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SUPPLEMENTARY INFORMATION 13 

 14 

INTERACTION OF X-RAYS WITH MATTER 15 

The scattering of light from matter can be derived from Schrödinger’s equation with the use of time dependent 16 

perturbation theory. The system without external light source defines the unperturbed state. The interaction 17 

between light and the electrons of a material is treated perturbatively. In linear order this yields the elastic 18 

scattering length as given by Kubo's formula. In second order this yields, with some slight modifications, the 19 

Kramers-Heisenberg equation describing the inelastic scattering of light. 20 

Both in classical and in quantum physics, Maxwell's equations and the interaction between external 21 

electromagnetic fields and electrons are included into the Hamiltonian of a system by replacing the momentum 22 

of the electrons 𝑝⃗ with 𝑝⃗ − 𝑒𝐴. In classical physics 𝐴 is the vector potential defining the external magnetic and 23 

electric field. The constant 𝑒 is the charge of the electron. To quantize the electromagnetic field, the vector 24 

potential 𝐴 can be expanded on a basis of plane waves inside a box with volume V. This yields a set of allowed 25 

modes with wave-vector 𝑘⃗⃗ and polarization ϵ⃗. We can write the vector potential 𝐴 as an operator that can create 26 

or annihilate photons into the different plane wave modes: 27 

𝐴 = ∑ √
ℏ

2ωϵ0𝑉
𝑘⃗⃗,σ

(ϵσ
⃗⃗⃗⃗⃗𝑏

σ,𝑘⃗⃗
𝑒i𝑘⃗⃗⋅𝑟 + ϵσ

∗⃗⃗⃗⃗⃗𝑏
σ,𝑘⃗⃗

† 𝑒−i𝑘⃗⃗⋅𝑟) 28 

with the operators b
σ,k⃗⃗⃗

†  and 𝑏
𝜎,𝑘⃗⃗

 creating or annihilating a photon in the mode with wavevector 𝑘⃗⃗, energy ℏω 29 

and polarization ϵσ
⃗⃗⃗⃗⃗. The quantum number σ defines the two orthonormal vectors that form a basis for the 30 

polarization of the light. There are only two and not three polarization basis vectors as the polarization vector 31 

has to be perpendicular to the wavevector 𝑘⃗⃗. 32 

mailto:f.m.f.degroot@uu.nl
mailto:kejin.zhou@diamond.ac.uk


COMPTON AND RAYLEIGH SCATTERING 33 

 34 

In order to calculate the light scattered by a system we use time dependent perturbation theory. The Hamiltonian 35 

is split into two parts. The Hamilton operator H0 contains all interactions of the system without external light 36 

field. The operator H1 contains the change to the Hamiltonian due to the interaction with the external light field. 37 

To a good approximation (i.e. neglecting the interaction of the light with the atomic nuclei and neglecting the 38 

magnetic moment of the light) we find for the sum over all electrons: 39 

𝐻1 = ∑
1

2𝑚
𝑛

(𝑝𝑛⃗⃗⃗⃗⃗ − 𝑒𝐴(𝑟𝑛⃗⃗⃗⃗ ))
2

−
1

2𝑚
𝑝𝑛

2⃗⃗⃗⃗⃗ 40 

= ∑
𝑒2𝐴(𝑟𝑛⃗⃗⃗⃗ )2

2𝑚
𝑛

−
𝑒𝐴(𝑟𝑛⃗⃗⃗⃗ ) ⋅ 𝑝𝑛⃗⃗⃗⃗⃗

𝑚
 41 

The operator 𝐴 describes either the absorption or the emission of a photon. For scattering one needs a successive 42 

absorption and emission. In a time dependent perturbation expansion in operator H1 scattering of light only 43 

happens if the operator 𝐴 enters at least twice in the series expansion. This happens in first order perturbation 44 

theory for the operator A2⃗⃗ ⃗⃗⃗ or in second order perturbation theory for the operator p⃗⃗ ⋅ A⃗⃗⃗ + A⃗⃗⃗ ⋅ p⃗⃗. Scattering due 45 

