1	
2	
3	
4	
5	
6	
7	Supplementary note
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

20 Table S1. The main arid areas of the world and their more important constrains associated to aridity intensification, the main measures to drought

adaptation done, their main results and the more general needs to potentiate in the future to try to avoid the negative effects of drought on degradation,

22 food scarcity and human wellness association to aridity rise.

23

Region	Main hazards together with	Main adaptation measures	Main results of adaptation	Future projection and main
	aridity rise		measures	advises
Sahel	-Soil degradation	-Active measures of	-The stateholders food	-Sustainable drip irrigation
		stakeholders such as:	security when have adopted	in areas where it is
	-Overgrazing	-Agroforestry	at least one of the adaptative	effectively possible
		-Migration	measures have achieved	-Economy diversification
	-Population Increase	-Diversification of livestock	increase the level of food	and development
		species to more adapted to	security to 7-9%	-Political conflicts solution
		drought		-Sustainable herds sizes
		-Training in livestock health	-The institutional measures,	and minimize soil and
		protection	despite have in some cases	vegetation degradation.
		-Income diversification by work	moved great financial tools	-Conservation and favoring
		in no farm works	have had limited general	the existence of big woody
		-Reduction in herd size	impact in the food production	plants
		-Integration of livestock with	and in mitigate the	
		crop husbandry	desertification processes.	
		2/Institutional (Governmental,		
		non-governmental of national		
		and international level)		
		measures:		
		-Mainly based in irrigation,		
		water saving and crop		
		development		

South Africa	- Great population increase	-Increase of irrigation and	-No success in general,	-Recent studies advised as
	- Soil and vegetation	improved seed varieties	observed a decrease in food	adequate measures to
	degradation	-Selection of crop species	security	control desertification and
		-Local markets improvement		improve food security in a
		-Governmental projects to		realistic view include:
		improve food security		-Control of soil erosion and
				adequate afforestation and
				reforestation
				-Improve water
				management (more
				resources to build
				infrastructures for water
				saving and drip irrigation
				implementation) and
				agronomic practices (no-
				tillage, short season crops)
				with great effort to
				promote more adequate
				crops in a dry scenario
MENA region	1/Israel and Arabian Peninsula	-Water saving and	-High level of success	-Follow with the current
	rich countries	desalinization		level of investment in the
	-Political conflicts	-Water recycling		technological application to
	-Economy income dependent	-Ecosystems restoration and		increase water use
	from petroleum (Arabian	afforestation		efficiency, restore natural
	Peninsula)	-Research and use of crop and		systems and smart
		wild plant varieties more		agriculture.
		resistant to drought		
	2/Poor countries:	-Dam construction	-Scarce success and	-Decrease the dependence
		-Adaptations at the level of	maladaptation	of rain-fed agriculture
		/ duptations at the level of	maladaptation	of run red agriculture

	-Rural abandonment and migration to urban areas -Soil degradation -Political insecurity -Food scarcity and strong national income dependence of agriculture and livestock - Lack of economic resources	- Scarce Institutional- Governmental initiatives		-Apply new technologies of desalinization and water recycling -Development of smart agriculture -Increasing inter-countries cooperation -Protect the natural vegetation and restoration where possible. -Increase the adaptative capacity at the stakeholders' level
Central Asia, Gobi and North China	1/China -Great soil degradation	-Stakeholders adaptation -Great Governmental programs (water saving agriculture, reforestation, afforestation, soil protection)	- Increasing of vegetation cover and soil quality, but with different level of success depending on the region -Excessive afforestation such as in Inner Mongolia have proved to induce water scarcity.	 -Use of native non-tree species should be reconsidered in several areas for restoration programs. -Continue the implementation of water saving agriculture
	2/The rest: non-China part -Great lack of data and information. -Dominance of C3 metabolism plants over C4 in natural vegetation communities -Pollution by massive use of pesticides and fertilizers	-Some recent Governmental initiatives	-Scarce success and in general increase of degradation and loss of plant cover and water sources	-Changes in cropping patters such as implementation of regenerative agriculture -Afforestation of degraded croplands -Natural vegetation restoration

	- Great drop in water resources (i.e. Aral catastrophe) in the last decades			-Improving water-use efficiency -Use of more drought resistant genotypes to drought
European Mediterranean Basin	-Crop irrigation expansion -Pollution -Some conflicts for water sources	-Diverse European Union and national initiatives with considerable budget addressed to water policy and increase water use-efficiency, to restoration and protection of biodiversity and protect the most pristine ecosystems	-Diverse level of success. The measures have helped to drought adaptation in several agriculture sectors and protect some natural valuable areas and species. However, several aspects to increase water saving and better use efficiency remains to be done	 -Need to improve water sources, mainly in south Europe, - More intense and more sources should be allocated to stop desertification in some important areas of South Europe. More efficient control and laws to warrants a more smart and adequate species cultivated, mainly in South Europe.
Australia	-Very low soil nutritional capacity and specially very low concentrations of phosphorus.	-Great governmental and Commonwealth programs to invest directly in economically inversions and compensations to farmers and in infrastructures building and technological application, and also to soil restoration, reforestation and afforestation	-Some problems with inadequate and/or excessive afforestation that decrease the streams and river flows and marshes water content in some cases. But in general restoration and reforestation have had good results. -Wade trade have created more problems than it has solved	- Science integrated with stakeholder input into developing climate adaptation practices and technologies and effective adoption paths particularly to deal with climate extremes

