψ to have an extra dimension to simultaneously110

represent three distinct embedding methods (one-hot, 3-mer, and 4-mer; refer to Supplementary111

Note 7) for a given sequence enabling the application of embedding attention to this dimension.112

In the TCSA module, embedding attention was applied to ψd, focusing specifically on its first113

dimension, which represents the number of embedding approaches for a sequence. We denoted the114

dense vector at the l-th token of ψd as υe ∈ R3×dk . The embedding attention map ρe ∈ R3×3 can be115

calculated as follows:116

ρe =
QeK

T
e√

dk
where Qe = υeW

Q
e ,Ke = υeW

K
e (1)

where WQ
e ∈ Rdk×dk/h, WK

e ∈ Rdk×dk/h, and h is the number of heads. Embedding attention117

effectively captures interactions among different embedding approaches within the sequence and dy-118

namically assigns attention scores to these methods for each token in ψd.119

In the TRSA module, nucleotide attention was applied to ψd, focusing specifically on its second120
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dimension, which represents the sequence length. We denoted the dense vector at the e-th embedding121

technique of ψd as vn ∈ RL×dk . The nucleotide attention map ρn ∈ RL×L can be calculated as follows:122

ρn =
QnK

T
n√

dk
, where Qn = vnW

Q
n ,Kn = vnW

K
n

where WQ
n ∈ Rdk×dk/h and WK

n ∈ Rdk×dk/h. This attention mechanism effectively captures interac-123

tions among nucleotides within the sequence and assigns dynamic attention scores to each token in124

ψd.125
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Supplementary Figure 5: Tensor Column-wise gated Self-Attention (TCSA). Dimensions: L: se-
quence length, C: channels, dk: channels after reshape, h: heads.
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Supplementary Figure 6: Tensor Row-wise gated Self-Attention (TRSA). Dimensions: L: sequence
length, C: channels for tokens, dk: channels for tokens after reshape, Ca: channels for across-block
attention map, h: heads.

We incorporated the across-block attention mechanism into the TRSA module to facilitate con-126
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nections between the learned knowledge of nucleotide interactions across different blocks. Initially,127

the across-attention map (ρa ∈ RL×L×Ca) was set as a zero matrix. Then, ρa was updated (added)128

through the block attention update (BAU) module (Supplementary Figure 7) based on the TCSA129

output. Subsequently, the updated ρa was fed into TRSA. After a linear transformation, it was added130

to ρn to serve as an additional nucleotide interaction attention map derived from previous blocks. Fur-131

ther refinement of ρa was achieved through a subsequent feedforward module. The implementation of132

the across-block attention mechanism facilitates the sharing and propagation of nucleotide interaction133

knowledge learned within individual blocks across different parts of the model.134
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Supplementary Figure 7: Block Attention Update (BAU) module. Dimensions: L: sequence length,
C: channels for tokens, dk: channels for tokens after reshape, Ca: channels for across-block attention
map, h: heads.

Transformer-based models are known for their ability to capture the global context of a sequence135

but they may struggle with capturing its local context [3]. To address this limitation, we extended136

the nucleotide attention map and across-block attention map by incorporating spatial attention. We137

treated the sequence as an image and applied a convolutional layer to extract local spatial context138

from ρn + Linear(ρa), resulting in a spatial attention map denoted as ρs. In the TRSA module, ρs139

was incorporated into ρn+Linear(ρa) as a local context attention map to improve the model’s ability140

to capture and comprehend the local context within a given sequence.141

9 Architecture of modified EfficientNet142

We made three changes to the EfficientNet architecture[4]. First, we substituted the expansion convo-143

lutional layers present in inverted bottleneck residual blocks (IBRB) with omni-dimensional dynamic144

convolution [5], which has been shown to achieve higher accuracy than static convolutions [5]. Sec-145

ond, we replaced the squeeze and excitation blocks [6] in IBRB with the large kernel attention layers146