to the 𝐴2⃗⃗ ⃗⃗ ⃗ is known as Compton scatteringClick or tap here to enter text. where the electric field is described as 46 

particles and one can have a picture of billiard balls scattering of each other taking into account energy and 47 

momentum conservation laws. Scattering due to the operator 𝑝⃗ ⋅ 𝐴 + 𝐴 ⋅ 𝑝⃗ is related to Rayleigh scattering 48 

where the electromagnetic field induces an oscillating electric polarization of the system, which consequently 49 

leads to the emission of radiation. 50 

 51 

INELASTIC X-RAY SCATTERING 52 

Inelastic light scattering due to the operator 𝐴2⃗⃗ ⃗⃗ ⃗ is also known under the name of X-ray Raman Scattering (XRS) 53 

or non-resonant Inelastic X-ray Scattering (nIXS). Close to the atomic resonances in a material, i.e. at energies 54 

where a core electron can be excited to the unoccupied states just above the chemical potential, the resonant 55 

contribution dominates in intensity over the non-resonant contribution. Further away from the resonance the 56 

𝐴2⃗⃗ ⃗⃗ ⃗ scattering becomes the dominant channel for x-ray scattering. At small scattering angle, XRS can be described 57 

in the dipole approximation and its spectral shape is equivalent to X-ray absorption spectroscopy. At larger 58 

momentum transfer the dipole limit cannot be used and one can observe higher-order multipole transitions275–59 
278279. This review deals with resonant IXS (RIXS). At resonance the scattering process is completely dominated 60 

by the operator 𝑝⃗ ⋅ 𝐴 + 𝐴 ⋅ 𝑝⃗. and for the rest of this review we will neglect the A2 interaction term. 61 

 62 

 63 

 64 



RESONANT INELASTIC X-RAY SCATTERING 65 

The RIXS cross section is given by a second order response theory, which can be derived from second order 66 

perturbation theory expanding the work of KuboClick or tap here to enter text. to second order. The double 67 

differential cross section 𝜕2𝜎/𝜕Ω𝜕𝜔 describes the scattering of a plane wave of light with wavevector 𝑘𝑖
⃗⃗⃗⃗  energy 68 

ℏ𝜔 and polarization 𝜖𝑖
⃗⃗ ⃗⃗ . 69 

∂2σ

∂Ω ∂ω
∝ −Im (⟨< 𝑖|𝑅

𝑘𝑜⃗⃗⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗

𝑘𝑖⃗⃗ ⃗⃗ ,𝜖𝑖⃗⃗⃗⃗ (𝜔𝑖)† 𝐺(𝜔) 𝑅
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗

𝑘𝑖⃗⃗ ⃗⃗ ,𝜖𝑖⃗⃗⃗⃗ (𝜔𝑖)|𝑖 >) 70 

The propagator G(ω) is defined as: 71 

𝐺(ω) =
1

ℏω + 𝐸𝑖 + i
Γ
2

− 𝐻
−

1

ℏω − 𝐸𝑖 + i
Γ
2

+ 𝐻
 72 

The state |i> relates to the initial state or the ground-state of operator H with eigenenergy Ei. The operator H is 73 

the Hamiltonian of the full system without the applied electromagnetic field. It describes both the valence as 74 

well as the core electrons. Γ is the linewidth or self-energy operator of the excited state. The lifetime is state 75 

dependent and as such Γ is an operator. For practical calculations on finite Hilbert spaces Γ has a finite value 76 

due to Auger-Meitner and Fluorescence decay of the excited state.  77 

The RIXS transition operator 𝑅
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗

𝑘𝑖⃗⃗ ⃗⃗ ,𝜖𝑙⃗⃗⃗⃗ (𝜔𝑖) describes the absorption of a photon with energy ωi, the propagation of 78 

the photo-excited system and the subsequent emission of a photon with energy ωo. It is defined as a function of 79 

the transition operators T describe the absorption (emission) of a photon, and 𝑟𝑛⃗⃗⃗⃗  is the position vector of electron 80 

n: 81 

𝑅
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗

𝑘𝑖⃗⃗ ⃗⃗ ,𝜖𝑙⃗⃗⃗⃗ (ω𝑖) = 𝑇
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,ϵ𝑜⃗⃗⃗⃗⃗

