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Appendix 

Supplementary Methods 

Precipitation and potential evapotranspiration (PET) data sets 

To reduce uncertainties associated with the choice of precipitation and PET data sets, 

we used an ensemble of six gauge-based precipitation products, as well as six 

reanalysis-based products for PET, to estimate AI and its defined dryland extent. These 

precipitation diagnostic data sets were derived from the Climatic Research Unit (CRU)1 

TS4.0.1, the Climate Prediction Center (CPC)2, the University of Delaware (UDel)3, 

the Global Precipitation Climatology Project4 (GPCP), the Global Precipitation 

Climatology Centre (GPCC) V4 (ref. 5), the Multi-Source Weighted-Ensemble 

Precipitation (MSWEP) V2.1 (ref. 6). The PET formulization involves climatic 

variables (air temperature, specific humidity, air pressure, wind speed and short- and 

long-wave radiation) obtained from reanalysis data sets of CRU-NCEP V8, Global 

Land Data Assimilation System7 (GLDAS), NCEP/NCAR8, Princeton Global 

Meteorological Forcing9 (PGF), the second Modern-Era Retrospective analysis for 

Research and Applications10 (MERRA-2), and the ECMWF ERA-Interim11. The lack 

of surface upward solar radiation (both short- and long-wave) in reanalysis outputs 

hinders the derivation of net radiation and thus PET. We thus used available outputs of 

sensible and latent heat fluxes, which can be added together to estimate surface net 

radiation, from two DGVMs (CABLE and ISAM, Table S2) driven by CRU-NCEP 

climatic forcings and observed atmospheric CO2. All the climatic variables are available 

at monthly resolution but with varying spatial resolutions (0.25 o ~ 1o), which were then 

resampled to a common 1o×1o resolution using a first order conservative remapping 

method. We derived an ensemble of AI estimates by considering all possible 

combinations of precipitation and PET data-based products. Some precipitation or PET 

products have limited temporal coverage, so we derived 16 ensemble members of AI 

for the longer 1948-2016 period, using four precipitation products (CRU, CPC, GPCC 

and Udel) and four PET products (CRU-NCEP, PGF, NCEP/NCAR and GLDAS). For 



 

the shorter 1979-2016 period, we derived 36 members of AI since precipitation and 

PET are available in all databases. In addition, vapour-pressure deficit (VPD), which 

measures water demand of the near-surface air and is used in PET calculation (Eqn. 1), 

was calculated using the six reanalysis products and the ERA5 reanalysis12. 

 

Soil moisture and runoff data sets 

Three observation-driven soil moisture data sets were used to quantify dryland soil 

moisture changes. These data include satellite-based soil moisture from the Global Land 

Evaporation Amsterdam Model (GLEAM v3.2a, root-zone soil moisture as a proxy for 

total soil moisture)13 covering the period 1982-2016, the GLADS7 covering 1948-2010, 

and the TerraClimate14 covering 1958-2015. The three soil moisture products rely on 

different data assimilation systems and different climatic forcing inputs. To ensure 

comparability across different observation-driven data sets (and models), we 

transformed average total soil moisture (kg H2O m-2) of the study domain (Fig. 1h) to 

its fraction (%) of the simulated climatological mean during the baseline period 1961-

1990, following previous studies15. 

 

We obtained runoff data of major river systems flowing through AI-defined dryland 

areas for the period 1948-2014, from the continental streamflow records of the world’s 

large rivers database (http://www.cgd.ucar.edu/cas/catalog/surface/dai-

runoff/index.html)16,17. We chose only river runoff data records that fulfil the following 

selection criteria: (1) less than 40% missing annual data during 1948-2014; (2) falls into 

the 100 largest rivers; and (3) at least half of the river basin area overlaps with AI-

defined drylands. After applying these selection criteria, we identified a subset of 29 

large rivers (listed in Table S4). For each of the 29 large river basins, we filled missing 

streamflow records during 1948-2016 with a linear interpolation based on catchment-

mean precipitation records. In addition, we also obtained global gridded runoff maps 

from the Linear Optimal Runoff Aggregate (LORA) product, which used a bias-



 

correction and weighting approach to merge runoff estimates from hydrological models 

constrained by observed streamflow from a variety of sources18. This product is 

available at the monthly timescale and with a spatial resolution of 0.5° by 0.5°, for the 

period 1980–2012. 