North Brazil	- Lack of coordinated	-Governmental programs	- Several important variables	-It is necessary continue
	collaboration among not only	mainly addressed to improve	have been achieved such as	working for more in
	Federal and States	water infrastructures,	more stakeholders water	integrate actions and tools
	governments, but also among	diversification of agriculture and	access, more income from	for adaptation, combining
	institutions within their own	livestock production systems,	institutions to farmers,	technology-based solutions
	jurisdiction, create difficulties	reforestation and afforestation,	improvement of the	with in-depth knowledge of
	to design a drought	mitigate soil erosion and rise	articulation between distinct	local and regional social,
	management plan	the access to public programs	actors, protection of	economic, and cultural
			biodiversity and soil and	aspects.
			increasing of soil organic	
			carbon.	-Invest more research and
			-	sources in proactive pre-
				disaster rather than
				reactive post-disaster
				events associated to aridity
				rise
South West of	-Economical conflicts by water	-Several state and central	-Despite has bracket	-Southwest USA will also
North America	supply between urbanization	governmental initiatives overall	significantly the aridity	require planning,
(only USA)	and cropland sustainability	in the context of infrastructure	consequences the measures	cooperation, and
	-Population and economy	for water storing and saving,	have been insufficient to avoid	integration that surpass
	expansion	forest management and	deforestation, fires, drop of	previous efforts in terms of
	-Great wind erosion and dust	reforestation, research, water	water availability and the	geographic scope,
	transport	cycling and desalinization	socio-economic problems	jurisdictional breadth,
			linked to the rise in aridity.	multisectoral engagement,
				and the length of planning
				timelines
				-Policy measures, technical
				innovations and market-
				based solution sure that
				can improve water supply

		capacity and improve
		water demand at once.
		-Advance (including at
		technological level) is
		another pending question
		to advance in increase
		water sources

37

38 6.1. Africa

- 39 Three distinct regions in Africa are particularly vulnerable to the expansion of low diversity arid areas:
- 40 the Sudano-Sahelian region, the Kakahari-Namib region in southern Africa, and the Mediterranean
- 41 Africa. Desertification affects approximately one-third of Africa (Darkoh, 1998; Msangi, 2004).
- 42 Technological, institutional and policy solutions are crucial for managing drought and climate variability
- 43 in vulnerable communities across these regions (Shiferaw et al., 2014).
- 44

45 6.1.1 Sahel

46 Despite significant investments by governmental and non-governmental organizations, primarily in 47 water-saving and irrigation projects, the results in terms of reducing vulnerability among local populations 48 have been weak (Baba, 2014; Keita et al., 2022). For example, the ambitious "Great Green Wall" plan 49 proposed in the 1980s to plant a continuous barrier of trees from Senegal to Djibouti has not been widely 50 implemented (O'Connor & Ford, 2014) and would likely further damage the biodiversity through plant 51 nonnative tree species, and planting trees in conditions where they are unlikely to survive (Hochard, 2022). 52 Effective measures to address the consequences of aridity rise in the Sahel region need broader application, 53 as the loss of C and nutrient stocks in plant-soil systems and desertification continue to advance (Maïga-54 Yaleu et al., 2015; Yang et al., 2022). Policy strategies aimed at increasing private rangeland enclosures to 55 promote pastoralist sedentarization should also be reconsidered due to climate-induced risks and pastoral 56 livelihood vulnerability (Berhanu & Beyene, 2015; Eliza et al., 2015).

57

58 6.1.2 South Africa

59 The rise in aridity in several currently arid areas is a significant concern in South Africa, stretching from 60 Congo to the South African Republic (Nhamo et al., 2019a; 2019b). Recurring droughts, influenced by the 61 El Niño Southern Oscillation (ENSO), continue to impact the region's people, economy, and environment. 62 Average rainfall in the region has decreased on average by 25.6% between 1960 and 2007, and agricultural 63 productivity is projected to decline by 15% to 50% (Davis & Vicent, 2017; Nhemachena et al., 2020).

64

65 6.1.3. MENA

66 Adapting to Aridity in North Africa, the Middle East, and Western Asia:

67 This vast region, encompassing North Africa, the northeastern part of Africa, the Middle East, and countries 68 in western Asia, faces significant challenges due to its strong economic dependence on agriculture. Drought 69 risk management varies across countries, presenting a complex landscape. The greatest challenge across 70 most of these countries is the urgent need to improve drought risk management, often with inadequate or 71 absent governmental intervention (Sowers et al., 2011; Wodon et al., 2014; Waha et al., 2017; Schilling et 72 al., 2020; Jedd et al., 2021). The combined effects of regional population growth and warming exacerbate 73 the situation by reducing water supplies in areas where irrigated agriculture is essential for production 74 (Waha et al., 2017; Garrido & Rabi, 2016) (Table S1).