†  𝐺(ω𝑖) 𝑇
𝑘𝑖⃗⃗ ⃗⃗ ,ϵ𝑖⃗⃗⃗⃗

, with 𝑇𝑘⃗⃗,ϵ⃗⃗ ≈
i𝑚ω

ℏ
∑ 𝑒i𝑘⃗⃗⋅𝑟𝑛⃗⃗⃗⃗⃗𝑏𝑘⃗⃗,ϵ⃗⃗𝑛 ϵ⃗ ⋅ 𝑟𝑛⃗⃗⃗⃗  82 

The propagator can be expanded on the eigen-basis of the Hamiltonian H 83 

 ∑ | 〈𝑓 |𝑇
𝑘𝑜⃗⃗⃗⃗⃗⃗ ϵ𝑜⃗⃗⃗⃗⃗

ϯ 1

𝜔𝑖+𝐸𝑖+𝑖𝛤/2−𝐻
𝑇

𝑘𝑖⃗⃗ ⃗⃗ ϵ𝑙⃗⃗⃗⃗
| 𝑖〉 |

2
= ∑ |∑

<𝑓|𝑇
𝑘𝑜⃗⃗ ⃗⃗ ⃗⃗ ϵ𝑜⃗⃗⃗⃗⃗⃗

ϯ
|𝑗><𝑗|𝑇

𝑘𝑖⃗⃗⃗⃗⃗ϵ𝑙⃗⃗⃗⃗
|𝑖>

𝜔𝑖+𝐸𝑖+𝑖𝛤𝑗/2−𝐸𝑗
𝑗  |

2

𝑓  𝑓 . 84 

By doing so one retrieves, in the limit where Γf goes to zero, the Kramers Heisenberg equation 85 

∂2σ

∂Ω ∂ω
∝ ∑ |∑

𝑗

⟨𝑓|𝑇
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,ϵ𝑜⃗⃗⃗⃗⃗

† |𝑗⟩ ⟨𝑗|𝑇
𝑘𝑖⃗⃗ ⃗⃗ ,ϵ𝑖⃗⃗⃗⃗

|𝑖⟩

ω𝑖 + 𝐸𝑖 + i
Γ𝑗

2
− 𝐸𝑗

|

2

𝑓

δ(𝐸𝑖 + ω𝑖 − 𝐸𝑓 − ω𝑜) 86 
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RIXS AS CONVOLUTION OF X-RAY ABSORPTION AND X-RAY EMISSION 91 

RIXS can be viewed as the radiative x-ray emission intensities that are measured resonantly at an x-ray absorption 92 

edge. If the interference effects are neglected, the intensity of the RIXS peak is the multiplication of the intensity 93 

of the XAS excitation times the intensity of the XES decay.  94 

(eq. 4) ∑ |∑
<𝑓|𝑇

𝑘𝑜⃗⃗ ⃗⃗ ⃗⃗ ,ϵ𝑜⃗⃗⃗⃗⃗⃗

†
|𝑗><𝑗|𝑇

𝑘𝑖⃗⃗⃗⃗⃗,ϵ𝑖⃗⃗⃗⃗
|𝑖>

𝜔𝑖+𝐸𝑖+𝑖𝛤/2−𝐸𝑗
𝑗  |

2

𝑓 = ∑  ∑ < 𝑓|𝑇
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,ϵ𝑜⃗⃗⃗⃗⃗

ϯ
|𝑗 >2

𝑗  < 𝑗 |𝑇
𝑘𝑖⃗⃗ ⃗⃗ ,ϵ𝑖⃗⃗⃗⃗

| 𝑖 >2 𝑓  95 

In some cases, one may also neglect the core hole effect and describe the RIXS process using only one-electron 96 

transitions. The equation can then be further simplified to 53: 97 

∂2σ

∂ω𝑜 ∂ω𝑙
∝ ∫ 𝑑𝜀

𝜌(𝜀)𝜌′(𝜀 + ℏ𝜔𝑖𝑛 − ℏ𝜔𝑜𝑢𝑡)