 

GIMMS NDVI 3g products 

We employed the third-generation NDVI data (NDVI3g) generated by the Global 

Inventory Monitoring and Modeling Studies (GIMMS) group from the Advanced Very 

High Resolution Radiometer (AVHRR) sensors19,20. The GIMMS NDVI3g data set is 

available for the period of 1982-2016, with an 8 × 8 km spatial resolution and biweekly 

temporal resolution. We also obtained leaf area index (LAI) observations from the 

Moderate Resolution Imaging Spectroradiometer (MODIS, MCD15A2H) collection 6 

product. This dataset provides LAI estimates at a spatial resolution of 500m and at every 

eight days, covering the period of 2000-2016. We composited the biweekly (or eight-

day) values of NDVI (or LAI) to monthly using a maximum value approach. We only 

used NDVI (or LAI) values averaged over the growing season period to avoid spurious 

vegetation changes in the dormant season when the signal is flawed by the presence of 

snow cover. The start and end dates of the growing season were estimated from 

AVHRR-observed LAI dataset by a previous study21. 

 

Outputs of ESMs, DGVMs and GHMs 

To examine the past and future aridity changes over drylands, we used diagnostic 

variables from 23 ESMs contributing to the CMIP5 archive under the “historical” (for 

the 1948-2005 period) and “RCP4.5” (for the 2006-2100 period) scenarios22 (model 

details in Table S3). The RCP4.5 is an intermediate emission scenario and falls between 

a “a high-end emission” scenario (RCP8.5), and a massive reduction in emissions 

(RCP2.6) that might achieve global warming stabilization at 1.5 or 2.0°C above the pre-

industrial level. For comparison, we also used 11 latest CMIP6 ESMs23 under the 



 

“historical” (for the 1948-2014 period) and “SSP2-RCP4.5” (for the 2015-2100 period, 

a scenario of intermediate emission and continuing historical socioeconomic activities) 

scenarios (model details in Table S6). All models selected provide sufficient diagnostics 

to calculate VPD, AI, soil moisture, runoff and GPP. This criterion filtered out 

AOGCMs that do not explicitly represent vegetation dynamics. We determined the 

timings of crossing the 1.5°C and 2°C global warming threshold above the pre-

industrial level (as the 1850–1860 period) using time series of the global mean surface 

air temperature for each model. Note the time series were first smoothed with a 9-year 

running mean filter to reduce the impact of inter-annual variability of temperature, 

following previous studies24,25. In addition, following a similar method by Feng & Fu 

(2013) (ref. 26) (Eqn. 1), we adjusted the time-evolving AI derived from both CMIP5 

and CMIP6 ESMs to have the same monthly climatology as observations (based on the 

average of 16 data combinations) during the same baseline period of 1961-1990. 

  ESM_adj, ESM, ESM,1961-1990 obr,1961-1990AI = AI AI AIy y    (1) 

where ESM,AI y  and ESM_adj,AI y  are the original and adjusted ESM estimates of AI for 

year y (1948  y  2100), respectively; and ESM,1961-1990AI   and obr,1961-1990AI  are the 

climatology of ESM-estimated and observation-based AI for 1961-1990, respectively. 

Such modifications better characterize the spatial extent of global drylands 

climatologically, while at the same time would not significantly influence the long-term 

changes of dryland extent (Supplementary Fig. 7). 

 

We also used outputs from idealized CMIP5 ESM experiments forced by a 1% increase 

per year in atmospheric CO2 concentration up to quadrupling the pre-industrial level 

over 140 years. We used the set of simulations (named ““esmFixClim1” in the CMIP5 

terminology”) in which the land surface component of the model responds to rising CO2 

but atmospheric component does not. This factorial simulation isolates physiological 

effects of rising CO2 on terrestrial eco-hydrological changes, and associated feedbacks 



 

on atmospheric conditions. We used seven ESMs including bcc-csm1-1, CanESM2, 

CESM1-BGC, GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and NorESM1-ME, 

each with available outputs needed to calculate all aridity metrics. 