75

76 6.2. Central Asia, Gobi, and North China:

Central Asia has experienced a temperature increase of 0.18°C per decade during 1901–2003, twice the
rate of the overall Northern Hemisphere (Chen et al., 2009). A "wet-west and dry-east" anomaly pattern,
marked by changes in precipitation and aridity indices, has emerged in the expanded drylands of northern
China (Chen et al., 2011; Wang et al., 2013). Modeling studies project an expansion of desert areas in
Central Asia due to global warming (Ma et al., 2021).

82 Central Asia faces the cumulative impact of prolonged droughts, a cold climate subject to warming 83 effects, and severe dust storms (Kurosaki et al., 2011b; Nandintsetseg & Shinoda, 2015). Winter warming 84 also influences plant communities, and may drive desertification (Huang et al., 2012; Shinoda, 2017) (Table 85 S1). In response, interdisciplinary initiatives like the "Applied Multi Risk Mapping of Natural Hazards for 86 Impact Assessment" (ARMONIA, 2007) and "Integrating Dryland Disaster Science" (Shinoda, 2017) have 87 been launched in Central Asia. These projects aim to integrate studies, identify and prevent multi-hazard 88 risks, and develop proactive countermeasures for sustainable development (Kappes et al., 2012; Gill & 89 Malamud, 2014). The region faces challenges from past Soviet-era policies, including massive irrigation 90 (e.g., the Aral Sea disaster) and extensive pesticide and fertilizer use, as well as the decline of forest management systems (Lioubimtseva & Cole, 2007; Lioubimtseva & Henebry, 2009; Schlüter & Herrfahrdt-91 92 Pähle, 2011; Aleksandrova, et al., 2014). Wild woody vegetation has been proved to be reduced by aridity 93 increases (Zou et al., 2020). However, in the last decade the Governments have initiated some programs 94 for drought adaptation in the context of water saving, agriculture, biodiversity and forest restoration as 95 priorities (Mustaeva & Kartayena, 2018).

96 China has 6.6 million km² of drylands that support approximately 580 million people. Despite several 97 programs have been executed or are going on to assessment and combat desertification, degradation 98 continues to expand and is approaching sustainable water resource limits (Yang et al., 2005; Xu et al., 2009; 99 Feng et al., 2016; Xiao et al., 2020). Vegetation cover has increased rapidly since 2003 because of 100 ecological recovery projects and policies (Yuan et al., 2016; Zhou et al., 2021) (Table S1). For example, 101 the "Grain-for-Green" (GFG) program initiated in 1999 in northern Shaanxi has counteracted aridification 102 through targeted afforestation (Li & Lu, 2015; Yuan et al., 2016). The drying trend of this region was 103 changed by the influence of vegetation restoration promoted by the GFG program the aridity decreased by 104 0.14% to 2.32% per year during 2000-2012, and the mean vegetation coverage as indicated by EVI 105 increased by 0.90% to 4.32% per year at county level. In parallel, the Northern shelterbelt program aimed 106 to afforest northern parts China, it has had some positive partial effects diminishing storm erosion and 107 desertification (Wang et al., 2010), despite increased precipitation in afforested regions (Li et al., 2021). 108 The impact of human intervention, mainly by afforestation have proved to explain an 87% of greening 109 advance in the Kubuqi Desert of Inner Mongolia (Ren et al., 2022) where, moreover, the afforestation 110 program providing evidence of temperature smoothing (Wang et al., 2018), despite potential damage to 111 native biodiversity (Yao et al., 2021).

112 6.3. European Mediterranean Basin:

EU water policy, primarily driven by the EU Water Framework Directive (WFD, 2000), emphasizesthe need for robust integrated water resource management systems based on river basin planning principles

(Quevauviller, 2014). This policy aims to address drought by promoting risk management policies,
enhancing drought preparedness and mitigation, and considering financial assistance tools (Wilhite et al.,
2014). In recent decades, stakeholders in Southern Europe have successfully adapted to drought through
measures such as transitioning to drought-resistant crop species (Costa et al., 2016; Zhao et al., 2022),
restoring vegetation, reforestation, afforestation (Mechler & Kundzewicz, 2010; Pietrapertosa et al., 2018),
and implementing drought monitoring and assessment (Hervás-Gámez & Delgado-Ramos, 2019) (Table
S1).

At the national level in Spain, the National Indicator System for Droughts, established in 2005,
has played a significant role in implementing effective measures and actions governed by the National
Government (Estrela & Sancho, 2016).

While the EU's Water Framework Directive provides a comprehensive framework, challenges persist in areas such as reservoir regulation, aquifer management, and nutrient management (Hering et al., 2010). The use of aquifers in Southern Europe, while a valuable water source, faces issues like overexploitation (causing aquafer depletion), pollution, and salinization near coastal areas that necessitate proper legislation and assessment (Estrela & Vargas, 2011). Drought adaptation has mainly included selecting more drought-resistant plant and livestock genotypes, adjusting planting seasons, and shifting crops northward (Iglesias et al., 2011a; Rodrigo-Comino et al., 2021) (Table S1).

132 6.4 Australia

Due to the region's socio-economic and technical capabilities and its integration into the Australian state and commonwealth, stakeholders have demonstrated high awareness and effective tools to mitigate the multifaceted impacts of drought (Kiem & Austin, 2013) (Table S1). Consequently, various governmental programs and plans have been executed to prevent drought impacts, conserve water, support afforestation, enhance water use efficiency, and provide economic compensation to affected stakeholders and enterprises (Herron et al., 2002; Kiem & Austin, 2013).