(𝜀 − ℏ𝜔𝑜𝑢𝑡)2 +
Γ𝑛

2

4𝜀

 98 

with  and ’ the occupied and unoccupied density of states. This equation makes the RIXS process very 99 

accessible to theoretical modelling. However, the challenge is to assess when the approximations can be applied.  100 

 101 

 102 

MOMENTUM DEPENDENCE IN RIXS 103 

 104 

In order to discuss the momentum dependence in RIXS it is useful to factorize the momentum dependence into 105 

a structure factor and atomic scattering lengthClick or tap here to enter text.. The structure factor depends on 106 

the positions of the atoms, the atomic scattering length depends on the type of atom and its environment. For a 107 

molecule or solid with atoms at position Rj
⃗⃗ ⃗⃗  we can define the RIXS operator as: 108 

𝑅
𝑞⃗⃗,ω𝑖

ϵ𝑖⃗⃗⃗⃗ ,ϵ𝑜⃗⃗⃗⃗⃗
= ∑ 𝑒𝑖𝑞⃗⃗⋅𝑅𝑗⃗⃗ ⃗⃗⃗

𝐽

𝑅𝐽,𝜔𝑖

𝜖𝑖⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗
 109 

The RIXS operator 𝑅
𝑞⃗⃗,𝜔𝑖

𝜖𝑖⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗
 makes coherent excitations with energy ℏω = ℏ(ω𝑖 − ω𝑜) and momentum ℏ𝑞⃗ =110 

ℏ(𝑘𝑖
⃗⃗⃗⃗ − 𝑘𝑜

⃗⃗⃗⃗⃗). These are a result of excitations made at and around site J by the operator R coherently summed 111 

over all lattice sites J at position 𝑅𝑗
⃗⃗ ⃗⃗  with the phase factor 𝑒i𝑞⃗⃗⋅𝑅𝑗⃗⃗ ⃗⃗⃗. Note that this operator depends on 𝑘𝑖

⃗⃗⃗⃗  and 𝑘𝑜
⃗⃗⃗⃗⃗. If 112 

the wavelength 2π/|𝑘⃗⃗| is large compared to the radial extend of the local core state excited, one can use the 113 

dipole approximation and set 𝑒i𝑘⃗⃗⋅𝑟 ≈ 1, removing the momentum dependence from the local RIXS transition 114 

operator. This is for most edges a good approximation. Note that for deep core levels the incident energy is high, 115 

and thus the wavelength short. At the same time the radial extend of the core orbital is small such that the dipole 116 

approximation is still good. 117 

 118 



EFFECTIVE OPERATORS IN RIXS 119 

 120 

RIXS is, for many cases, comparable to Inelastic Neutron Scattering (INS). Both methods allow one to probe the 121 

energy and momentum dependence of low lying excitations. These include phonons, magnons and crystal-field 122 

transitions i.e. orbitons. The RIXS cross section is often larger, allowing one to probe much smaller sample 123 

volumes. On the other hand, the maximum momentum transfer in RIXS is set by the resonant photon energy. 124 

Often this only includes part of the Brillouin zone. As such both methods are complementary. There is one big 125 

difference between RIXS and INS. For INS the interaction with the neutron and the (magnetic moment) of the 126 

electrons is well understood and relatively simple. In RIXS the low energy excitations are made in a resonant 127 

process by the operator 𝑅J,𝜔𝑖

𝜖𝑖⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗
. This operator includes the interaction with the electromagnetic field (light) twice. 128 

The interaction between electrons and photons is just like the interaction between neutrons and electrons well 129 

understood. The operator 𝑅J,𝜔𝑖

𝜖𝑖⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗
 also includes the propagator G(ω). This propagator describes the (Fourier 130 

transform) of the time evolution of the many-electron system after a photon is absorbed. This propagator 131 

includes a local core hole and all many-body interactions between the electrons. As core states are localized one 132 

can calculate this propagator relatively well. However one does need advanced multi-refference quantum 133 

chemistry methods to do this. As a result nothing is simple about this propagator. 134 