 

We also used simulations of 12 offline DGVMs from the “Trends in net land-

atmosphere carbon exchange” (TRENDY V6) project, for the period 1948-2016. Again, 

only models that have reported all the required variables for our analyses are used 

(details in Table S2). In the TRENDY project, input forcing data are prescribed for a 

series of factorial simulations for 1901-2016, following a standard experimental 

protocol27. The climatic forcings for the DGVMs were derived from the CRU-NCEP 

V8 (a merged product of monthly CRU observations and 6-hour NCEP reanalysis), and 

global annual atmospheric CO2 data were from ice core and NOAA monitoring 

observations. We used two factorial simulations with varying prescribed forcings: (1) 

time-invariant climate and observed CO2 (S1); and (2) transient climate and observed 

CO2 (S2). Land use and land cover changes in both of those simulations are held 

unchanged. The individual effect of climate change was calculated directly from S1, 

and that of climate change is estimated as the difference between S2 and S1. 

 

To assess changes of anthropogenic water stress, we also derived outputs of water 

availability and human water withdrawal from global hydrological models (GHMs) 

archived in the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP 2b)28, 

from the ESGF server (https://esg.pik-potsdam.de/search/isimip/). We only used GHMs 

with full outputs of surface runoff, and human water withdrawals by all the three sectors 

of agriculture, households, and industry, for both historical (1948-2005) and future 

periods (2006-2100). Only three GHMs (H08, MATSIRO and LPJml) that satisfy this 

criterion are available on the ESGF server in October 2020. These GHMs are driven by 

combinations of climate change scenarios (RCPs) and socio-economic development 

scenarios (SSPs). Climatic forcings for the GHM simulations are provided by four 



 

CMIP5 ESMs including GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and 

MIROC5. SSPs describe a range of plausible alternative socio-economic developments 

over the 21st century at the region level, including demographic, political, social, 

cultural, institutional, life-style, economic, and technological factors scenarios. As 

future impact projections under ISIMIP 2b didn’t account for RCP4.5, here we included 

SSP2-RCP6.0 (a scenario of no-mitigation emission and continuing historical 

socioeconomic activities) for assessment. All the above model results were re-gridded 

to a common 1o×1o grid before performing other analyses. 

 

Quantifying dryland extent with different aridity metrics 

Meteorological conditions shape the geographic distributions of soil moisture, runoff 

and vegetation cover at the land surface. We assumed that in present-day water-stressed 

regions, that is, drylands defined as regions with AI < 0.65, there also exists a permanent 

deficit of water in the ambient air (high VPD), soils (less soil moisture), rivers (less 

runoff), and for natural plants (low photosynthesis). We here characterized how these 

aridity metrics have changed in recent decades (1948-2016), and will change in the 

future (towards the end of the 21st Century), by performing the analyses described 

below. 

 

We first established an empirical relationship between a given aridity metric (VPD, soil 

moisture, runoff and GPP) and AI using all grid points in the AI-defined drylands. This 

spatial relationship was built over the baseline period of 1961-1990 (or a subset of years 

thereof depending on data availability). Considering potential non-linearity in the 

system, we selected the empirical model, being either linear, polynomial and 

exponential, that can best describe the relationship between a given variable and AI 

(with the maximum R2). With the pre-established regression models, we next 

determined the respective thresholds of VPD, soil moisture, runoff and GPP (or NDVI) 

for delineating dryland extent (Supplementary Fig. 1). We finally calculated year-to-



 

year variations of water-stressed areas (as a fraction of global land areas between -

50oS~50oN) defined by VPD, soil moisture, runoff, and GPP, by applying the AI 

threshold of 0.65 to the temporally dynamic maps of these metrics respectively. These 

fractions, expressed as percentage changes relative to the baseline, are denoted by fAI, 

fatm, fsoil, fhyd, fveg, for AI, VPD, soil moisture, runoff and GPP, respectively, where a 

positive (negative) value implies an expansion (contraction) of water-stressed area 

compared to the baseline period of 1961-1990.