139 Enormous financial resources from Commonwealth and State Governments, communities, and 140 individuals have been invested in drought mitigation. For instance, during the millennium drought (2001-141 2009), the cost of mitigating losses, replacing ecosystem services, and adapting to new ecosystem equilibria 142 in the Murray-Darling river basin alone was estimated at \$810 million (Banerjee et al., 2013). Water trade 143 strategies have shown that determining water supply prices for various activities can be challenging, with 144 solutions to one problem sometimes creating larger ones (Edwards et al., 2008; Kiem, 2013) (Table S1). 145 Notably, infrastructure projects focusing on water conservation at various levels have achieved success 146 (Kiem, 2013), along with ecosystem restoration and reforestation efforts (Hobbs et al., 2016). In the 147 Melbourne region, the development of water harvesting systems from stormwater and water recycling has 148 substantially increased water supply capacity for urban and agricultural use. However, sustaining these 149 improvements amid growing consumption and increasing aridity remains a challenge (Low et al., 2015). 150 While successful initiatives have been implemented, there is still much to learn about effectively addressing 151 aridity in this economically powerful country. Integrating science and technology into stakeholders' daily 152 practices has been identified as a key approach to advancing drought adaptation (Howden et al., 2014).

153 6.5 North Brazil

154 The Semi-Arid region of Brazil (SAB) faces significant aridity challenges. During the period 1973-2001 155 (P1), governmental policies focused on "combatting drought and its effects." In contrast, the period 2002-156 2016 (P2) adopted the concept of "coexistence with semi-aridity" as the guiding policy principle. A 157 comparative analysis of 10 territories within SAB showed substantial improvements during both periods, 158 including increased access to water infrastructure (+33%), diversification of production systems (Livestock 159 +36%; Crops +61%), enhanced political organizing (+24%), and better access to public programs (+29%) 160 (Table S1). Measures aligned with the concept of coexistence with aridity, such as creating resource 161 reserves for drought periods, reforestation, afforestation, and improved collaboration among diverse actors, 162 have been particularly successful. Shade from trees has protected crops from heat and wind, increased 163 productivity, preserved water sources, and enhanced biodiversity (Altieri & Nichols, 2017). Innovations 164 like Family Seed Reserves (FSR) and Community Seed Banks (CSB) have been instrumental (Almeida & 165 Cordeiro, 2001). Soil conservation practices, including diffusion and infiltration canals, terraces, stone 166 barriers, and living barriers of cacti, have regulated water flow and increased water infiltration, reducing 167 soil erosion by 80% (Pérez-Marin et al., 2007) and boosting soil organic matter levels by 25-150% 168 (Menezes et al., 2002; Tiessen et al., 2003).

169 Integrated water resources management, especially for rain-fed agriculture, remains essential 170 (Campos, 2015). More proactive, knowledge-based actions, including seasonal climate forecasts and 171 studies on drought impacts, are needed to address contemporary environmental risks and prevent 172 irreversible climate change (Marengo et al., 2021) (Table S1).

- 173
- 174
- 175

176 6.6. South West North America

Over the past few decades, droughts in the Southwestern USA have been characterized by exceptionally
high temperatures (MacDonald, 2010). Unfortunately, the future doesn't look promising, as climate models
predict increased aridity and more severe droughts throughout the 21st century. Additionally, there will
likely be a decrease in rainfall frequency but an increase in intensity, which can exacerbate soil erosion
(Archer & Predick, 2023).

Significant changes have already been observed in the timing of snowmelt in the Southwest USA (Fritze et al., 2011). Since snowmelt contributes significantly to the region's stream flows (30% to 75% depending on the basin), a reduction in total snowpack has significant economic consequences, and especially since irrigation agriculture heavily relies on groundwater resources (Hunter et al., 2006). Unfortunately, overexploitation of groundwater has been a constant issue in the region. Furthermore, aquifer drawdown and saltwater intrusion in the Phoenix area limit further groundwater extraction (Gober, 2010; MacDonald, 2007).

189 Regional population growth and economic expansion are projected to intensify domestic water
190 demand, which is expected to increase even without additional transfers from rivers (Table S1).
191 Transferring water from agriculture to meet domestic demands raises concerns about rural sustainability
192 and food security (MacDonald, 2010; Steele et al., 2010).