[7] to calculate token-wise and channel-wise attention scores for sequence embeddings. Third, we147

incorporated DeepNorm [8] to prevent gradient vanishing during model training.148

10 Strategy for generating negative taxonomic lineages during training149

We denoted Tki
= [⩽ tki

] as the prefix of taxonomic lineage Ti before ki rank, where ki ∈ {phylum, class,150

order, family, genus, species}. During training, ki was randomly selected, and we treated Tki as the151
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positive taxonomic lineage for sequence si.152

We denote the negative taxonomic lineage as Tkj
. During contrastive training, we select 199153

negative taxonomic lineages from the taxonomic tree. The half-number of negative taxonomic lineages154

have three characteristics: 1. ki = kj , 2. [< tki ] = [< tkj ], 3. tki ̸= tkj . The remaining half of these155

negative lineages are randomly drawn from the taxonomic tree, ensuring they are distinct with Tki
.156

This generation method is pivotal in Deepurify’s contrastive training process, where Tkj
with the three157

specified characteristics act as hard negative samples, increasing the contrastive training difficulty and158

enhancing model performance [9].159

11 Solving the imbalanced phyla classes in GSc and GSp160

In our data processing pipeline, we incorporated an oversampling strategy to mitigate the issue of161

imbalanced phyla observed in GSc and GSp. This imbalance problem was caused by the varying162

number of species present across different phyla. The oversampling approach involved duplicating163

genomes within a phylum until the total number of genomes from that phylum reached a predefined164

threshold, specifically a minimum of 500 for GSc and 20 for GSp. This strategy was only applied to165

the phylum containing fewer than 500 and 20 species, respectively.166

Furthermore, we adopted the focal loss [10] in the training stage to address the issue of label167

imbalance in the other taxonomic ranks. This additional measure enhanced our model’s robustness to168

imbalanced data distributions.169

12 Hyper-parameter setting for training170

We applied the following hyper-parameters for training Deepurify, similar to the training configuration171

of UniFormer. Specifically, we set the stochastic depth rate [11] at 0.01 for the EfficientNet and set the172

dropout rate [12] to 0.08. We set the weight decay, learning rate, batch size, and number of negative173

lineages for contrastive learning as 1e−5, 1e−6, 10, and 199, respectively. Training Deepurify involved174

utilizing the AdamW optimizer [13] in conjunction with a cosine learning rate schedule [14], spanning175

a training period of 96 epochs. The initial 4 epochs were used for linear warm-up.176

Subsequently, we fine-tuned Deepurify to minimize the influence of homologous sequences during177

training. The basic parameters remain unchanged, except setting stochastic depth rate and dropout as178

0. The taxonomic encoder (LSTM) parameter was fixed, and only 15 epochs were used for fine-tuning.179

LST was replaced with cross-entropy loss but not focal loss. To mitigate the impact of homologous180

sequences on the model, we computed the loss LST for a given sequence si only within the context of181

contrastive training if the absolute difference between the top-1 and top-2 predicted probabilities of182

lineages exceeded 0.05.183
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13 Determining the number of clusters with SCGs184

We used Prodigal and the HMM tool to identify SCGs, resulting in a comprehensive list that matched185

contigs with their corresponding SCGs. We then sorted the contigs in descending order of length and186

assigned them to sets one by one, while recording the SCGs in each set. If we encountered duplicate187

SCGs within a set while adding a contig, we created a new set for that contig. This iterative process188

continued until all contigs were placed in different sets, resulting in multiple divisions. The number of189

clusters is equal to the number of divisions minus one.190

14 Traversing the MAG-separated tree with DFS191

To maximize the number of medium- and high-quality MAGs, Deepurify used post-order traversal to192

traverse the MAG-separated tree. Each node maintained a list to store its binning outcomes. The193

current node being traversed is referred to as VC . VH− and VM− are the child nodes of VC . VH−194

must contain high-quality MAGs, while VM− should not contain high-quality MAGs but must include195

medium-quality MAGs. We used Algorithm 1 to compare and select nodes. The comparison and196

selection process occurs recursively, starting from the left nodes and progressing up to the root node,197

resulting in a collection of nodes stored in the list of the root node.198

15 Running time distribution199

We evaluated the running time distributions of each step in Deepurify Iter (Supplementary Figure200