 

Supplementary Tables 

Supplementary Table 1. A list of publications on dryland aridity changes grouped by different aridity metrics. We only include studies that 

characterise changes of the aridity level or areas of global drylands at the sub-continental or global scale. 

Aridity type Index Domain Data sources Indicated changes References 

Atmospheric 

aridity 
VPD Global Reanalysis output 

Amplified increase of VPD compared with 

humid regions; No specific numbers reported. 
Ref. 29 

Surface 

aridity 

proxies 

AI Global drylands 
Gauge-based precipitation 

and reanalysis-based PET 
+4% for 1948-2015 Refs. 26,30,31 

AI Global drylands CMIP5 ESMs 

+4-10% by 2100, based on original model 

results; +11-23% by 2100, based on bias-

corrected model results 

Refs. 

30,32-36 

P-ET 
Global arid and 

transitional regions 
Observation-based data 

10.8% of global land area show a robust ‘dry 

gets drier, wet gets wetter’ pattern  for 1948-

2005 

Refs. 37,38 

Hydrological 

aridity 
Runoff Australia 

Gauge-based streamflow 

records 
-24 to -28% for 1982–2010 Ref. 39 

Soil moisture 

aridity 

Soil 

moisture 
Global drylands 

Meta-analysis of field 

experiments 
+17% with CO2 enrichment Ref. 40 



 

Water 

storage 

Arid/semi-arid 

regions 

Satellite data, hydrological 

modeling 
-106.3 Gt water yr−1 for 1982–2010 Ref. 41 

Soil moisture 

aridity 

Soil 

moisture 

Semi-arid 

grassland 

Prairie Heating and CO2 

Enrichment (PHACE) 

experiment 

+17% with 600 ppm ambient CO2; -13% with 

+1.5/3.0 oC day/night warming; non-

significant increase with combined CO2 

enrichment and warming 

Ref. 42 

Ecological 

aridity 

NDVI Global semi-areas Satellite data + 0.015 for 1981–2007 Ref. 43 

Foliage 

cover 
Global arid regions Satellite data +5 to +10% for 1982–2010 Ref. 44 

L-band 

VOD 
African drylands Satellite data -0.05 PgC yr−1 for 2010–2016 Ref. 45 

Above-

ground 

biomass 

Semi-arid 

grassland 

Prairie Heating and CO2 

Enrichment (PHACE) 

experiment 

+33% for warmed and CO2-enriched plots Ref. 42 

NDVI, 

L-band 

VOD 

Global drylands Satellite data 

Greening in Sahel, India, western Australia, 

USA Great Plains; browning in eastern 

Australia, Mongolia; inconsistent trend 

elsewhere, for 1988-2008. No specific 

numbers reported. 

Ref. 46 



 

Supplementary Table 2. Details of the 12 TRENDY DGVMs used in this review. 

Model name Abbreviation Spatial resolution 

Community Atmosphere Biosphere 

Land Exchange 
CABLE 0.5° × 0.5° 

Community Land Model version 

4.5 
CLM4.5 1.25° × 0.9375° 

Organizing Carbon and Hydrology 

in Dynamic Ecosystems 
ORCHIDEE 0.5° × 0.5° 

ORCHIDEE aMeliorated 

Interactions between Carbon and 

Temperature 

ORCHIDEE-

MICT 
1° × 1° 

Vegetation Integrative Simulator 

for Trace gases 
VISIT 0.5° × 0.5° 

Jena Scheme for Biosphere-

Atmosphere Coupling in Hamburg 
JSBACH 1.875° × 1.875° 

Lund-Potsdam-Jena General 

Ecosystem Simulator 
LPJ-GUESS 0.5° × 0.5° 

Land Surface Processes and 

Exchanges model of the University 

of Bern 

LPX-Bern 1° × 1° 

Lund-Potsdam-Jena Wald Schnee 

und Landscaft version 
LPJ-wsl 0.5° × 0.5° 

The Joint UK Land Environment 

Simulator 
JULES 1.875° × 1.25° 

Integrated Science Assessment 

Model 
ISAM 0.5° × 0.5° 

Sheffield Dynamic Global 

Vegetation Model 
SDGVM 1° × 1° 

 



 

Supplementary Table 3. Details of the 23 CMIP5 ESMs used in this review. 