The operator 𝑅J,𝜔𝑖

𝜖𝑖⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗
 can excite single, double, triple, etc. spin flips at and around site J, it can make charge 135 

excitations and measure the charge dynamical structure factor, it can excite phonons. Actually any low energy 136 

excitation that is allowed by symmetry can be excited by RIXS. The intensity of the different excitations RIXS 137 

couples to is strongly polarization (𝜖𝑖⃗⃗⃗ ⃗, 𝜖𝑜⃗⃗ ⃗⃗ ) and resonant energy 𝜔𝑖 dependent. For many choices of polarization 138 

and resonant energy, only a few low energy excitation types dominate the RIXS spectrum. 139 

In order to understand which low energy excitaiton the RIXS operator 𝑅J,𝜔𝑖

𝜖𝑖⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗
 can excite one can expand the 140 

operator on a complete orthonormal set of simpler operators. The expansion coefficients then will carry the 141 

resonant energy and polarization dependence. For a doped Hubbard model, relevant for the cuprates this yields 142 

a set of spin and charge operators acting at and around site J, with specific energy and polarization dependence50. 143 

For magentic excitations one can expand the RIXS operator onto spin operators. In spherical symmetry expanded 144 

to local spin excitations on site J only this yields21. 145 

𝑅J,ω𝑖

ϵ𝑖⃗⃗⃗⃗ ,ϵ𝑜⃗⃗⃗⃗⃗
= σ(0)(ωi)ϵi⃗⃗⃗ ⋅ ϵo⃗⃗ ⃗⃗

∗
+

1

𝑠
𝜎(1)(𝜔𝑖)𝜖𝑜⃗⃗ ⃗⃗

∗
× 𝜖𝑖⃗⃗⃗ ⃗ ⋅ Sj

⃗⃗⃗ ⃗  146 

+  
1

𝑠(2𝑠 − 1)
 𝜎(2)(𝜔𝑖) ((𝜖𝑖⃗⃗⃗ ⃗ ⋅ 𝑆𝑗

⃗⃗⃗ ⃗)(𝜖𝑜⃗⃗ ⃗⃗
∗

⋅ 𝑆𝑗
⃗⃗⃗ ⃗) + (𝜖𝑜⃗⃗ ⃗⃗

∗
⋅ 𝑆𝑗

⃗⃗⃗ ⃗)(𝜖𝑖⃗⃗⃗ ⃗ ⋅ 𝑆𝑗
⃗⃗⃗ ⃗) −

2

3
(𝜖𝑖⃗⃗⃗ ⃗ ⋅ 𝜖𝑜⃗⃗ ⃗⃗

∗
)𝑆𝑗

⃗⃗⃗ ⃗
2

), 147 

With s the length of the local spin operator and 𝜎(0)(𝜔𝑖) the local isotropic x-ray absorbtion spectrum, 𝜎(1)(𝜔𝑖) 148 

the local magnetic circular dichroic x-ray absorbtion spectrum one would measure if the spin was fully aligned 149 

and, 𝜎(2)(𝜔𝑖) the local magnetic linear dichroic x-ray absorbtion spectrum one would measure if the spin was 150 

fully aligned. For atoms at lower crystal point-group symmetries the operators branch according to the point-151 

group branching rulesClick or tap here to enter text.. The expansion of the RIXS operators into polynomials of the 152 

spin operators (Stevens Operators) truncates in spherical symmetry at order 2. For lower symmetries, which 153 

crystals always posess, the series does not truncate as angular momentum can be transferred to the crystal 154 



lattice21. For resonant energies below the main absorbtion line the local transitions normally dominate the 155 

spectrum. For resonant energies that are at or above the first resonance, one can expect that additional spin 156 

excitations on the neighboring sites around lattice site J become important. 157 

DIRECT AND INDIRECT RIXS 158 

 159 

In the results section we classified different RIXS spectra into core and valence RIXS. This classification depends 160 

on the question if the final state of the RIXS process has a core hole or not. For valence RIXS one needs to consider 161 

polarization, resonant energy, and momentum transfer to fully understand the spectra. For core RIXS one can 162 

neglect the momentum transfer as core levels do not disperse. A different classification of the RIXS process can 163 

be made based on the interactions involved within the RIXS process. One can classify both core and valence RIXS 164 

into direct or indirect RIXS. 165 

For direct RIXS a core electron can be excited into one of the single electron states above the chemical potential. 166 