8, a) on CAMI I High complexity datasets and real-world metagenomic sequencing data (a soil sample201

(SRR25158210), a plant sample (SRR14308228), an ocean sample (1102224), a Human Fecal (IBS-D)202

sample (K0273), a freshwater sample (SRR26420192)) and showed the running time in Supplemen-203

tary Figure 8. The hardware used in this experiment included: 1. CPU: AMD EPYC 7742 64-Cores204

Processor (2 Sockets); 2. RAM: 1TB; 3. GPU: 8 x A100-40GB GPUs. We observed that CheckM2205

was no longer the bottleneck of Deepurify and the running time was dominated by the contig binning206

step.207

We further analyzed the runtime distributions of different steps in Deepurify when applied to the208

outputs of CONCOCT (Supplementary Figure 8b), MetaBAT2 (Supplementary Figure 8c), and209

SemiBin2 (Supplementary Figure 8d) on the same real-world metagenomic sequencing datasets.210

The experiments were performed using the following hardware: 1. CPU: Intel(R) Xeon(R) Silver 4114,211

10-Core Processor; 2. RAM: 512GB; 3. GPU: 2 x V100-32GB GPUs. The assignment of taxonomic212

lineages to contigs was found to be the most time-consuming step.213
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Algorithm 1 The comparison and selection of nodes

1: Input: A VM− node list : LM = [VM1 , ..., VMm ],
2: Input: A VH− node list: LH = [VH1

, ..., VHh
],

3: Input: The node that DFS is currently traversing: VC .
4: func: summedQualityScores is a function to calculate the summed quality score of MAGs in a

node list; getHighQualityNum, getMediumQualityNum are the functions to get the number
of high-, medium-quality MAGs from a node list.

5: Output: None.
6: function comparison(LM , LH , VC):
7: curNodeRes = Vc.binningResList
8: h = getHighQualityNum(curNodeRes)
9: m = getMediumQualityNum(curNodeRes)

10: hc = size(LH)
11: mc = size(LM )
12: qsSum = summedQualityScores(curNodeRes)
13: qsSumc = summedQualityScores(LM ) + summedQualityScores(LH)
14: if h > hc:
15: return
16: elif h == hc:
17: if m > mc:
18: return
19: elif m == mc:
20: if qsSum > qsSumc:
21: return
22: else:
23: Vc.binningResList = LH + LM

24: else:
25: Vc.binningResList = LH + LM

26: else:
27: Vc.binningResList = LH + LM

12



Supplementary Figure 8: (a). Running time distributions (in seconds) for the different steps in
Deepurify Iter (a) and Deepurify (b-d). (a) Running time distribution of Deepurify Iter on metage-
nomic sequencing data from soil (SRR25158210), plant (SRR14308228), ocean (1102234), human feces
(K0273), freshwater (SRR26420192), and CAMI I High complexity datasets. (b-d) Running time
distributions of Deepurify applied to the results from CONCOCT (b), MetaBAT2 (c), and SemiBin2
(d) on five real-world metagenomic sequencing data. ‘Iterative Binning’ refers to running CONCOCT,
MetaBAT2, and SemiBin2. ‘Assign Taxonomic Lineages to Contigs’ involves calculating contig embed-
dings and identifying their taxonomic lineages. ‘Call SCGs’ refers to using Prodigal and HMMER for
identifying SCGs in MAGs. ‘Build MAG-separated Tree & Run COP-Kmeans’ includes constructing
MAG-separated trees and implementing COP-Kmeans for each node within these trees. ‘Run CheckM2
First Time’ is the application of CheckM2 to assess MAGs’ quality. ‘Reuse CheckM2’s Intermediate
Files’ entails employing intermediate files from CheckM2, such as Prodigal and DIAMOND outputs
to build intermediate files for sub-MAGs. ‘Run CheckM2 Second Time’ involves executing CheckM2
using the intermediate files prepared previously. ‘DFS on MAG-separated tree & Run dRep’ includes
performing DFS on MAG-separated trees to select the maximum number of high- and medium-quality
MAGs and applying dRep to eliminate duplicate MAGs.
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16 Ablation study for multi-modal model and MAG-separated tree214