Model name Modeling center 
Spatial 

resolution 

CanESM2 
Canadian Center for Climate Modeling 

and Analysis (CCCma), Canada 
2.8125° × 2.8125° 

GFDL-ESM2M 
Geophysical Fluid Dynamics Laboratory, 

USA 
2° × 2.5° 

GFDL-ESM2G 
Geophysical Fluid Dynamics Laboratory, 

USA 
2° × 2.5° 

IPSL-CM5A-LR 
Institut Pierre Simon Laplace (IPSL), 

France 
1.89° × 3.75° 

IPSL-CM5A-MR 
Institut Pierre Simon Laplace (IPSL), 

France 

1.89° × 3.75° 

IPSL-CM5B-LR 
Institut Pierre Simon Laplace (IPSL), 

France 
1.89° × 3.75° 

GISS-E2-H 
NASA Goddard Institute for Space 

Studies, USA 
2° × 2.5° 

GISS-E2-H-CC 
NASA Goddard Institute for Space 

Studies, USA 
2° × 2.5° 

GISS-E2-R 
NASA Goddard Institute for Space 

Studies, USA 
2° × 2.5° 

GISS-E2-R-CC 
NASA Goddard Institute for Space 

Studies, USA 
2° × 2.5° 

NorthESM1-M 
Norwegian Climate Center (NCC), 

Norway 
1.875° × 3.25° 

NorthESM1-ME 
Norwegian Climate Center (NCC), 

Norway 
1.875° × 3.25° 

bcc-csm1-1 
Beijing Climate Center, China 

Meteorological Administration, China 

2.8125° × 2.8125° 

bcc-csm1-1-m 
Beijing Climate Center, China 

Meteorological Administration, China 
2.8125° × 2.8125° 

CESM1-BGC National Center for Atmospheric 0.9° × 1.25° 



 

Research (NCAR), Boulder, USA 

CESM1-CAM5 
National Center for Atmospheric 

Research (NCAR), Boulder, USA 
0.9° × 1.25° 

CCSM4 
National Center for Atmospheric 

Research (NCAR), USA 
0.9° × 1.25° 

BNU-ESM Beijing Normal University, China 2.8125° × 2.8125° 

inmcm4 
Institute for Numerical Mathematics 

(INM), Russia 
1.5° × 2° 

MPI-ESM-MR 
Max Planck Institute for Meteorology 

(MPI-M), Germany 
1.8758° × 1.8758° 

MPI-ESM-LR 
Max Planck Institute for Meteorology 

(MPI-M), Germany 
1.8758° × 1.8758° 

MIROC-ESM 
National Institute for Environmental 

Studies, The University of Tokyo, Japan 
2.8125° × 2.8125° 

MIROC-ESM-

CHEM 

National Institute for Environmental 

Studies, The University of Tokyo, Japan 
2.8125° × 2.8125° 

 



 

Supplementary Table 4. Details of the 29 rivers flowing through global drylands (in 

descending order of basin area). We use continental streamflow records of world’s large rivers 

to characterize dryland runoff changes16. Among the 921 world’s biggest rivers, 29 rivers that 

meet the selection criteria described in Supplementary Methods were included in this study. 