193 In dryland areas of North America, desertification resulting from increased aridity is strongly 194 linked to wind erosion and dust transport (Duniway et al., 2019) (Table S1). While dryland soils are 195 generally stable when intact, disturbances such as fires, livestock grazing, and off-highway vehicle use can 196 dramatically increase wind erosion, sometimes by as much as 40-fold. Innovative approaches to dryland 197 restoration that minimize surface disturbance may help achieve restoration goals while limiting wind 198 erosion risks. Addressing this complex issue requires multidisciplinary and multijurisdictional approaches 199 and perspectives (Duniway et al., 2019). However, research on native species like Pinus ponderosa has 200 shown promise in breeding and selecting drought-resistant genotypes (Kolb et al., 2016). 201 202 203 204 Supplementary references 205 1. Altieri, M.A. & Nicholls, C.L. (2017). The adaptation and mitigation potencial of traditional 206 agricultura in a changing climate. Climate Change, 140, 33-45. Archer, S.R., & Predick, K. I. (2023). Climate change and ecosystems of the Southwestern United 207 2. 208 States. Rangelands, 30, 23-28. ARMONIA (2007), Assessing and mapping multiple risks for spatial planning, European Union 209 3. 210 6th Framework Programme Reports, European Union. 211 4. Baba, I. (2014). Challenges of poverty eradication and sustainable development among the Kanuri in the Sahel Region of Yobe State in Nigeria. International Journal of Social Work and 212 213 Human Services Practice, 2, 124-129. 214 5. Banerjee, O., Bark, R., Connor, J., & Crossman, N.D. (2013). An ecosystem services approach 215 to estimating economic losses associates with drought. Ecological Economics, 91, 19-27. 216 6. Berhanu, W., & Beyene, F. (2015). Climate variability and household adaptation strategies in 217 southern Ethiopia. Sustainability, 7, 6353-6375. 7. Campos, J.N.B. (2015). Paradigms and public policies on drought in Northeast Brazil: A 218 historical perspective. Environmental Management, 55, 1052-1063. 219 Chen, D., Saleem, M., Cheng, J., Mi, J., Chu, P., Tuvshintogtokh, I., Hu, S., & Bai, Y., (2019). 220 8. 221 Effects of aridity on soil microbial communities and functions across soil depths on the 222 Mongolian Plateau. Functional Ecology, 33, 1561-1571. https://doi.org/10.1111/1365-223 2435.13359 224 9. Chen, F., Huang, W., Jin, L., Chen, J., & Wang, J. (2011). Spatiotemporal precipitation variations 225 in the arid Central Asia in the context of global warming. Sciences China Earth Science, 54(12), 226 1812-1821, doi:10.1007/s11430-011-4333-8. 227 10. Costa, J.M., Vaz, M., Escalona, J., Egipto, R., Lopes, C., Medrano, H., & Chaves, M.M. (2016). 228 Modern viticulture in Southern Europe: Vulnerabilities and strategies for adaptation to water 229 scarcity. Agricultural Water Management, 174, 5-18. 230 11. Darkoh, M.B.K. (1998). The nature, causes and consequences of desertification in the drylands 231 of Africa. Land Degradation and Development, 9, 1-20. 12. Davis, C.L. & Vincent, K. (2017). Climate Risk and Vulnerability: A Handbook for Southern 232 233 Africa, 2nd ed.; CSIR: Pretoria, South Africa, p. 202. 234 13. Duniway, M.C., Pfennigwerth, A.A., Fick, S.E., Nauman, T.W., Belnap, J., & Barger, N.N. 235 (2019). Wind erosion and dust from US drylands: a review of causes, consequences, and solutions 236 in a changing world. Ecosphere, 10, e02650. 14. Edwards, B., Gray, M., & Hunter, B. (2008). A sunburnt country: the economic and financial 237 238 impact of drought on rural and regional families in Australia in an era of climate change. 239 Australian Journal of Labour Economics, 12(1), 109–131 15. Eliza, M.J., Leo, C.Z., & Kalipeni, E. (2015). Oil discovery in Turkana County, Kenya: A source 240 241 of conflict or development? African Geographical Review, 34(2), 142–164. 242 16. Estrela, T., & Sancho, T.A. (2016). Drought management policies in Spain and the European 243 Union: from traditional emergency actions to drought management plans. Water Policy, 18, 153-244 176.