We performed two ablation studies on the CAMI High complexity dataset to investigate the necessity215

of using the multi-modal model (sequence embeddings) and the MAG-separated tree.216

(Ablation Study 1) We adopted a simpler method to build the MAG-separated tree. Given a MAG,217

we predicted its core lineage using the score function designed for simulation experiments (Figure 2b).218

In the simplified MAG-separated tree, each taxonomic rank only includes one node that represents219

the corresponding value from the core lineage. We then selected sub-MAGs from the six nodes (from220

Phylum to Species) with the highest summation of quality scores (ΣQS(i)).221

(Ablation Study 2) We implemented an iterative greedy approach to select subsets of contigs.222

Initially, we calculated the average embeddings of all contigs in a MAG, which were generated by223

GseqFormer (from the multi-modal model). We computed the cosine distances between this average224

value and each contig’s embedding. The contig that was most distant from the average was removed.225

We then calculated the quality score based on completeness and contamination. This process was226

carried out repeatedly until there was no further improvement in the MAG’s quality score.227

We compared the performance of Deepurify Iter and the models from Ablation studies 1 and 2 on228

the CAMI I High complexity dataset (Supplementary Table 3). This result indicates the MAG-229

separated tree and the sequence embeddings from the multi-modal model in Deepurify could generate230

more high-quality MAGs and improve MAG quality scores.231

Ensemble
Binning

CAMI I High

Pass GUNC High Medium QS

Before Decontamination 118 127 18849.25
Ablation Study 1 147 152 23407.19
Ablation Study 2 134 125 20350.36
Deepurify Iter 151 166 24253.64

Supplementary Table 3: The number of high- (High) and medium-quality (Median) MAGs that
passed GUNC criterion on contamination, along with the quality scores across CAMI I High datasets
for ensemble baseline, two ablation experiments, and Deepurify Iter. ‘Ensemble Binning’ refers to the
integration of MAGs generated by CONCOCT, MetaBAT2, and SemiBin2.

17 Software versions and computational environment232

Our study used MAGpurify (v2.1.2) and MDMcleaner (v0.8.7) for MAG decontamination. The de-233

velopment of Deepurify was developed using Python (v3.8.18) along with PyTorch (v2.0.0 + cu118).234

The SCGs calling was executed using Prodigal (v2.6.3) and HMMER (v3.3.2). The computation of235

the balanced macro F1-score was performed using Scikit-Learn (v1.2.0). The evaluation of MAG236

quality was carried out using CheckM2 (v1.0.1). For binning, we employed CONCOCT (v1.1.0),237
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MetaBAT2 (v2.15), and SemiBin2 (v2.1.0). The annotation of MAGs was executed using GTDB-238

Tk (v1.4.0). In this study, metaSPAdes (v3.15.0) and MegaHit (v1.2.9) were applied for assem-239

bly. We applied MMseqs2 (v14.7e284) to cluster sequences. The GitHub link for this study is240

‘https://github.com/ericcombiolab/Deepurify/’.241

The experiments were conducted on a compute node with two AMD EPYC 7742 processors com-242

prising 64 cores (128 threads) and 1 TB of memory. Eight NVIDIA Tesla A100-40GB GPUs were243

engaged to expedite the Deepurify training. During inference, the utilization was on eight Tesla A100-244