River name 
Basin area 

(km2) 

Mouth location 

(latitude, longitude) 

Annual mean 

discharge (m3 s-1) 

for 1961-1990 

Linear trend 

of discharge 

(m3 s-1 yr-1) for 

1948-2016 

Murray 991000 24.25, 89.75 240.1 -2.22 

Orange 850530 72.75, 126.75 189.6 -10.82 

Huanghe 734146 -0.7500, -51.75 1264.8 -0.19 

Rio 456700 48.75, -67.75 32.8 0.030 

Colorado-AR 444701 9.250, -61.75 383.9 -3.35 

Senegal 268000 -5.750, 12.75 731.3 -5.90 

Fitzroy-QX 135860 29.75, -90.25 157.8 -0.57 

Burdekin 129450 32.25, 120.75 263.4 -1.09 

Liao 120764 -34.75, -57.75 81.3 0.29 

Colorado-TX 108787 24.25, 88.25 68.8 -1.06 

Guadiana 60883 70.75, 83.25 156 -0.55 

Contas 56290 -2.250, -49.25 107 -0.88 

Paraguacu 53866 9.750, 106.25 92.2 -1.15 

Guadalquivir 46995 66.75, 69.25 124.5 2.74 

Fitzroy-WX 46530 51.75, 140.25 208.6 -1.00 

Luanhe 44100 10.75, -74.75 110.8 -0.07 

Nueces 43149 4.750, 6.250 19.8 0.16 

Tana 42217 68.75, -134.25 194.2 0.16 

Colorado-SA 22300 46.25, -123.75 132.6 -0.07 

Medjerda 20895 67.75, 53.25 20.4 -0.18 

Blackwood 20400 48.75, -122.75 20.4 -0.14 

Chubut 16400 -33.75, -58.25 46.9 -0.04 

Jacuipe 10560 68.75, 160.75 11.6 0.04 

Huasco 7187 -10.25, -36.75 5.6 -0.07 



 

Doring 6903 24.75, 68.25 7.3 -0.11 

Gongogi 6570 45.25, 28.75 38.3 -0.10 

Mitta 4716 62.75, -164.25 33.7 0.05 

Kiewa 1145 57.25, -92.75 16.6 -0.02 

Big 356 64.75, 40.25 6.8 -2.22 



 

Supplementary Table 5. Details of the 11 CMIP6 ESMs used in this review. All these ESMs 

selected provide sufficient diagnostics to calculate VPD, AI, soil moisture, runoff and GPP, for 

both the historical (1948-2014) and the near future (2015-2100). 

Model name Modeling center Spatial resolution 

ACCESS-ESM1-5 

Commonwealth Scientific and 

Industrial Research Organization 

and Bureau of Meteorology, 

Australia 

1.2414° × 1.8750° 

CESM2-WACCM 
National Center for Atmospheric 

Research (NCAR), Boulder, USA 
0.94° ×1.25° 

CanESM5 

Canadian Center for Climate 

Modeling and Analysis (CCCma), 

Canada 

2.8125° × 2.8125° 

EC-Earth3-Veg EC-Earth-Consortium 0.70° ×0.70° 

INM-CM4-8 
Institute for Numerical 

Mathematics (INM), Russia 
1.5° ×2.0° 

INM-CM5-0 
Institute for Numerical 

Mathematics (INM), Russia 
1.5° ×2.0° 

IPSL-CM6A-LR 
Institut Pierre Simon Laplace 

(IPSL), France 
1.26° ×2.50° 

MPI-ESM1-2-HR 
Max Planck Institute for 

Meteorology (MPI-M), Germany 
0.94° ×0.94° 

MPI-ESM1-2-LR 
Max Planck Institute for 

Meteorology (MPI-M), Germany 
0.94° ×0.94° 

NorESM2-LM 
Norwegian Climate Center 

(NCC), Norway 
1.875° ×2.5° 

NorESM2-MM 
Norwegian Climate Center 

(NCC), Norway 
0.94° ×1.25° 

 



 

Supplementary Figures 

 

Supplementary Figure 1 | Determination of the threshold for water-stressed areas (soil 

moisture as an example). The established spatial relationship is between a specific aridity 

metric (VPD, soil moisture, runoff and GPP) and AI across geographical grid points distributed 

in drylands, for the baseline period of 1961-1990. Assuming that different aridity metrics 

generate similar dryland extents for the baseline period, we determine the threshold for each 

specific aridity metric using the established empirical relationship (either linear, exponential, 

quadratic or rational model) that yields the maximum R2. The bold solid lines represent the 

best-fit regressions, and the dashed lines indicate the water-limitation thresholds of the aridity 

metrics (corresponding to AI = 0.65). The color bar in each panel indicate the density of grid 

points. 