245	17.	Estrela, T., & Vargas, E. (2012). Drought management plans in the European Union. The case of
246		Spain. Water Resource Management, 26, 1537-1553.
247	18.	Feng, X., et al. (2016). Revegetation in China's Loess Plateau is approaching sustainable water
248	10	resource limits. <i>Nature Climate Change</i> , <i>6</i> (<i>11</i>), 1019–1022, doi:10.1038/nclimate3092.
249 250	19.	Fritze, H., Stewart, I.T., Pebesma, E. (2011). Shifts in western north American snowmelt runoff
250	20	regimes for the recent warm decades. <i>Journal of Hydrometeorology</i> , <i>12</i> , 989-1006. Garrido, A., & Rabi, A. (2016). Managing Water in the 21 st Century Challenges and
252	20.	Opportunities. Proceedings of the 8 th Rosenberg International Forum of Water Policy. University
252		of California.
254	21.	Gill, J. C., & B. D. Malamud (2014), Reviewing and visualizing the interactions of natural
255		hazards. Review of Geophysis, 52, 680–722, doi:10.1002/2013RG000445
256	22.	Gober, P.A, & Kirkwood C.W. (2010). Vulnerability assessment of climate-induced water
257		shortage in Phoenix. Proceedings of National Academy of Sciences USA, 107, 21295–21299.
258	23.	Hering, D., Botja, A., Carstesen, J., Carvalho, L., Elliott, M., Feld, C.K., Heiskanen, A.S.,
259		Johnson, R.K., Moe, D., Solheim, A.L., & van de Bund, W. (2010). The European water
260		framework directive at the age of 10: a critical review of the achievements with recommendations
261		for the future. Science of the Total Environment, 408, 4007-4019.
262	24.	Herron, N., Davis, R., & Jones, R. (2002). The effects of large-scale afforestation and climate
263		change on water allocation in the Macquarie River catchment, NSW, Australia. Journal of
264	25	Environmental Management, 65, 369-381.
265	25.	Hervás-Gámez, C., & Delgado-Ramos, F. (2019). Drought Management Planning Policy: From
266 267	26	Europe to Spain. Sustainability, 11, 1862.
267	20.	Hobbs, T.J., Neumann, C.R., Meyer, W.S., Moon, T., & Bryan, B.A. (2016). Models of reforestation productivity and carbon sequestration for land use and climate change adaptation
269		planning in South Australia. Journal of Environmental Management, 181, 279-288.
270	27	Hochard, J. 2021. Investigating wisely in land restoration. <i>Nature Sustainability</i> , <i>5</i> , 3-4.
271		Howden, M., Schroeter, S., Crimp, S., Hanigan, I. (2014). The changing roles of science in
272	-0.	managing Australian droughts: an agricultural perspedtive. Weather and Cimate Extremes, 3,
273		8089.
274	29.	Hunter, T., Tootle, G., & Piechota, T. (2006). Oceanic-atmospheric variability and western U.S.
275		snowfall. Geophysical Research Letters, 33(13), L13706.
276	30.	Iglesias, A., Mougou, R., Moneo, M., & Quiroga, S. (2011a). Towards adaptation of agroculture
277		to climate change in the Mediterranean. Regional Environmental Change, 11, S159-S166.
278	31.	Iglesias, A., Garrote, L., Diz, A., Schlickenrieder, J., & Martin-Carrasco, F. (2011)b. Re-thinking
279		water policy priorities in the Mediterranean region in view of climate change. <i>Environmental</i>
280	22	Science and Policy, 14, 744-757.
281	32.	Jedd, T., Russell Fragaszy, S., Knutson, C., Hayes, M.J., Fraj, M.B., Wall, N. M., Svoboda, M.,
282 283		& MacDonnell, R. (2021). Drought management norms: Is rhe middle East and Noth Africa region managing risks or crises? <i>Journal of Environment and Development</i> , <i>30</i> , 3-40.
285	33	Kappes, M. S., Keiler, M., Von Elverfeldt, K., & Glade, T. (2012). Challenges of analyzing multi-
285	55.	hazard risk: A review. <i>Nature Hazards</i> , 64(2), 1925–1958, doi:10.1007/s11069-012-0294-2.
286	34	Keita, A., Niang, D., Sandwidi, S. A. 2022. How non-governmental-organization-built small-
287	011	scale irrigation systems are a failure in Africa. Sustainability, 14, 11315.
288	35.	Kiem, A.S., & Austin, E.K. (2013). Drought and the future rural communities Opportunities and
289		challenges for climate change adaptation in regional Victoria, Australia. Global Environmental
290		Change, 23, 1307-1316.
291	36.	Kiem, A.S. 2013. Drought and water policy in Austraia: Challenges for the future illustrated by
292		the issues associated with water trading and climate change adaptation in the Murray-Darling
293		Basin. Global Environmental Change, 23, 1615-1626.
294	37.	Kolb, T.E., Grady, K. C., McEttrick, M.P., & Herrero, A. (2016). Local-scale drought adaptation
295		of Ponderosa pine seedlings at habitat ecotones. Forest Science, 62, 641-651
296	38.	Kurosaki, Y., Shinoda, M., Mikami, M., & Nandintsetseg, B. (2011b). Effects of soil and land
297		surface conditions in summer on dust outbreaks in the following spring in a Mongolian grassland.
298	20	SOLA, 7(1), 69–72, doi:10.2151/sola.2011-018.
299 200	39.	Li, C., Fu, B., Wang, S., Stringer, L. C., Wang, Y., Li, Z., Liu, Y., Zhou, W. (2021). Drivers and
300 301	40	impacts of changes in China's drylands. <i>Nature Reviews Earth and Environment</i> , 2, 858-873.
301 302	40.	Lioubimtseva, E., & Cole, R. (2007). Uncertainties of climate change in arid environments of Central Asia. <i>Reviews in Fisheries Science</i> , <i>14</i> , 29-49.
302	41	Lioubimtseva, E., Henebry, G.M. 2009. Climate and environmental change in arid Central Asia:
304	Ψ1.	Impacts, vulnerability and adaptations. <i>Journal of Arid Environments, 73</i> , 963-977.
		\mathbf{r}