40GB GPUs, with two threads allocated for data feeding on each GPU. Other MAG decontamination245

tools were run with 256 threads.246

18 Evaluating Deepurify’s performance on real-world metagenomic sequenc-247

ing data by processing outputs from individual binning tools248

We applied Deepurify to the outputs of individual binning tools (CONCOCT, MetaBAT2, and SemiBin2)249

on various metagenomic sequencing datasets, including soil (7 samples), ocean (11 samples), freshwa-250

ter (3 samples), plant (3 samples), and human feces (227 samples). The results (Supplementary251

Table 4) show that Deepurify increased the number of high-quality MAGs across all three binning252

tools, producing 3.88, 1.16, and 1.18 times more high-quality MAGs from CONCOCT, MetaBAT2,253

and SemiBin2, respectively.254

To demonstrate the effectiveness of Deepurify in significantly reducing contamination in highly255

contaminated MAGs, we selected MAGs with contamination levels exceeding 10% from the original256

binning results of CONCOCT, MetaBAT2, and SemiBin2 across all five real-world metagenomic se-257

quencing datasets (251 samples). After processing these MAGs with Deepurify, we observed a substan-258

tial reduction in contamination levels (Wilcoxon Signed-Rank Sum test, two-sided, p-value = 2.2e-16,259

confidence interval: [-78.1, -75.7], effect size: -1.36; Supplementary Figure 10).260

CONCOCT Soil (7 Samples) Ocean (11 Samples) Plant (3 Samples) Freshwater (3 Samples) Human feces (227 Samples)

Pass GUNC High Medium QS (k) High Medium QS (k) High Medium QS (k) High Medium QS (k) High Medium QS (k)

Before Decontamination 3 28 1.60 13 77 4.15 1 13 0.76 13 55 4.26 800 881 125.22
Deepurify 6 95 4.44 71 453 23.6 18 127 7.46 51 225 15.17 3080 3631 498.48

MeatBAT2 Soil (7 Samples) Ocean (11 Samples) Plant (3 Samples) Freshwater (3 Samples) Human feces (227 Samples)

Pass GUNC High Medium QS (k) High Medium QS (k) High Medium QS (k) High Medium QS (k) High Medium QS (k)

Before Decontamination 14 56 4.16 71 174 17.53 28 46 5.23 57 131 13.26 2125 2858 382.60
Deepurify 19 121 7.20 88 374 28.04 32 127 9.22 65 229 18.96 2474 5125 544.18

SemiBin2 Soil (7 Samples) Ocean (11 Samples) Plant (3 Samples) Freshwater (3 Samples) Human feces (227 Samples)

Pass GUNC High Medium QS (k) High Medium QS (k) High Medium QS (k) High Medium QS (k) High Medium QS (k)

Before Decontamination 7 92 5.05 82 241 21.51 18 47 4.39 59 158 15.15 2902 3130 473.53
Deepurify 12 184 9.12 99 430 32.29 27 111 8.31 66 251 20.55 3432 5457 654.69

Supplementary Table 4: The number of high- (High) and medium-quality (Median) MAGs that
passed the GUNC criterion on contamination, along with the quality scores (QS, 1k = 1,000) across
five real-world datasets.
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Supplementary Figures261

Supplementary Figure 9: The workflow of the iterative decontamination strategy used in Deepu-
rify Iter.
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Supplementary Figure 10: Contamination levels of MAGs before (red, n = 6,492) and after (blue,
n = 10,921) applying Deepurify. The analysis included 6,492 highly contaminated MAGs from 251 real-
world metagenome sequencing samples. The blue dashed line represents the contamination threshold
for medium-quality MAGs, while the green dashed line indicates the threshold for high-quality MAGs.
All the box plots depict the median (horizontal line inside box), 25th and 75th percentiles (box), and
25th or 75th percentiles ± 1.5 × interquartile range (whiskers). The other points are outliers.
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