After the excitation another electron can decay from one of the occupied single electron states, either a shallow 167 

core electron or a valence electron, into the previously formed core hole. For indirect RIXS one also starts by 168 

exciting a core electron into one of the single electron states above the chemical potential. One now assumes 169 

that the electron that decays back into the core is the same electron as the electron that was excited. This 170 

seemingly elastic process can generate excitations. The core hole and additional electron interact with the other 171 

electrons in the system. This can result in the scattering of other electrons from occupied to unoccupied orbitals, 172 

thereby generating low lying excitations. 173 

One has to be careful when explaining direct and indirect RIXS in terms of decaying with the same or a different 174 

electron. Electrons are indistinguishable particles and formally one cannot distinguish if the same or a different 175 

electron decayed compared to the one excited. A more accurate definition of direct and indirect RIXS can be 176 

made by the use of a Dyson perturbation expansion 177 

We can write the full Hamiltonian 𝐻 of the system as a sum of 𝐻0 and 𝐻1 178 

𝐻 = 𝐻0 + 𝐻1, 179 

with 𝐻0 the (mean-field) Hamiltonian describing the ground-state without core hole and 𝐻1 all terms neglected 180 

in 𝐻0 to obtain the full Hamiltonian. For the case where 𝐻0 is a full interacting Hamiltonian describing the valence 181 

electrons including the many-body Coulomb corrections the Hamiltonian 𝐻1 contains the direct and exchange 182 

interaction between the valence electrons and the core hole. For the case where 𝐻0 is a mean-field Hamiltonian, 183 

as assumed in many discussions on direct and indirect RIXS, the operator 𝐻1 also contains the two electron 184 

Coulomb interactions between the valence electrons. Once an appropriate choice for 𝐻0 and 𝐻1 is made we can 185 

rewrite the RIXS operator 𝑅
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗

𝑘𝑖⃗⃗ ⃗⃗ ,𝜖𝑙⃗⃗⃗⃗ (𝜔𝑖) in terms of a direct and indirect part. The RIXS operator 𝑅
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗

𝑘𝑖⃗⃗ ⃗⃗ ,𝜖𝑙⃗⃗⃗⃗ (𝜔𝑖) is given 186 

by the product of an operator that absorbs an x-ray and creates a core hole (𝑇
𝑘𝑖⃗⃗ ⃗⃗ ,ϵ𝑖⃗⃗⃗⃗

,), an operator that describes 187 

the propagation of the many electron core hole state in the system (𝐺(ω𝑖)), and an operator that emits an x-ray 188 

and fills the core hole (𝑇
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,ϵ𝑜⃗⃗⃗⃗⃗

†  ), 189 



𝑅
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗

𝑘𝑖⃗⃗ ⃗⃗ ,𝜖𝑙⃗⃗⃗⃗ (ω𝑖) = 𝑇
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,ϵ𝑜⃗⃗⃗⃗⃗

†  𝐺(ω𝑖) 𝑇
𝑘𝑖⃗⃗ ⃗⃗ ,ϵ𝑖⃗⃗⃗⃗

. 190 

Using the definition of the Green’s function we find for the Dyson equation 191 

𝐺−1(ω𝑖) = ℏω + 𝐸𝑖 + i
Γ

2
− 𝐻

= ℏω + 𝐸𝑖 + i
Γ

2
− 𝐻0 − 𝐻1

= 𝐺0
−1(ω𝑖) − 𝐻1,

 192 

and thus, by multiplying from the left with 𝐺0(ω𝑖) and from the right with 𝐺(ω𝑖) 193 

𝐺(ω𝑖) = 𝐺0(ω𝑖)  +  𝐺0(ω𝑖)𝐻1 𝐺(ω𝑖). 194 

We now can write for the direct RIXS operator 195 

𝑅𝑑
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗

𝑘𝑖⃗⃗ ⃗⃗ ,𝜖𝑙⃗⃗⃗⃗ (ω𝑖) = 𝑇
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,ϵ𝑜⃗⃗⃗⃗⃗