305	42.	Li, W.J., & Lu, C.H. (2015). Aridity trend and response to vegetation restoration in the loess hilly
306	12	region of northern Shaanxi province. Journal of Geographic Sciences, 25, 289-300.
307	43.	Low, K.G., Grant, S.B., Hamilton, A.J., Gan, K., Saphores, J.D., Arora, M., & Feldman, D.L.
308		(2015). Fighting drought with innovation: Melbourne's response to the Millenium drought in
309		Southeast Australia. <i>Wires Water</i> , 2, 315-328.
310	44.	Ma, X., Zhu, J., Yan, W., & Zhao, C. (2021). Projections of desertification trends in Central Asia
311		under global warming scenarios. Science of the Total Environment, 781, 146777
312	45.	Marengo, J. A., Galdos, M.V., Challinor, A., Cunha, A.P., Marin, F.R., dos Santos Vianna, M.,
313		Avala, R.C.S., Alves, L.M., Moraes, O.L., & Bender, F. (2021). Drought in Northeast Brazil: A
314		review of agricultural and policy adaptation options for food security. Climate Resilence and
315		Sustainability, 1, e17.
316	46.	MacDonald, G.M. (2007) Severe and sustained drought in southern California and the West:
317		Present conditions and insights from the past on causes and impacts. Quaternary International,
318		173-174, 87–100.
319	47.	MacDonald, G.M. (2010). Water, climate change, and sustainability in the southwest.
320		Proceedings of the National Academy of Sciences USA, 105, 21256-21262
321	48.	Mechler, R., & Kundzewicz, Z.W. (2010). Assessing adaptation to extreme weather events in
322		Europe-Editorial. Mitigation and Adaptation Strategies for Global Changes, 15, 611-620.
323	49.	çMaïga-Yaleu, S.B., Chivenge, P., Yacouba, H., Guigemde, I., Karambiri, H., Ribolzi, O., Bary,
324		A., & Chaplot, V. (2015). Impact of sheet erosion mechanisms on organic carbon losses from
325		crusted soils in Sahel. Catena, 126, 60-67.
326	50.	Menezes, R.S.C., Salcedo, I.H. & Elliott, E.T. (2002). Microclimate and nutrient dynamics in a
327		silvopastoral system of semiarid northeastern Brazil. Agroforestry Systems, 56, 27-38
328	51.	Msangi, J.P. (2004). Drought hazard and desertification management in the drylands of Southern
329		Africa. Environmental Monitoring and Assessment, 99, 75-87.
330	52.	Mustaeva, N., & Kartayeva, S. (2018). Status of climte change adaptation in Central Asian
331	<i>c</i> <u>-</u> .	Region. In: Status of Climate Change Adaptation in Central Asian Region. Springer Climate
332		Book Series. New York.
333	53	Nandintsetseg, B., & Shinoda, M. (2015). Land surface memory effects on dust emission in a
334	55.	Mongolian temperate grassland, Journal of Geophysics Research Biogeosciences, 120, 414–427,
335		doi:10.1002/2014JG002708.
336	54	Nhamo, L., Mabhaudhi, T., & Modi, A. (2019a). Preparedness or repeated short-term relief aid?
337	54.	Building drought resilience through early warning in southern Africa. <i>Water SA</i> , 45, 75–85.
338	55	Nhamo, L., Matchya, G., Mabhaudhi, T., Nhlengethwa, S., Nhemachena, C., & Mpandeli, S.
339	55.	2019b. Cereal production trends under climate change: impacts and adaptation strategies in South
340		Africa. Agriculture, 9, 30.
340	56	Nhemachena, C., Nhamo, L., Matchaya, G., Nhemachena, C., R., Muchara, B., karuaihe, S.T.,
341	50.	Mpandeli, S. (2020). Climate change impacts on water and agriculture sectors in southern Africa:
343		
343	57	threats and opportunities for sustainable development. <i>Water</i> , 12, 2673
344 345	57.	O'Connor, D., & Ford, J. (2014). Increasing the effectiveness of the "Great Green Wall" as an
345		adaptation to the effects of climate change and desertification in the Sahel. <i>Sustainability</i> , 6, 7142-7154
	50	7154.
347	58.	Pérez-Martin, A.M., Menezes, R.S.C., & Salcedo, I.H. (2007). Produtividade de milho solteiro
348		ou em aléias de gliricídia adubado com duas fontes orgânicas. <i>Pesquisas Agropecuaria Brasil,</i>
349	50	42, 669–677.
350	59.	Pietrapertosa, F., Khokhlov, V., Salvia, M., & Cosmi, C. (2018). Climate change adaptation
351		policies and plans: a survey in 11 South East European countries. <i>Renewable and Sustainable</i>
352	c 0	<i>Energy Reviews</i> , <i>81</i> , 3041-3050.
353	60.	Ren, M., Chen, W., Wang, H. 2022. Ecological policies dominarted the ecological restoration
354		over the core regions of Kubuqi desert in recent decades. <i>Remote Sensing</i> , 14, 5243
355	61.	Rodrigo-Comino, J., Salvia, R., Quarnta, G., Cudlín, P., Salvato, L., Gimenez-Morera, A. (2021).
356		Climate aridity and the geographical shift of Olive trees in a Mediterranean Northern Region.
357		<i>Climate</i> , 9, 64.
358	62.	Schlüter, M., & E. Herrfahrdt-Pähle, E. (2011). Exploring resilience and transformability of a
359		river basin in the face of socioeconomic and ecological crisis: an example from the Amudarya
360		river basin, Central Asia. <i>Ecology and Society</i> , 16(1), 32.
361	63.	Shiferaw, B., Tesfaye, K., Kassie, M., Abate, T., Prasanna, B.M., & Menkir, A. (2014). Managing
362		vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa:
363		Technological, Institutional and policy options. Weather and Climate Extremes, 3, 67-79.

