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Tables 

Supplementary Table 1. Summary of comparing GPT-enabled text classification models 

against the SOTA models 

Dataset Approach Model Precision Recall Accuracy 

Battery-

related 

papers 

SOTA BatteryBERT-

cased 

96.6% 99.5% 97.5% 

Zero-shot 

learning 

GPT-3.5 

(‘text-

embedding-

ada-002’) 

with Original 

labels  

63.2% 100% 63.2% 

GPT-3.5 

(‘text-

embedding-

ada-002’) 

with Crude 

labels  

84.5% 97.9% 87.3% 

GPT-3.5 

(‘text-

embedding-

ada-002’) 

with 

Designated 

labels 

88.6% 98.3% 91.0% 

GPT-3.5 

(‘text-

embedding-

ada-002’) 

with Verbose 

labels 

90.8% 98.9% 93.0% 

Few-shot 

learning 

2-way 1-shot 

learning with 

GPT-3.5 

(‘text-davinci-

003’) 

95.0% 98.6% 95.7% 

2-way 5-shot 

learning with 

GPT-3.5 

(‘text-davinci-

003’) 

95.0% 99.1% 96.1% 

2-way 5-shot 

learning with 

GPT-4 (‘gpt-

4-0613’) 

95.4% 98.9% 96.3% 

Fine-tuning 

of GPT 

GPT-3 

(‘davinci’) 

95.8% 98.9% 96.6% 

 



Supplementary Table 2. Summary of comparing GPT-enabled NER models against the 

SOTA models 

Dataset Approach Model Category Precision Recall F1-score 

Solid-state 

materials 

SOTA 
MatBERT-

uncased 

APL 83.7% 77.8% 80.6% 

CMT 83.3% 88.9% 86.0% 

DSC 90.3% 94.0% 92.1% 

MAT 87.3% 93.5% 90.3% 

PRO 85.5% 81.0% 83.2% 

SMT 79.1% 83.8% 81.4% 

SPL 87.7% 77.1% 82.1% 

Fine-

tuning of 

GPT 

GPT-3 

(‘davinci’) 

APL 96.4% 71.8% 82.3% 

CMT 94.0% 90.3% 92.1% 

DSC 97.3% 93.0% 95.1% 

MAT 97.5% 91.7% 94.6% 

PRO 95.3% 80.2% 87.1% 

SMT 93.9% 84.7% 89.1% 

SPL 99.8% 80.8% 89.3% 

Dopant 

materials 

SOTA 
MatBERT-

uncased 

BASEMAT - - 72.0% 

DOPANT - - 82.0% 

DOPMODQ - - 62.0% 

Fine-

tuning of 

GPT 

GPT-3 

(‘davinci’) 

BASEMAT 93.4% 62.0% 74.6% 

DOPANT 95.6% 64.4% 77.0% 

DOPMODQ 92.7% 59.4% 72.4% 

AuNPs 

SOTA 
MatBERT-

uncased 

DES 70% 52% 56% 

MOR 83% 64% 70% 

Few-shot 

learning  

Random 

retrieval 

with GPT-

3.5 (‘text-

davinci-

003’)  

DES 63.2% 68.6% 65.8% 

MOR 97.4% 61.7% 75.6% 

Task DES 65.1% 80.0% 71.8% 



informed 

random 

retrieval 

with GPT-

3.5 (‘text-

davinci-

003’) 

MOR 97.9% 68.0% 80.2% 

kNN 

retrieval 

with GPT-

3.5 (‘text-

davinci-

003’) 

DES 63.6% 99.8% 77.7% 

MOR 97.7% 83.0% 89.8% 

kNN 

retrieval 

with GPT-

4 (‘gpt-4-

0613’) 

DES 69.7% 99.6% 82.0% 

MOR 99.8% 87.7% 93.3% 

 