†  𝐺0(ω𝑖) 𝑇
𝑘𝑖⃗⃗ ⃗⃗ ,ϵ𝑖⃗⃗⃗⃗

, 196 

and for the indirect RIXS operator 197 

𝑅𝑖
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,𝜖𝑜⃗⃗ ⃗⃗⃗

𝑘𝑖⃗⃗ ⃗⃗ ,𝜖𝑙⃗⃗⃗⃗ (ω𝑖) = 𝑇
𝑘𝑜⃗⃗⃗⃗⃗⃗ ,ϵ𝑜⃗⃗⃗⃗⃗

†  𝐺0(ω𝑖)𝐻1 𝐺(ω𝑖) 𝑇
𝑘𝑖⃗⃗ ⃗⃗ ,ϵ𝑖⃗⃗⃗⃗

. 198 

The distinction between direct and indirect RIXS can be exemplified by two cases.  199 

For direct RIXS an effective operator can be derived that only depends on the polarization of the light. If one 200 

assumes that 𝐻0 only includes the core level onsite energy and spin-orbit coupling interaction one obtains the 201 

fast collision approximation. This name originates from the observation that if the interaction of the photon with 202 

the system occurs very fast, no additional indirect excitations are made. The fast collision approximation is a 203 

reasonable approximation if the intermediate state Coulomb interaction and crystal field is small compared to 204 

core hole lifetime. One can use this approximation for excitations within the t2g orbitals excited at the L23 edge 205 

in Iridates for example. In this limit one can derive an analytical expression for the RIXS scattering cross section 206 

and its polarization dependence, thereby relating RIXS to inelastic neutron scattering. The effective operator 207 

formalism described in the previous section includes these direct RIXS processes, but also includes the indirect 208 

RIXS processes and as such has a dependence of the RIXS cross section on the resonant light energy. 209 

Indirect RIXS becomes important, for example, at transition metal K edges. At these edges one can excite a core 210 

s electron into the p sub-shell of a transition metal ion. Subsequently this p electron decays back to the core 211 

orbital. In the intermediate state the p electron can interact with the d electrons via the Coulomb interaction. 212 

One could for example excite with x polarized light an s core electron to the px orbital. Coulomb interaction then 213 

can scatter the px electron to a py electron whilst simultaneously scatter a dyz electron to an dxz orbital. The py 214 

electron can subsequently decay back to the s core state under the emission of a photon with y polarization.  215 

In general the RIXS intensity is given by a sum of the direct and indirect part as well as interferences between the 216 

two channels. One should be carefull when making a series expansion of 𝐻  in 𝐻1 around 𝐻0. There is no 217 



guarantee that such a series converges. We note that in this definition of direct and indirect RIXS, each RIXS 218 

feature in the multiplet model (for example 3d7 > 2p53d8 > 3d7) will be a combination of direct RIXS and indirect 219 

RIXS. If one does not use a single-electron model for H0, but instead uses that H0 is the crystal field multiplet 220 

model then all multiplet states will be direct RIXS and charge transfer states could be called indirect RIXS. But if 221 

the Anderson impurity model is defined as H0 then everything becomes again direct RIXS. In other words, the 222 

distinction between direct and indirect RIXS depends on the model that is chosen for H0 and H1. 223 

 224 

 225 

Figure S1: Direct and indirect RIXS channels due to interference of excitons and continuum excitations. 226 

For gas phase molecules one can make a distinction between excitons (H0) and ionization (H1) and for the K edge 227 

of transition metal systems one can make a distinction between core excitons (H0) and continuum excitations 228 

(H1). Figure S1 gives an example of direct and indirect RIXS for such system. The RIXS experiment that follows the 229 

path from the ground state to core excitons and then decay to RIXS excitons would be direct RIXS. Indirect RIXS 230 

would be a continuum excitation followed by decay to the RIXS excitons. The reason that indirect RIXS is possible 231 

is due to the coupling of the core excitons (H0) and the continuum (H1). 232 
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