64.	Sowers, J., Vengosh, A., & Weinthal, E. (2011). Climate change, water resources, and the politics of adaptation in the middle east and north Africa. <i>Climate Change</i> , <i>104</i> , 599-627
65	
63.	Steele, C., Reyes, J., Elias, E., Aney, S., & Rango, A. (2018). Cascading impacts of climate
66	change on southwestern US cropland agriculture. <i>Climatic Change</i> , 148, 437-450.
00.	Tiessen, H., Menezes, R.S.C., Salcedo, I.H., Wick, B. (2003) Organic matter transformations and
7	soil fertility in a treed pasture in semi-arid NE Brazil. <i>Plant and Soil</i> , 252, 195–205.
67.	Waha, K., Krummenauer, L., Adams, S., Aich, V., Baarsch, F., Coumou, D., Fader, M., Hoff, H.,
	et al. (2017). Climate change impacts Middle East and Northern Africa (MENA) region and their
60	implications for vulnerable population groups. <i>Regional Environmental Change</i> , 17, 1623-1638.
68.	Wang, L., Lee, X., Schultz, N., Chen, S., Wei, Z., Fu, C., Gao, Y., Yang, Y., Lin, G. 2018.
	Response of surface temperature to afforestation in the Kubuqi desert, inner Mongolia. <i>Journal</i>
60	of Geophysical Research: Atmospheres, 123, 948-964.
69.	Wang, Z., Peng, D., Xu, D., Zhang, X. & Zhang, Y. (2020). Assessing the water footprint of
-	afforestation in inner Mongolia, China. Journal of Arid Environments, 182, 104257.
70.	Wang, H., Chen, Y.,& Chen, Z. (2013). Spatial distribution and temporal trends of mean
	precipitation and extremes in the arid region, northwest of China, during 1960-2010,
	Hydrological Processes, 27(12), 1807–1818, doi:10.1002/hyp.9339.
71.	Wilthite, D., Sivakumar, M.V.K., Pulwarty, R. (2014). Managing drought risk in a changing
	climate: the role of national drought policy. Weather and Climate Extremes, 3, 4-13.
	WFD 2000. https://www.eea.europa.eu/policy-documents/water-framework-directive-wfd-2000.
73.	Wodon, Q., Liverani, A., Joseph, G., & Bougnoux, N. (2014). Climate change, migration, and
	adaptation in the MENA region. In: Climate Change and Migration: Evidence from the Middle
	East and North Africa. Wodon, Q., Liverani, A., Joseph, G., Bougnoux, N. (eds). Washington
	D.C. World Bank.
74.	Xiao, Y., Xiao, Q., & Sun, X. (2020). Ecological risk arising from the impact of large-scale
	afforestation on the regional water supply balance in southwest China. Scientific Reports, 10,
	4150. Yang, Z., Gao, X., Lei, J., Meng, X., & Zhou, N. (2022). Analysis of spatiotemporal
	changes and driving factors of desertification in the Africa Sahel. Catena, 213, 106213.
75.	Yang, X., Zhang, K., Jia, B., & Ci, L. (2005). Desertification assessment in China: An overview.
	Journal of Arid Environments, 63(2), 517–531, doi:10.1016/j.jaridenv.2005.03.032
76.	Yao, Z., Xiao, J., Ma, X. 2021. The impact of large-scale afforestation on ecological environment
	in Gobi region. Scientific Reports, 11, 14383.
77.	Yuan, Z.Q., Yu, K.L., Epstein, H., Fang, C., Li, J.T., Liu, Q.Q., Liu, X.W., Gao, W.J., & Li, F.M.
	(2016). Effects of legume species introduction on vegetation and soil nutrient development on
	abandoned croplands in a semi-arid environment on the Loess Plateau, China. Science of The
	Total Environment, 541, 692-700.
78.	Xu, D., X. Kang, D. Qiu, D. Zhuang, & J. Pan (2009). Quantitative assessment of desertification
	using landsat data on a regional scale—A case study in the Ordos Plateau, China. Sensors, 9(3),
	1738–1753, doi:10.3390/s90301738.
79.	Zhao, J., Bindi, M., Eitzinger, J., Ferrise, R., Gaile, Z., Gobin, A., Holzkämper, A., Kersebaum,
	K.G., Kozyra, J., Kriauciuniené, Z., Loit, E., Nejedlik, T., Nendel, C., Niinemets, Ü., Palouso, T.,
	Peltonen-Sainio, P., Potopová, V., Ruis-Ramos, M., Reidsma, P., Rijk, B., Trnka, M., van
	Ittersum, M. K., & Oleesen, J.E. (2022). Priority for climate adaptation measures in European
	crop production systems. European Journal of Agronomy, 138, 126516.
80.	Zhou, Y.Y., Fu, D.J., Lu, C.X., Xu, X.M., Tang, Q.H. (2021). Positive effects of ecological
	restoration policies on the vegetation dynamics in a typical ecologically vulnerable area of China.
	Ecological Enginnering, 159, 106087.
81.	Zou, J., Ding, J., Welp, M., Huang, S., Liu, B. (2020). Assessing the response of ecosystem water
	use efficiency to drought during and after drought events across Central Asia. Sensors, 20, 581.
	 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80.