Supplementary Table 3. Summary of comparing GPT-enabled extractive QA models 

against the SOTA models 

Dataset Approach Model Precision Recall F1-score 

Battery-

device QA 

SOTA BatteryBERT-

cased 

77.49% 71.69% 74.48% 

Zero-shot 

learning 

GPT-3.5 

(‘text-davinci-

003’) 

60.92% 79.96% 69.15% 

Task-

informed 

Zero-shot 

learning 

GPT-3.5 

(‘text-davinci-

003’) 

72.89% 80.65% 76.57% 

Fine-tuning GPT-3 

(‘davinci’) 

88.07% 88.35% 88.21% 

 



 
Supplementary Table 4. Parts of text classification dataset for each label. Papers in the 

False label are related to medical or psychological field applications, while papers in the 

True label include materials science studies such as battery synthesis, reaction or 

characterization of materials.  
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Supplementary Figure 1. Examples of annotation dataset. (A) Battery-related paper 

classification dataset (https://huggingface.co/batterydata). This data includes 46,663 

labelled papers for which the labels are battery or non-battery are annotated based on their 

publication sources. The authors defined the battery-related journals and selected the 

papers in those journals as battery-related papers (ground-truth).  (B) solid-state materials 

NER dataset. This dataset includes 800 annotated abstracts. This data set is intended to 

provide a comprehensive range of relevant information without focusing on any specific 

aspect of solid materials. Due to the broad definition of entities, solid state data sets usually 

contain more entities per paragraph. Accordingly, sufficient entity-centric entity tagging 

prompts could be obtained. (C) doped materials NER dataset. This dataset includes 455 

annotated abstracts. The process involved annotating tokens on a sentence-by-sentence 

basis, where each sample corresponds to a single sentence. Sentences were only annotated 

if they contained precise and direct information about doping in solid-state materials. 

Accordingly, we tried to apply few-shot learning of GPT 3.5 model rather than prompt-

completion fine-tuning module, which requires sufficient number of datasets. (D) AuNP 

synthesis NER dataset. The objective of this dataset is to collect information about the 

morphologies and descriptions of AuNP from specific sections of full-text literature on 

AuNP synthesis. A sole annotator annotated a collection of 85 characterization paragraphs 

extracted from 73 articles related to AuNP synthesis. Similar to doped materials set, we 

tried to apply few-shot learning of GPT 3.5 model considering the amount of available 

data. (E) battery-device QA dataset. The particular Q&A dataset follows the format of the 



SQuAD dataset and includes three types of questions: ‘what is the anode?’, ‘what is the 

cathode?’, and ‘what is the electrolyte?’.  

 

 

 

 

Supplementary Figure 2. Performance of AuNPs entity recognition of few-shot 

learning using GPT-3.5 (‘text-davinci-003’) (A–B) AuNPs entity recognition recall and 

precision of random retrieval, task-informed random retrieval, and kNN retrieval methods. 

Here, the precision and recall are calculated, after boundary relaxation is conducted on the 

prediction results. As the entity-wise performances of prior models are not disclosed, we 

reported the performance of our methods only. In case of DES, random retrieval, task-

informed random retrieval and kNN retrieval showed recall values of 63.2%, 65.1% and 

63.6%, while precision values are 68.6%, 80.0% and 99.8%. By providing similar 

examples in the prompt, we were able to obtain high entity recognition performance. In 

case of MOR, three methods provided high recall of 97.4%, 97.9% and 97.7%, while the 

precision values are relatively low, 61.7%, 68.0% and 83.0%. Here, we can observe that 

the effect of adding task-informing sentences is positive on performance, while kNN 

retrieval strategy is effective in increasing precision performance. This indicates that 

providing similar examples can help the identification of MOR entities more precisely. 

 

 



 

Supplementary Figure 3. Example of few-shot learning prompt based on kNN similar 

examples; The prompt consists of task information, 3-shot (prompt-completion pairs), and 

new input.  

 