 

 

Supplementary Figure 2 | Observation-based relationship between AI and other aridity 

metrics. The best-fitted relationships between AI and other aridity metrics were established in 

a similar way as the example given in Supplementary Figure 1. Each panel shows the 

relationship between a specific aridity measure from different data sources and AI from an 

average of 16 precipitation and PET data combinations (see Supplementary Methods). SWC, 

VPD, NDVI and LAI denote soil water content, vapour-pressure deficit, normalized difference 

vegetation index and leaf area index, respectively. 



 

 

Supplementary Figure 3 | Model-based relationship between AI and other aridity metrics. 

The best-fitted relationships between AI and other aridity metrics were established in a similar 

way as the example given in Supplementary Figure 1. (a-c) use land surface variables from 

the TRENDY S2 simulation forced by elevated atmospheric CO2 and climate change, and the 

AI is obtained from the CRU-NCEP data that provide climatic forcings for the TRENDY runs. 

(d-g) use land surface variables and AI from the CMIP5 historical simulation. Only 

relationships for the multi-model mean data are shown. SWC, VPD and GPP denote soil water 

content, vapour-pressure deficit and gross primary production, respectively. 

 



 

 

Supplementary Figure 4 | Anomalies of annual mean VPD (a) and its inferred fatm changes 

(b) from various data sources. (c, d) | Similar as (a, b), except that all the times series are 

smoothed with a 9-year running mean filter for clarity. Anomalies are computed by subtracting 

the climatological mean of the 1961-1990 period (or a subset of years during this period 

depending on the temporal coverage of the input data). The annual mean VPD is averaged over 

the AI-defined drylands only. 

 



 

 

Supplementary Figure 5 | Dryland aridity changes evaluated with CMIP6 ESMs. a-e | 

Anomalies of VPD (a), AI (or AI_CO2 that additionally accounts for CO2 physiological impacts) 

(b), soil moisture (c), runoff (d) and GPP or NDVI (e), averaged over AI-defined baseline 

regions of drylands for 1961-1990. f-j | Anomalies of the fraction of water-stressed land areas 

(drylands) evaluated by VPD (fatm) (f), AI (fAI, or fAI_CO2 that additionally accounts for CO2 

physiological impacts) (g), soil moisture (fsoil) (h), runoff (fhyd) (i) and growing-season mean 

GPP or NDVI (fveg) (j) (details of the calculation of fatm, fAI, fAI_CO2, fsoil, fhyd, fveg in 

Supplementary Methods). The ESM results are derived from CMIP6 under the “historical” 

(1948-2014) and “SSP2-RCP4.5” (2015-2100) scenarios. The anomalies are computed by 

subtracting the climatological mean of 1961-1990. The shaded areas represent the 95% 

confidence intervals of CMIP6 ESMs. Slope and statistical significance of the linear trend is 

shown for each metric, with symbols “***”, “**”, “*” and “n.s.” denoting “p < 0.01”, “p < 

0.05”, “p < 0.1”, “p > 0.1”, respectively. 

 

  



 

 

Supplementary Figure 6 | CO2 physiological effects on surface aridity changes over global 

drylands. Bars (multi-model ensemble means) and symbols (individual models) show 

fractional changes in the five aridity metrics (VPD, AI, soil moisture, runoff and GPP) caused 

by plant physiological responses to a quadrupling of atmospheric CO2, as averaged over AI-

defined non-dryland, dryland and its four subcategories. These fractional changes are calculated 

by subtracting values of the first 20 years of the CMIP5 “esmFixClim1” runs (see 

Supplementary Methods) from that of the last 20 years. Note that GPP uses, exclusively, the 

scale on the right of the plot. 



 

 

Supplementary Figure 7 | Future changes of AI-estimated global dryland extent (%) based on 

original versus bias-corrected CMIP5 ESM projections (under RCP4.5). The changes are 

calculated as the differences in AI-based dryland extent between 2090s and the baseline period 

of 1961-1990. 
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